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ABSTRACT This paper discusses the recovery of missing data in surface electromyography (sEMG)
signals that arise during the acquisition process. Missing values in the EMG signals occur due to either
the disconnection of electrodes, artifacts and muscle fatigue or the incapability of instruments to collect
very low-amplitude signals. In many real-world EMG-related applications, algorithms need complete data
to make accurate and correct predictions, or otherwise, the performance of prediction reduces sharply.
We employ tensor factorization methods to recover unstructured and structured missing data from the EMG
signals. In this paper, we use the first-order weighted optimization (WOPT) of the parallel factor analysis
(PARAFAC) decomposition model to recover missing data. We tested our proposed framework against non-
negative matrix factorization (NMF) and PARAFAC on simulated as well as on off-line EMG signals having
unstructured missing values (randomly missing data ranging from 60% to 95%) and structured missing
values. In the case of structured missing data having different channels, the percentage of missing data
of a channel goes up to 50% for different movements. It has been observed empirically that our proposed
framework recovers the missing data with relatively much-improved accuracy in terms of relative mean error
(up to 50% and 30% for unstructured and structured missing data, respectively) compared with the matrix
factorization methods even when the portion of unstructured and structured missing data reaches up to 95%
and 50%, respectively.

INDEX TERMS EMG data, missing data, tensor decomposition.

I. INTRODUCTION
ELECTROMYOGRAPHY (EMG) is a diagnostic technique
which records the electrical activity produced by contraction
of muscles. The electric activity or potential is generated by
the muscle cells when these cells are electrically activated.
Generally, two types of EMG exist surface EMG (sEMG)
and intramuscular EMG (iEMG). sEMG is the recording
of electrical activity from the muscle surface (non-invasive)
whereas iEMG is recorded directly within the muscle tis-
sue. EMG signals have many applications such as upper-
limb prostheses [1]–[3], electric wheelchairs control [4]
and muscle-computer interaction [5]. In these applications,
complete EMG signals without missing data are required

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

for efficient and successful implementation. However, prac-
tically, EMG data acquisition is not lossless. During Signal
acquisition, data is lost due to many reasons such as arti-
facts or disconnection of electrodes with the body [6]. These
missing values in the EMG signal can cause degradation in
the overall performance of healthcare applications such as
myoelectric pattern recognition to predict motor intention
from sEMG signals [6].Moreover, missing values also reduce
the accuracy of the classification of movements for pros-
theses control [7]. If data is incomplete and the percentage
of missing data is large, then the classification performance
and statistical power of those classification methods highly
degrade, which makes it important to have complete data set.
To effectively estimate the missing data, proper imputation
methods must be utilized. Generally, in EMG applications,
missing data had either not been recovered or estimated by
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simply replacing it with mean values of the neighboring data
values, which proved to be highly sub-optimal [8]. In this
work, we have focused on estimating missing values using
multidimensional data structure [9], [10] based upon multi-
linear algebra (tensors).

In this paper, we aim to recover missing values in sur-
face EMG signals by estimating the latent structure of the
data. In order to estimate latent structure, we employ tensor
factorization methods which produce factor matrices which
are used to produce the reconstructed tensor. We further
formulate a weighted version of an error function that ignores
the missing values and model only the known values which
improve the estimation accuracy of recovering missing data
significantly.

A. RELATED WORK
Matrix and Tensor decomposition of EMG signals have been
widely studied in the literature. In [11]–[15], non-negative
matrix factorization (NMF) has been applied on EMG sig-
nals for various applications, e.g. recognition of gestures,
to obtain information for neural control and identification
of various surface EMG signals. In [16], various matrix fac-
torization algorithms such as Principal Component Analysis
(PCA), Factor Analysis (FA), Independent Component Anal-
ysis (ICA), and Non-negative Matrix Factorization (NMF)
were evaluated on EMG recording. In [17], surface EMG
signals are decomposed using non-negative Tensor factoriza-
tion to find the features for classification purpose. In [18],
NMF was employed to identify EMG finger movements to
evaluate the functional status of hand so that it can assist in
hand gesture recognition, prosthetics and rehabilitation appli-
cations. In [19], FastICA method is implemented for EMG
signals decomposition. In [20], NMF along with different
initialization techniques was applied to acquire muscle syner-
gies which are important for generating biomechanical tasks.
In [31], higher order tensor decompositions are employed on
EMG signals to estimate muscle synergies.

