
Received May 3, 2019, accepted July 19, 2019, date of publication July 26, 2019, date of current version August 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931456

Crowd-Sourced Wildfire Spread Prediction With
Remote Georeferencing Using Smartphones
NIKOS BOGDOS1 AND ELIAS S. MANOLAKOS 1,2, (Senior Member, IEEE)
1Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
2Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA

Corresponding author: Elias S. Manolakos (eliasm@di.uoa.gr)

ABSTRACT Wildfires are natural hazards with severe consequences worryingly worsening for many
climate-change affected regions of our planet. Unfortunately, technologies that can provide real-time fire-
line information, such as satellites, in-field sensors, and social media texts, exhibit low spatial/temporal
resolution or cannot be deployed cost-effectively in widespread geographical areas. We present the design,
development, and implementation of a novel software service, called CITISENS, which by exploiting
commodity smartphone sensors allows ordinary citizens to easily georeference a fire-line in real-time and
report its coordinates as they are photographing a wildfire. The location/orientation sensors and the camera
are used to compute the view-ray of the smartphone, and a digital elevation model is employed to estimate
the ray’s intersection with the topography. We have tested the georeferencing accuracy obtained and it is
to be on par with, or even better, than that of existing satellite wildfire hotspot services. When combined
with FLogA, a flexible wildfire spread simulator we have also developed, CITISENS offers the following
unique advantages: real-time prediction of burn probabilities, dynamic assimilation of citizen-reported
hotspots into ongoing simulations for improved predictive accuracy, and decision support to issue citizen
alarms based on the estimated time-dependent risk at their location due to an approaching wildfire.

INDEX TERMS Citizen science, georeferencing, smartphones, wildfire monitoring, wildfire spread
simulation.

I. INTRODUCTION
We have become the passive observers of the dire conse-
quences of climate change on wildfires’ frequency and scale.
Admittedly, the wildfire periods are becoming longer and
more intense, and there is nothing to suggest that this trend
will change in the foreseeable future. Never before was it
of such paramount importance to develop novel methods
and tools empowering our communities in combating more
effectively the evermore dangerous wildfires. Primarily when
wildfires affect the Wildland Urban Interfaces (WUIs) [1],
guarding the community against their catastrophic effects
becomes evenmore challenging, as demonstrated many times
before with the most recent cases being the tragic events
at Mati a suburb of Athens, Greece [2] and in the state of
California, US [3].

Wildfire hotspot monitoring services are currently based
on satellite or in-field sensors. Although very useful, both
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technologies present serious drawbacks limiting their prac-
ticality. Understandably, we cannot deploy cost-effectively
in-field wireless sensor networks of sufficient density in all
areas we want to protect, and satellite sensors cannot provide
adequate temporal accuracy when in polar orbit [4], or spatial
accuracy when in geostationary orbit [5].

On the bright side, we are experiencing a fast-growing
trend towards manipulating geographic information in social
media, as we –the citizens- are becoming geographic data
providers during a crisis event. Such collective social behav-
ior gives rise to the so-called Volunteered Geographic Infor-
mation (VGI) datasets [6]. However, social media text does
not provide sufficient information about the geography of
a wildfire. The crucial question then becomes: Given the
widespread social participation and interaction during a wild-
fire event [7]–[10] can we create easy to use and effective
tools empowering our communities to manage wildfire risk?
We are addressing this critical question by developing a
pilot Citizen Science program [11] aiming to raise wildfire
management awareness and efficiency by decentralizing the
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efforts, shifting some of the burden of fire line monitoring
from the civil protection authorities to the concerned citizens
themselves.

The swarm of sensors available in smartphones today
(gyroscopes, accelerometers, magnetometers, GPS, cameras)
can be exploited by citizens to georeference and report
visible wildfire hotspots just as they are photographing a
wildfire. Also, georeferencing and camera pose estimation
using smartphones, or other camera systems equipped with
a Global Navigation Satellite System (GNSS) and an Inertial
Measurement Unit (IMU), have been put to the test in recent
years. For example, [12] develops a close-range Augmented
Reality (AR) system for GIS Registration and [13] demon-
strates direct georeferencing on Unmanned Aerial Vehicles
(UAV). Moreover, [14], [15] and [16] use a smartphone as a
Mobile Mapping System to georeference close range objects
employing photogrammetric techniques, to overcome the low
accuracy of navigation sensors [17], [18]. Furthermore, [19]
uses smartphones effectively to georeference video streams
and demonstrates how they can become geospatial video
providers.