However, so far in the literature, missing data in EMG
signals has been recovered by using ensemble classi-
fier system [8], nonlinearities interpolation approach [21],
mean data imputing [6], Empirical Decomposition Mode
(EMD) [22] andmarginalization and conditional-mean impu-
tation [23]. In [8], imputation and reduced-feature models
were employed to perform classification in presence of miss-
ing data but the results were not promising. In [21], miss-
ing data of up to 80% was recovered. However they tested
algorithm on single subject and it is also unclear whether
they recovered unstructured or structured missing data. In [6],
imputation was carried out using mean of data which works
poorly on non-stationary EMG data. In [22], EMD fails
to recover structured missing data. In [23], the main focus
was on developing classification model. However they also
employed a simple mean imputation method to recover miss-
ing data. In [9] and [24], tensor factorization techniques are
applied on EEG signals. However, so far, EMG signals have
not been explored that way. For the first time, in this work,

missing data is recovered in EMG signals with a detailed
analysis in which matrix, as well as tensor factorization meth-
ods, are employed. We apply NMF for matrix factorization
and, PARAFAC and CANDECOMP/PARAFAC - Weighted
OPTimization (CP-WOPT) for tensor factorization. As nor-
malized EMG data contains non-negative values; hence, for
the case of matrix factorization we apply NMF, which is
the unsupervised learning algorithm used for dimensionality
reduction and construction of low-dimensional approxima-
tion of observed data. NMF is more suitable because other
methods such as Principal Component Analysis (PCA) pro-
duce the factors which can be positive or negative. To our
knowledge, tensor factorization for recovering missing data
in EMG signals has not been studied yet. In this work, for
the first time, we employ the tensor factorization method to
recover unstructured and structured missing data in EMG
signals. We apply PARAFAC and weighted optimization
(WOPT) of PARAFAC model to EMG signals and recover
missing data efficiently as compared to matrix factorization
techniques.

The novelty of this work is found in the follows:

a) For the first time, missing data in EMG signals are
recovered using the tensor factorization-based method.

b) We compare both matrix factorization, and tensor
factorization-based approaches to recover missing data
in noisy simulated data and real-world EMG data
to show that the tensor-based approach outperforms
matrix factorization based approach.

c) We address the problem of missing data in extreme
cases when up to half consecutive EMG samples of a
particular channel are missing. Our proposed frame-
work successfully recovers the missing data even in
such an extreme case.

B. NOTATIONS AND PRELIMINARIES
Tensor X(i,j,k...) is a multi-dimensional array which has dif-
ferent modes for data representation. A tensor with one mode
is a one-dimensional array referred to as a vector and with
two modes is known as the matrix. A tensor of third order is
shown in Fig. 1, which has three dimensions having indices
i = 1, . . . , I , j = 1, . . . , J and k = 1, . . . ,K . In this
work, a tensor is represented by uppercase Blackadder ITC
letter X , a matrix is represented by bold italic uppercase
letter X, a vector is denoted by italic bold lower case letter x,
and a scalar is represented by italic lowercase letter x. The
individual elements of nth-order tensor are represented by
lowercase letters with subscripts e.g. if N -way tensor has
(I1 × I2 × . . .× IN ) samples then its n-th element is denoted
by xi1i2,...,iN .

The Scalar product of two tensors X , Y with size I1 ×
I2 × . . .× IN is defined as:

〈X ,Y 〉 =
∑

i1

∑
i2
. . .
∑
iN

xi1i2...iN yi1i2...iN
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FIGURE 1. Tensor of 3rd order: X εRI×J×K.

The Hadamard product of two tensors X , Y is defined as:

(X ∗ Y )i1i2...iN = xi1i2...iN yi1i2...iN

The Frobenius norm of a tensor X is given by:

‖X ‖F =

√∑I1

i1=1

∑I2

i2=1
. . .
∑IN

iN=1
x2i1i2...iN

The Weighted norm of X for two tensors X and W is
defined as follows:

‖X ‖W = ‖W ∗X ‖

The Khatri-Rao product � is defined as follows:

X� Y = [x1 ⊗ y1 x2 ⊗ y2 . . . xK ⊗ yK ]

where size ofmatricesX andY is I×K and J×K respectively.
The symbol ⊗ is the Kronecker product.

The Kronecker product ⊗ is defined as follows:

X⊗ Y =

(
x11Y · · · x1nY...

. . .
...

xm1Y · · · xmnY

)
where X is an m × n matrix and Y is a p × q matrix, and the
Kronecker product X⊗ Y is the mp× nq block matrix.