Along these lines, we have developed CITISENS (CITI-
zens as SENSors), a novel software service introducing a
whole new concept in ‘‘hotspot’’ data generation and wild-
fire risk estimation, promoting active citizens participation
in creating a wildfire citizens observatory. By exploiting
the ubiquitous smartphone sensors, we introduce here new
methods allowing the concerned citizens (firefighting vol-
unteers, local residents, etc.) to effortlessly contribute fire-
line measurements at a safe distance during a wildfire event
by only using their phones. The final outcome is a dynam-
ically formed VGI dataset representing the state of the fire
shape in real-time. This can provide valuable input enabling
the formation of an effective crowd-sourced Dynamic Data
Driven Assimilation System (DDDAS) [20]. For wildfire
spread simulation and improving its accuracy in predict-
ing the hazard’s spatio-temporal evolution. Prior DDDAS
approaches have demonstrated improvements in simulation
accuracy under controlled conditions, especially when in-
field sensors offer high-quality measurements of a wildfire’s
front-line [21]–[24]. However, the limited efforts to validate
wildfire DDDAS approaches using real-time, noisy measure-
ments from real wildfires have not proved as successful [25].
This is why in [26] we have introduced a flexible data
assimilation approach, where we first calibrate the mecha-
nism producing the wildfire simulation model’s output before
attempting to adjust its input parameters when significant
simulation drift is observed.

We demonstrate here that CITISENS can fill the gap
between high-quality but low-availability measurements
from in-field sensors and high-availability but low-quality
measurements from satellite sensors. To the best of our
knowledge, such an approach where citizens contribute geo-
referenced remote targets on the fly, without the need for
special equipment or excessive training, has not been imple-
mented before in wildfire monitoring, or, as a matter of

fact, in any other field of environmental sciences. With the
use of the CITISENS service, citizens can empower wildfire
monitoring, wildfire course prediction and ultimately make
possible the first crowd-sourced wildfires DDDAS approach.

The rest of the paper is organized as follows: Section II
presents the workflow of the CITISENS service and describes
the different user roles. Section III presents the software
architecture of the two main applications implementing the
service. Section IV first describes the georeferencing testing
scheme employed, and then presents and discusses the test-
ing results. Finally, Section V summarizes our findings and
points to interesting future research directions.

II. CITISENS SERVICE WORKFLOW
CITISENS has been designed to support two distinct view-
points: that of the citizen-volunteers who want to contribute
wildfire reports, and that of the authorities (decision-makers)
who wish to collect, visualize and evaluate these reports, and
potentially use them to feed a crowd-sourced DDDAS for
improved wildfires’ course prediction. To support all phases
of this citizens-authorities win-win collaborative interac-
tion,CITISENS integrates two distinct applications: Amobile
app for hotspot generation and reporting and a desktop appli-
cation for hotspot arrivals monitoring and decision support.

Figure 1 presents an activity diagram with the overall flow
of information of a typical wildfire hotspot reporting pro-
cess. Everything starts when a citizen (and service registered
user) locates a visible wildfire hotspot and targets it using
her smartphone camera. The CITISENS reporter smartphone
application obtains the location, orientation, and elevation
to compute the device’s view ray. Then it uses a Digital
Elevation Model (DEM) to calculate locally on the phone the
intersection of the calculated view ray with the topography
and estimate the target’s geographic parameters (coordinates,
elevation, distance from the citizen). All data is then made
available to a decision center which can filter the contributed
reports and proceed to either initiate a newwildfire simulation
or to assimilate the reports into a DDDAS to update its prior
wildfire spread predictions and associated confidence levels.
Methods that can be used for hotspot reports filtering prior to
assimilation and simulation initiation are beyond the scope
of this work, but we discuss a course of direction on this
topic in Section V. The decision-makers could also set up
the service to alert the citizen reporters when the fire burn
probability of their location is expected to exceed a certain
threshold and possibly make available the wildfire model’s
risk prediction maps. In Section II B. we explain how we
calculate the fire burn probabilitymaps after runningMultiple
Simulation Scenarios of the wildfire’s course.

The following sections provide detailed information about
the CITISENS software applications and the distinct roles
they are serving.