The Outer product ◦ between two vectors x and y is
given by:

x ◦ y = xyT

where x and y are column vectors and their outer product
gives rank-1 matrix.
Tensor mode-n unfolding, which is also called tensor

matricization, is analogous to vectorizing a matrix. Mode-n
unfolding of X ∈ RI1×I2×...×IN re-arranges the elements
of X to form a matrix X(n) ∈ RIn×I1I2...In−1In+1IN , where
InIn+1In+2 . . . IN I1I2 . . . In−1 is in a cyclic order.
The notation

[[
A(1),A(2), . . . ,A(N )

]]
defines a tensor of

size RI1×I2×...×IN whose elements are given by:

(
[[
A(1),A(2), . . . ,A(N )

]]
i1,i2,...,in

=

R∑
r=1

∏N

n=1
a(n)inr

for inε{1, . . . , In}, nε{1, . . .N }.

Remaining sections of the paper are organized as follows:
In Section II, we explain methods which include signal pro-
cessing technique and problem formulation, subjects’ details,
experimental setup and details of data used for evaluation.
In Section III, we show results of tensor and matrix factoriza-
tion methods applied on simulated and EMG data to recover
both unstructured and structured missing data. Discussion on
the results is given in Section IV. Section V concludes the
work.

II. METHODS
A. SIGNAL PROCESSING
1) PROBLEM FORMULATION
a: NMF
The objective function for recovering missing values of the
EMG data in the form of Matrix is given as:

f
(
X
)
= min

X

∥∥X− X∥∥2F (1)

where X ∈ Rm×n is the input matrix which contains EMG
data with missing values and X is reconstructed matrix
obtained by minimizing the objective function in (1). In order
to solve (1) usingNMF, the objective function in (1) becomes:

f (P,Q) = min
P,Q
‖X− PQ‖2F (2)

where P and Q are Rm×k and Rk×n matrices, respectively.’’
In order to apply NMF to multidimensional input data,

we metricize it as a matrix X with dimensions time × chan-
nels. NMF decomposes the data of matrixX into twomatrices
P and Q, as mentioned above. Our objective is to find factor
matrices P and Q that minimize the objective function in (2).

b: PARAFAC
The objective function for recovering missing values of the
EMG data in the form of tensors is given as:

f
(
X
)
= min

X
‖X −X ‖

2
F (3)

where X ∈ RI1×I2×...×IN is an order-N input tensor and
assume its rank is R. X contains EMG data with missing
values and X is the reconstructed tensor obtained by mini-
mizing the objective function. To solve (3), a standard tensor
factorization is CANDECOMP/PARAFAC (CP), which can
be used to find the reconstructed tensor, then the objective
function in (3) becomes:

f
(
A(1)A(2), . . . ,A(N )

)
= min

A(1)A(2),...,A(N )
1
2

∥∥∥(X − [[A(1),A(2), . . . ,A(N )]])∥∥∥2
F
(4)

where A(n) is factor matrix corresponding to n-th dimension,[[
A(1),A(2), . . . ,A(N )

]]
makes an order-N tensor equivalent

to:

X ≈
[[
A(1),A(2), . . . ,A(N )

]]
≡

∑R

r=1
a(1)r ◦ a

(2)
r ◦ · · · ◦ a

(N )
r (5)
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where a(n)r is r-th column vector of A(n) factor matrix, and
n = 1, 2, . . . ,N . The sum of the outer products of vectors a(n)r
in (5) shows the CP decomposition as a sum of R rank-1 ten-
sors to estimate a tensor. We use this CP decomposition [9] to
find the factor matrices of the input tensor. The tensor in (5) is
an approximation proposed by CP/PARAFAC method which
is one of the standard methods for tensor factorization. In (5),
a particular constraint is the value of R which is determined
heuristically. We further modify this CP tensor factorization
method to a weighted CP model which caters for the missing
data recovery. Elementwise, (5) can be written as:

x i1i2...iN =
∑R

r
ai1rai2r . . . aiN r

for

i1 = 1, 2, . . . , I1, i2 = 1, 2, . . . , I2, · · · iN = 1, 2, . . . , IN
(6)

In mode-n unfolded (matrix) form, (5) is represented as:

X(n) = A(n)
(
A(−n)

)T
(7)

where

A(−n) = A(N )
� . . .� A(n+1)

� A(n−1)
� . . .� A(1)

In unfolded form, our objective function to findmode-n factor
matrices becomes:

f
(
A(1)A(2), . . . ,A(N )

)
= min

A(N )
1
2

∥∥∥(X(n) − A(n)(A(N ) � . . .� A(n+1)

�A(n−1) � . . .� A(1)
)T

)

∥∥∥∥2
F

There exist many methods to compute CP decomposition to
find a good approximation of original data such as alternating
least squares (ALS) [25], [30], gradient descent (GD) [30]
and enhanced line search [30] etc.

Our experiments show that conventional method such
as CP decomposition only give comparable results to that
of matrix factorization methods that even worsens when
large amount of data is missing. To overcome this problem,
we model CP factor matrices only from non-zero values of
the input data. For this purpose, we multiply the input data
with a weighting tensor W with size equal to the size of input
data tensor X in such a way that

wi1i2...iN =

{
1 if xi1i2...iN is known
0 if xi1i2...iN is missing

for all i1 = 1, 2, . . . , I1, i2 = 1, 2, . . . , I2, · · · iN =

1, 2, . . . , IN .
The weighted CP factorization of the EMG tensor yield

factor matrices, which reconstruct the tensor using (7) to
estimate the missing values.

2) CP-WOPT
CP-WOPT solves the problem of fitting the CP model to
missing data by solving the following weighted least-squares
objective function:

fW
(
A(1)A(2), . . . ,A(N )

)
=

1
2

∥∥∥{(X − [[A(1)A(2), . . . ,A(N )]])W
}∥∥∥2

W
(8)

where W is tensor of the same size as X , and its samples are
defined as:

wijk =

{
1 if xijk is known
0 if xijk is unknown

(9)

for all i = 1, . . . , I , J = 1, . . . , J and k = 1, . . . ,K .
For the sake of simplicity (8) is redefined as:

fW
(
A(1)A(2), . . . ,A(N )

)
=

1
2
‖Y −Z ‖2 (10)

where

Y =W ∗X and Z =W ∗
[[
A(1)A(2), . . . ,A(N)

]]
(11)

The gradient equation for the weighted case would be:

∂fW
∂A(n) =

(
Z(n)
− Y(n)

)
A(−n), (12)

for n = 1, . . . ,N .
Our main objective is to find factor matrices A(n)εRIn×R

for n = 1, . . . ,N that minimize the weighted objective
function in (8). Once gradients in (12) are known, then any
gradient-based optimization method can be used to solve the
optimization problem. We use CP-WOPT [25] and the non-
linear conjugate gradient (NCG) as the optimization method
with Hestenes-Stiefel updates [26]. The stopping conditions
of both tensor based algorithms were based on the relative
change in the function value fW in (8) (set to 10−8). The
maximum number of iteration is set to 103 and the maximum
number of function evaluations is set to 104. These choices
are based on the values used in [9]. The brief methodology of
CP-WOPT is summarized below:

Algorithm 1 Methodology of CP-WOPT

Task: To find gradient matrices G(n) that minimize the
weighted objective function in (6).
Input: X (Input tensor with missing values)
Output: G(n)

Steps to compute G(n):
1. Compute Y = W ∗X
2. Compute Z = W ∗

[[
A(1)A(2), . . . ,A(N )

]]
3. Compute value of functions: f = 1

2 − 〈Y ,Z 〉+
1
2 ‖Z ‖

2

4. Compute T = Y −Z
Repeat for n = 1, . . . ,N :

5. G(n)
= −T(n)A−(n)

Assume Y = W ∗X is pre-computed as both W and X
remain the same in the algorithm. The gradient is computed
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as a series of matrices G(n)
≡

∂fW
∂A(n) for n = 1, . . . ,N .

While T(n) is the unfolding of the tensor T in mode n.
Once gradients G(n) are computed, then any gradient-based
optimization method can be used to solve the optimization
problem.

B. SUBJECTS DETAIL
For this research, we have used sEMG data used by M. Zia ur
Rehman et al. in [1] and A Waris et al. in [27]. Ten subjects
(all male) were recruited for EMG data acquisition. Ages of
all subjects ranged from 18 to 38 years old (mean± standard
deviation (SD), 24.5± 2.3y). All subjects were healthy with
no neuromuscular disorders. The procedures were in accor-
dance with the Declaration of Helsinki and approved by the
local ethical committee of Riphah International University
(approval no: ref# Riphah/RCRS/REC/000121/20012016).
Subjects provided written informed consent prior to the
experimental procedures.

C. THEORETICAL FRAMEWORK
Missing data in EMG has been categorized into two types:
1) unstructured missing data 2) structured missing data. If the
observed data in the original structure is missing randomly,
then such a pattern of missing data is categorized as unstruc-
tured missing data. For example, samples of EMG data miss-
ing at random entries. However, if the data is missing in
some consistent and structured way, it is termed as structured
missing data. For example, 25% consecutive values of an
EMG channel are missing either at the start, middle or end of
data acquisition process/session. This block of missing values
is repeated randomly in other channels of EMG data.