A. REPORTING HOTSPOTS
The mobile application, CITISENS reporter, was developed
to allow citizens to photo-shoot, georeference, and report
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FIGURE 1. Activity diagram showing the flow of information in the
CITISENS service. A citizen targets a wildfire hotspot using his/her
smartphone camera and by using the device’s view ray and a Digital
Elevation Model (DEM). The CITISENS reporter application calculates the
geographic information of the target (coordinates, elevation, distance
from the citizen). The accumulated hotspot reports are then used to
either initiate a new wildfire simulation or to be assimilated into an
ongoing simulation and update probabilistic wildfire spread predictions.
According to the outcome of the simulation, the authorities may decide to
alert users based on the wildfire risk at their location.

a wildfire hotspot effortlessly using their smartphones. The
most important requirement for its development was to sup-
port an intuitiveworkflow for end-users, a prerequisite for any
Citizen Science-based approach aiming to generate wildfire
hotspot reports of high quality and quantity. To that end,
users have to center the wildfire hotspot on their screen
and photograph it using their smartphone’s camera; then the
application does all the rest seamlessly locally on the phone
to provide within milliseconds the geographic coordinates
of their target. Figure 2 shows a screenshot of the main
interface of the CITISENS reporter. After taking the photo,
the geographic coordinates of the captured wildfire hotspot
are produced and sent to the CITISENS server along with rel-
evant information. Table 1 lists all the types of data collected
from citizen reports.

To reduce the inherent measurements noise of smartphone
orientation sensors, the CITISENS reporter supports a user-
friendly calibration procedure, that users need to perform
only once to maximize the georeferencing accuracy. The
users can compare in real-time the actual view of their cam-
era to the virtual view, as computed by the sensors of their
smartphone, and manually eliminate any offset between the
two. Figure 3 presents an example of the actual camera

TABLE 1. Information stored in the CITISENS server for each report.

FIGURE 2. The user interface of the CITISENS reporter mobile app. The
geographic coordinates of the spot behind the cross in the middle of the
screen are calculated instantly once the user hits the shutter button.

view and the corresponding virtual view of the same targeted
location. In [27], we provide a short video demonstrating
theCITISENS reporter interface and how the device’s sensors
calibration can be performed. We urge the readers to watch
this short video to get a sense of the user experience before
proceeding with the rest of the paper.

B. CITIZENS OBSERVATORY
On the decision support side, the desktop application
called CITISENS viewer takes full advantage of the poten-
tially numerous citizen-generated reports while also provid-
ing the means to assess their validity. The data gathered
is available server-side along with functionalities enabling
decision-makers to view the wildfire hotspots from multiple
angles with the option to discard unreliable reports, roll back
in time and animate the reporting process at any speed.
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FIGURE 3. Screenshots from the CITISENS reporter mobile application
depicting (a) the actual camera view and (b) the corresponding virtual
view. The user can easily toggle between the two views to calibrate the
device’s orientation sensors. For details, please see the short video [27].

In addition, the CITISENS viewer application may
call FLogA [28], our Fire Logic Animation software tool,
which produces probabilistic spatiotemporal wildfire course
predictions and provides simulations to interested parties for
significant wildfire events in Greece, a sample of which can
be viewed in the FLogA group YouTube channel [29]. The
latest version of the FLogA 2.0 software has been shown to
produce very accurate wildfire course predictionswhen tested
by independent wildfire researchers [30], [31].
FLogA is a unique tool in that it uses only publicly avail-

able data sources and can execute realistic wildfire spread
simulations for a defined forest area anywhere in Europe by
generating on the fly all input layers required for a simula-
tion. The resulting simulation output comes in vector, raster
or geoanimation formats, which visualize an overlay of the
wildfire’s probabilistic propagation map on top of the actual
forest topography. Regarding the weather data, FLogA sam-
ples, around obtained reference values, the humidity, wind
speed, andwind direction parameters, to generate and execute
in parallel Multiple Simulation Scenarios (MSS). This is a
unique feature of FLogA that has been designed considering
that the wind is the most dynamic factor affecting a wildfire’s
behavior [32] and that its uncertainty should be reflected
in the simulation results, thus enabling decision-makers to
draw probabilistically quantifiable what-if conclusions. The
different scenarios included in an MSS are defined by apply-
ing either parameters scanning (i.e., deterministic sampling)

or random sampling of the humidity, wind direction, and
wind speed in a predefined range for each parameter. This
range can be set by the user of CITISENS viewer or default
to a user-configurable window around the reference values
obtained from the METAR station closest to the forest area.
The user of the CITISENS viewer also determines the number
of simulation scenarios and the sampling method for each
weather parameter.

The scenarios of an MSS are simulated using a full combi-
natorial experiment returning results for all possible param-
eter value combinations, regardless of the chosen sampling
(deterministic or stochastic). For example, let’s assume that
the closest METAR station to a wildfire reports 10 m/s wind
speed and 270◦ wind direction, and that the user wants to
consider 3 wind speed scenarios and 3 wind direction sce-
narios with deterministic equidistant scanning in the ranges
± 2 m/s and ± 20◦ around the METAR reference values.
Then FLogA will form an MSS considering 3 wind speeds
[8], [10], [12] m/s and 3 wind directions [250, 270, 290]◦,
which when combined will give rise to a 3x3=9-scenarios
MSS simulation.

The nominal (default) case is that each scenario of an
MSS affects the burn probability of a cell of a defined forest
equally. In this case, if FLogA executes an N -scenarios MSS,
the results are combined to produce a wildfire risk probabil-
ity heatmap where each scenario reaching a cell increases
its burn probability by 1/N, i.e., a cell that is reached say
by 5 (out of the 9) scenarios in our previous example will
have a predicted burn probability of 5/9 (N=9). In the next
section, we present a framework allowing us to update the
scenario weights dynamically based on their predictive accu-
racy judged periodically against citizens-contributed hotspot
reports used as ground truth.

Figure 4a shows the CITISENS viewer along with an
example of the functionality enabled by using the reported
wildfire hotspots as input to the FLogA wildfire simulator.
A geo-animation of the wildfire’s predicted spread pattern is
produced, and color indicates the probability for an area to be
affected at a specific future time instant.

C. A CROWD-SOURCED DDDAS FOR WILDFIRES
Amajor drawback in using static simulation reference param-
eters, e.g., for the wind speed, which are assumed to remain
constant throughout the simulation, is their susceptibility to
errors in conjunction with the inherent inaccuracies of the
implemented fire behavior models. These imperfections may
induce significant errors in simulation-based predictions as
time progresses (a phenomenon known as simulation drift).
This is the main reason why the concept of Dynamic Data
Driven Assimilation Systems (DDDAS) was introduced [20].
According to the DDDAS paradigm, the predictive modeling
process should exploit any available in-field measurements to
benefit from updated sensor data. In this manner, the robust-
ness of predictions of a DDDAS-enabled wildfire simulator
can be improved, as the simulation becomes less vulnerable
to severe drifting from the ground truth. This is especially
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FIGURE 4. The user interface of the CITISENS viewer application. (a) A
wildfire hotspot report arrives and CITISENS utilizes FLogA to produce a
simulation of the wildfire risk heatmap patterns for the next 3 hours.
Areas with colors closer to dark red have a higher probability of being
affected. (b) A subsequent hotspot report arrives 5 minutes after the 1st

report, and CITISENS assimilates it using the simulator’s DDDAS. The
wildfire risk probability map is updated based on the latest hotspot data,
as explained in Section II-C.

important for large-scale wildfire simulations, which run
the risk to produce imprecise predictions if not periodically
calibrated.
CITISENS enables the unique capability to assimilate

citizens-contributed hotspot reports into an ongoing wildfire
simulation to improve its predictive accuracy and combat
simulation drift. A visualization of the concept of dynamic
assimilation of hotspot reports is provided in Figure 4, which
shows the state of the predicted wildfire burn probabilities
heatmap before (Figure 4a) and after (Figure 4b) the assimi-
lation of a validated hotspot report.

The CITISENS wildfire DDDAS algorithm, as currently
implemented, takes as input the defined MSS (utilizing ini-
tially uniform scenarios weighting) and reconfigures the
weights dynamically according to the prediction performance
of the individual scenarios measured against reported hotspot
data contributed by citizens. The reconfiguration of scenarios
weights works as follows: The user of the CITISENS viewer
application (presumably a trusted public entity) observes the
hotspot reports as they arrive and has the option to assimilate
them at any time to update the wildfire simulation. Let’s
assume that at time t (time of an assimilation iteration) there
exist R new trusted hotspot reports ready to be assimilated.
Each hotspot report r was generated at some earlier time

tr ≤ t that is after the previous assimilation iteration time.
Given an MSS with S simulation scenarios, we want to create
a dynamic data assimilation scheme that identifies the best
performing scenarios and improves the prediction accuracy
of the MSS based on this knowledge. Thus, we define for
every scenario s at time t a performance metric ps(t) taking
into account the distance, in space and time, from the wild-
fire’s front for scenario s of all the R reports, as shown in
Equation (1) below:

ps (t) = 1−
1
R

R∑
r=1

(
d ′s(r)×

(
1− δ′(r)

))
(1)

d ′s (r) =
ds (r)−min(d)
max(d)−min(d)

(2)

δ′ (r) =
δ (r)−min(δ)

max (δ)−min(δ)
(3)

where d ′s(r) is the normalized distance of report r from the
front-line predicted for scenario s. Similarly, δ′ (r) is the
normalized delay of report r from the assimilation time over
all the R reports. As suggested by Equations (2) and (3) linear
scaling was used for the aforementioned normalization of the
penalty terms.

As defined, ps(t) will return a value in the interval [0, 1]
scoring the performance of simulation scenario s at time t .
This performance depends on the weighted sum of R factors
which incorporate two types of penalties for each report; a
space and a time penalty. For any given report r , the space
penalty term increases with the distance between the hotspot
report’s location and the scenario’s wildfire front prediction.
Similarly, the time penalty considers the recency of every
hotspot report in the current assimilation iteration. In this
way, the sum in equation (1) accumulates the contribution
of all the spatiotemporal report penalty products, which is
then normalized (divided byR) to provide unit interval values,
in the range [0, 1], where zero (0) corresponds to no penalty;
i.e. reports without any spatial offset from the wildfire’s
front line, and one (1) corresponds to maximal penalty of
this assimilation iteration; i.e. hotspot reports at maximum
distance from the wildfire’s predicted front.

Although out of scope for this work, we remark that Equa-
tion (1) can be easily modified to also include a relative trust
component so that we can assign to each hotspot report a
relative confidence value. In Section V, we discuss how this
generalization can be exploited.

The weight ws (t) of scenario s at time t assesses its perfor-
mance relative to the other scenarios in theMSS. Specifically,
it is computed using Equation (4) below

ws (t) =
ps (t)∑N
n=1 pn (t)

(4)

where ps (t) is calculated as in Equation (1), and N is the
total number of scenarios in the MSS. Equation (4) ensures
that each scenario weight is proportional to its performance
and that

∑N
s ws (t) = 1. In this way, outlying simulation

scenarios, with large penalties and thus weak performance,
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FIGURE 5. The software architecture of the CITISENS service. The
CITISENS reporter client mobile application generates hotspots and
stores them in the CITISENS server repository. The hotspots can be
visualized using the CITISENS viewer web application which can call the
FLogA server application to generate wildfire predictions or to assimilate
hotspot reports into an ongoing simulation.

will have their weights mostly zeroed out, whereas in cases
where most scenarios have similar performance their weights
will be approximately equal.

Overall, the proposed DDDAS framework reconfigures the
simulation output by evaluating the N scenarios and assign-
ing weights to them according to their relative prediction
performance based on reports received during the most
recent assimilation iteration period. As a consequence, of
updating the scenario weights a location’s burn probability
estimate may change, because each scenario s that burns
a cell now increases the cell’s burn probability, not by a
constant but by a time-varying ws (t) quantity. We should
remark that the proposed approach does not require a large
amount of hotspot reports to work, as even a small num-
ber of reports per assimilation iteration can potentially
affect the wildfire’s risk probability map significantly. Also,
note that the user of the CITISENS viewer can decide
the weather parameter values that the wildfire simulation
uses as reference inputs to generate the MSS around them.
If the default reference values provided by the closest
METAR station get overridden with values that deviate
significantly from reality, the simulation predictions will
notably start drifting in comparison to the arriving hotspot
reports.

III. CITISENS SERVICE SOFTWARE ARCHITECTURE
In this section, we present the inner workings of the
CITISENS reporter and CITISENS viewer applications.
Figure 5 provides the complete view of the service’s software
architecture, and we use it below to discuss the functionality
offered by each software component.

A. CITISENS REPORTER MOBILE APPLICATION
The CITISENS reporter application runs in the citizens’
smartphones. Regarding mobile applications development,
the available options are either to implement a web-based
design, where the application would come in the form of a
website running in the users’ browser, or a native standalone
application that is installed in the mobile devices. The for-
mer approach enjoys faster development cycles, especially
when targeting multiple mobile platforms, while the latter
can offer greater user experience and higher performance.
A third approach that is gaining in popularity is to create a
web-based design which is wrapped with a JavaScript bridge
framework offering bindings to different native Application
Programming Interfaces (API). In this way, it becomes pos-
sible to build mobile applications with native performance
and user experience levels without suffering from the multi-
platform development overhead. For the CITISENS reporter,
we first implemented a proof of concept web application,
and since our final objective was to build an Android appli-
cation package (APK) to be installed on Android smart-
phones, we wrapped it using the Apache Cordova framework
[33], which resulted in a web application running inside
Android’s WebView. In this way, we gained easy access to
native APIs which could be exploited for better performance
in situations where the web application suffered (e.g., for
camera capture, orientation sensor readings, etc.). All the
above are illustrated in the software components diagram of
Figure 5.

In Figure 5, which presents the inner workings of the
CITISENS reporter, we can see that the main software
components running inside WebView are the Cesium and
Georeference components. Cesium [34] provides a
WebGL based 3D mapping engine, which also offers con-
venient access to high-quality elevation data [35] and works
in conjunction with the Georeference JavaScript com-
ponent, which continuously computes the device’s view ray
based on the Rotation Vector [36] provided by the Apache
Cordova bridge. The Rotation Vector is a Kalman filter
implementation fusing gyroscope data with measurements
from the compass and the accelerometer [37] and is provided
in the form of a virtual orientation sensor offering an abso-
lute orientation relative to the magnetic north and gravity.
To account for the magnetic declination from the true north,
we apply a correction to the orientation vector by utilizing the
latest iteration of the World Magnetic Model [38] through a
magnetic declination estimation API [39].

By combining the pitch and heading information of
the device’s view ray with the terrain data obtained from
Cesium, the Georeference component calculates the
location where the view ray and the topography intersect.
This calculation is performed by an iterative algorithmwhich,
starting from the user’s location, advances step-by-step the
view ray until the ray’s altitude becomes less or equal than
the ground elevation at the same point. The iteration step was
fixed to 30m. as this is the typical resolution of the STKWorld
Terrain data.
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The CITISENS reporter is currently available as an appli-
cation for Android O/S devices. The O/S version should be
5.0 (Lollipop) or higher because the Android WebView was
updated to support WebGL [40] at this O/S version, which
is needed for the Digital Elevation Model (DEM) loading.
In terms of hardware, the CITISENS reporter imposes min-
imal requirements; it requires a device with a camera, a gyro-
scope, an accelerometer, a compass, a GPS receiver, and an
active internet connection. Moreover, a modern chipset with
2GB of RAM or higher is sufficient for smooth performance.
Motivated by the recent trend of wearable devices, many
OEMs have started to use motion and orientation sensors
of greater accuracy, so in general, a modern chipset should
provide not just smoother performance but improved georef-
erencing accuracy as well.

B. CITISENS VIEWER WEB APPLICATION
The CITISENS viewer web application plays a central role in
delivering the functionality of the CITISENS service. It can
run on any modern WebGL capable web-browser (mobile
browsers included) and contains theCesium andFLogAAPI
JavaScript software components.

As for the CITISENS reporter mobile application,
the Cesium component provides the 3D mapping engine
through which decision-makers can visualize the reported
wildfire hotspots by utilizing the hotspot repository located in
the CITISENS server. Furthermore, by using Cesium’s World
Terrain Data the CITISENS viewer generates the elevation
data layer which is passed to the FLogA API that interfaces
with the FLogA server to offer wildfire simulation features.
Finally, wildfire simulation results are stored and can be
retrieved via the CITISENS server simulation repository.
As presented in Figure 5, the FLogA server comprises

of the Simulator, Visualizator, and DDDAS soft-
ware components. The Simulator contains a PHP script
that uses the reference weather data to generate Multiple
Simulation Scenarios (MSS). Each scenario is then executed
by the simulation core, a C software component utilizing the
fire behavior functions library fireLib [41]. Ultimately,
the results of the MSS simulation are combined by the
Visualizator component that generates wildfire visual-
izations in the form of KML layers [42] and passes them back
to the CITISENS viewer. In the case of subsequent hotspot
reports for the same area, the user of the CITISENS viewer
has the option to use an existing wildfire simulation and
assimilate the new reports (to update the burn probabilities)
using the PHP-written DDDAS software component. The
functionality of the DDDAS software component is discussed
in Section II-C.

As a web application, the CITISENS viewer requires just
a modern WebGL capable browser to run. Any hardware
that can run such a browser will handle comfortably its rela-
tively light workload, as all the georeferencing computations
are performed by the CITISENS reporter mobile application
while the wildfire scenario simulations are executed on the

FIGURE 6. The CITISENS viewer application displays a reference report
which targets an easily identifiable location in the photorealistic virtual
world. At the top right corner, we see the corresponding view from the
camera.

FLogA server. As a result, the CITISENS viewer can run on
any mobile platform as well.

IV. GEOREFERENCING ACCURACY
We describe next the testing method used to provide an
estimate of the expected georeferencing accuracy delivered
by the CITISENS reporter mobile application.

A. TESTING SCHEME
The two locations used for the georeferencing tests were:
1) in Attica, Greece, and specifically at the Hymettus [43]
mountain which has experienced frequent wildfire incidents
in recent years and is in close proximity to a large number
of neighborhoods of the city of Athens, and 2) in Northern
Greece, district of Ioannina, in the Pindus National Park
(also known as Valia-Kalda [44]) that belongs to the Natura
2000 ecological network of protected areas.

Tomeasure the geo-referencing accuracy, we built a dataset
consisting of reference and testing reports pairs. As a refer-
ence we considered reports generated using the CITISENS
reporter and captured using the virtual view; i.e., the 3D
globe. We did not use the camera view for them, so the
georeferencing was not affected by the orientation sensors’
accuracy. We gathered reference and testing reports by spot-
ting places in the physical world that could be easily identified
using the virtual view and by using the 3D globe directly we
obtained their true geographic coordinates and used them as a
reference (ground truth) for the corresponding testing reports.
Figure 6 presents an example of a reference report, as seen by
the CITISENS viewer application, for an easily identifiable
hill peak. The reference geographic coordinates of this peak
were compared against those computed by the testing reports
when trying to target it, but this time using the camera view
(Figure 3).

Two users created the reference/testing reports dataset via
the CITISENS reporter mobile application. The CITISENS
reporter application was running on three Android smart-
phones with different hardware and software characteristics
(see Table 2). As the georeferencing computations are based
on the position and the orientation of the mobile device,
the camera or screen pixel density did not affect the georef-
erencing accuracy in any way.
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FIGURE 7. A user/tester targets a virtual hotspot (fire icon). The lines
drawn represent a reference report (red) compared with a No calibration
test report (blue), a Light calibration test report (green) and a Full
calibration test report (yellow).

Our objective was to assess both the absolute georeferenc-
ing accuracy and how it fluctuates with the user-to-hotspot
distance after applying different orientation sensor calibration
options. This is why each reference report was compared to
three different testing reports for the same target generated
using the following calibration modes:

• No calibration: This is the cold-shot, instant georef-
erencing mode; the user notices a hotspot, opens the
application and targets the hotspot using her camera as
soon as possible.

• Light calibration: Same as above but now we assume
that the user has already performed a ‘‘figure-8’’ cali-
bration motion before making her first report. For more
details please see the short video in [27].

• Full calibration: The user has completed the full cali-
bration procedure to bring the virtual and the camera
view close to parity before generating the first report.
For more details, please see the video in [27].

Figure 7 presents an example of a comparison of a refer-
ence report with a testing reports triplet generated using the
aforementioned three modes of hotspot reporting. The entire
dataset generated consists of 101 reference reports and their
corresponding 101 testing report triplets.

Finally, for each testing report, we measured the offset
of the pitch and heading of the mobile devices (in degrees)
and the offset of the georeferenced coordinates (in meters)
against the corresponding reference report. In this way,
we can compare the pitch, heading, and georeferencing accu-
racy of the three testing report modes.

B. RESULTS AND DISCUSSION
Based on the scheme described above, we generated reports
for 101 hotspots to obtain a reference/testing reports dataset.
The distance between the users and the targets ranged
between ∼150m. to ∼6km in a straight line.
Figures 8 presents boxplots of the distribution of observed

offsets in the magnetometer’s heading and the gyroscope’s
pitch readings (in degrees) when using the three different

TABLE 2. The smartphone devices used for the georeferencing tests.

FIGURE 8. Boxplots (N=101) depicting the distribution of the
magnetometer heading offset and the gyroscope pitch offset of the shots
dataset (measured in degrees) under the three different phone
calibration modes.

shot modes. The medians of the magnetometer’s heading
offset were 2.66, 2.57 and 0.65 degrees for the No calibra-
tion, Light calibration and Full calibration shots respectively,
while the corresponding medians of the gyroscope’s pitch
offset were 0.52, 0.55 and 0.31 degrees respectively.

In general, the magnetometer’s heading is seen as hav-
ing more significant offsets than the gyroscope’s pitch. The
Light calibration shot mode did not decrease the median
offsets over the No calibration shots, but in the case of the
magnetometer’s heading, it reduces the offset’s interquartile
range. As expected, the Full calibration mode exhibits the
smallest heading and pitch median offsets and interquartile
ranges.

Figure 9 provides the distribution of the distance offsets,
i.e., the distance between the calculated and the true target
coordinates (measured in meters). Again, Light calibration
decreases the offset variance but does not improve the median
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FIGURE 9. Boxplots (N=101) depicting the georeferencing distance offset
distribution (in meters) for the shots dataset under three different
calibration modes.

FIGURE 10. The georeferencing distance offset (in meters) in relation to
the distance of the user from the reported hotspot. The number of
points/shots is N = 101. (a) The linear regression model y=ax+b
coefficients are a=0.06 and b=59.85 for the No calibration mode and
a=0.06 and b=64.45 for the Light calibration mode. (b) The linear
regression coefficients are a=0.01 and b=31.48 for the Full calibration
mode.

over the No calibration mode. However, the Full calibration
mode provides a significant improvement again both in terms
of variance and median offset (48.66 meters).

We consider the georeferencing accuracy measured, to be
high for a Citizen Science based hotspot reporting scheme,
especially when compared to available satellite hotspot detec-
tion services. It should be noted though, that the georeferenc-
ing accuracy depends on the mobile device used and on the
distance between the user and the target. Figure 10 shows how
the distance of the user from the target affects the georefer-
encing accuracy based on our reference/testing shots dataset.
It is noteworthy that even though the Full calibration mode
exhibits the best geo-referencing performance, even the No
calibration mode is good enough most of the times, as it
enables very fast, real-time remote hotspot georeferencing
with potentially higher accuracy than satellite hotspot data
products which currently offer up to 375m. spatial resolu-
tion with infrequent overpasses as a result of their polar
orbits [45]. Moreover, the No calibration mode requires vir-
tually no skills as the user only needs to target the wildfire
hotspot with her camera keep it stable and take a regular
picture shot.

The No calibration and Light calibration reporting modes
exhibit a noticeable accuracy drift as the distance of the
user and the targeted hotspot increases, which means that
the validity of the resulting hotspot coordinates should be
assessed carefully above a certain user-to-hotspot distance
threshold. On the other hand, the Full calibration mode is
not seen to be affected as much, which is also shown by the
significantly decreased slope of the fitted linear regression
models presented in Figure 10.

V. CONCLUSIONS
We have presented novel methods enabling the generation
of quality Volunteered Geographic Information (VGI) from
citizens during wildfire events and a VGI framework that
can support a crowd-sourced Dynamic Data Driven Assim-
ilation System (DDDAS) for effective wildfires course pre-
diction. The main goal of this research is to develop methods
empowering citizens to actively participate in combating
a wildfire by allowing them to easily contribute accurate
georeferenced wildfire hotspots remotely, at a safe distance,
using their smartphone camera. The developed CITISENS
service consists of a set of collaborating applications pro-
viding to decision-makers take advantage of streams of geo-
referenced hotspots that can be used to improve the quality
of wildfire propagation predictions. Our tests demonstrate
that the georeferencing accuracy of reports generated using
the CITISENS reporter mobile application is on average
much better than what satellite hotspot services offer today
in their best case (polar orbit).

Currently, all contributed hotspot reports are considered of
equal importance for data assimilation purposes, but in the
future, we plan to introduce a trust component to relatively
weight reports. Trust to a report can be assigned by different
means: a) By training and then using a Convolutional Neural
Network (CNN) to recognize the existence of a wildfire in the
user’s photograph accompanying the report, b) by assessing
the quality of the device’s sensory data based on statistical
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properties of their measurements; e.g., the average deviation
of the magnetometer readings, c) by promoting reports of
particular users, e.g., registered volunteers in an area with a
history of contributing quality reports. These developments
would allow us to develop a fully automated, reliable DDDAS
for wildfires without a human in the loop. Finally, the assign-
ment of trust could also be crowd-sourced to remote reg-
istered users who are not in the region at the time of the
wildfire but are willing to rate the reports using a stripped-
down version of the CITISENS viewer application. These
users could review and compare the discrepancies between
the reports’ virtual and camera views and contribute scores
that would rate both the reports and their reporters. Multiple
individuals could evaluate the same reports similar to the
reCAPTCHA model [46]. Given sufficient historical data,
reports could also be rated automatically based on the reporter
user’s ranking, thus promoting good practices.

Although discussing the operationalization of the service
is beyond the scope of the paper, we mention here the
relevant challenges we are currently addressing. The hard-
ware and software requirements of the system need to be
revisited to support multiple software platforms to widen
the user base as much as possible; e.g., an iOS version of
the CITISENS reporter application will be developed. Future
versions of the mobile app will also support push notifica-
tions and alerts based on the predicted burn probability at
the user’s location. Moreover, we plan to engage with all
interested bodies and the firefighting volunteer community
in deploying the service in areas of Southern Europe, the US
and beyond, and also in helping to train ordinary citizens
on wildfire behavior basics to eliminate any participants’
risk.

We strongly believe that theCITISENS service can improve
the quantity and quality of the available wildfire hotspot data
by enabling ordinary citizens to safely participate in a socially
beneficial Citizen Science activity with minimal training.
To the best of our knowledge, this is the first effort to enable
civic involvement in a critical Citizen Science endeavor,
which aims to allow concerned citizens to provide active
support towards guarding their communities during catas-
trophic events without taking any risk. We believe that this
line of research is very timely and contributes significantly
to the mitigation of devastating consequences as those expe-
rienced by the victims and survivors of recent tragic wildfire
incidents [2], [3].
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