D. EXPERIMENTAL SETUP
Surface EMG signals were acquired using six surface EMG
electrodes. Three electrodes were placed on flexor and three
electrodes on extensor muscles. The sampling frequency of
surface EMG signals was 8 kHz, whereas we filtered it using
bandpass filter of third order with bandwidths 20-500 Hz.
Total of four-hand motions was performed by each subject:
(1) hand open (2) hand close (3) pronation and (4) extend a
hand. For each session, each hand motion was repeated four
times with a contraction and relaxation time of five seconds,
and hence a single session took a time of 400 seconds.

E. DATA ANALYSIS
We applied NMF, PARAFAC and CP-WOPT on simulated
and EMG data to recover both types of missing data. In order
to carry out the comparison, we assess the performance of
methods based on validation metric termed as Relative Mean
Error (RME) mentioned in (14).

1) SYNTHETIC DATA
We generated tensor of size RI×J×K and kept a number of
true factors R = 5. In order to test the performance of
different methods to recover unstructured missing data from

synthetic data, we produced synthetic data of different size
such as 60 × 50 × 40, 120 × 100 × 80, 180 × 150 × 120.
For the case of structured missing data, we test the methods
on a dataset of size 120 × 100 × 80. Factor matrices A, B
and C were generated with sizes: RI×R, RJ×R and RK×R

respectively. All the factor matrices were randomly chosen
from N (0, 1) and then normalized every column to unit
length. e then create the data tensor as:

X = [[A,B,C]]+ η
[[X ]]
[[N ]]

(13)

Here N is a noise tensor (of the same size as X ) in which
all samples were drawn from Gaussian i.i.d. distribution with
mean zero and variance one. The term [[A,B,C]] is a tensor
being constructed from factor matrices A, B and C where
η is noise parameter which has value 0.1.
In order to implement matrix and tensor-based factoriza-

tion methods, we set some samples of a tensor to zero to
model missing data. In the case of weighted tensor factor-
ization, the tensor W indicates the binary values zero or one
where zero and one represent missing and known values,
respectively. In particular, we have considered two cases of
missing data: (1) Unstructured missing data and (2) Struc-
tured missing data. In case of unstructured missing data, we
randomly set some percentage of data (from 60% to 95% of
total data) to zero in the tensor W whereas in case of struc-
tured missing data we set, within multiple channels, large
consecutive-samples (up to 50%) to zero which is usually
the case in practical situations. It is tantamount to a situation
where half EMG data of multiple channels is missing for a
particular movement.

2) EMG DATA
For EMG data acquisition, six electrodes were used to collect
EMG signals on a single day. The movement-wise size of
data was 320000 × 6 × 4, which was down-sampled to
80000× 6× 4. 80000 is the number of samples, 6 represents
total number of electrodes/channels and 4 is total number
of movements for which EMG data was collected. After
downsampling EMG data, we normalized it between 0 and 1.
Surface EMG data in the form of a tensor X can be viewed
as X εR80000×6×4 for each of four movements. If we relate it
with Fig. 1, then I = 80000, J = 8 and K = 4 where I, J and
K represent samples of EMG data, total number of channels
and total number of movements respectively. Fig. 2 shows
lateral slices of a tensor X:j: which in our case represents
EMG data of channels. As we have total of six channels,
hence X:1: would be a slice representing EMG data of first
channel and so on. The black slices in Fig. 2 are the ones with
missing EMG data.

We removed samples in the following two ways:
1) unstructured and 2) structured missing data. Fig. 5(b)
shows unstructured missing data in which individual samples
of EMG data of Fig. 5(a) are randomly missing. EMG data
for four movements is shown in Fig. 6(a) where higher
amplitudes show intervals of hand movements and lower
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FIGURE 2. Missing lateral slices of a tensor X:j : (in black).

amplitudes represent intervals of rest. Fig. 6(b) shows struc-
tured missing data in which first half part (chunk of consecu-
tive samples) is removed whereas Fig. 6(d) shows structured
missing data in which second half part is removed.

In our experiments, we recover these missing intervals in
extreme cases where half consecutive EMG samples of a
particular channel are missing. However in [9] and [32], it is
known that missing data cannot be recovered by low rank
tensor completion if entire slice is completely missing.

Matrix and tensor factorization methods are applicable to
a wide range of real world signals and do not depend on
statistical and mathematical properties of the signals. How-
ever initialization of matrix and tensor factorization models
does have effect on estimation of the signals in question. For
example, in our case, EMG is stochastic in nature hence ini-
tialization of our matrix and tensor factorization models with
random values help to recover the missing values efficiently.
Moreover our proposed framework can be employed on other
biomedical signals as well e.g. EEG signals.

F. EVALUATION METRIC
Let X be the original data and let X be the estimated data
produced by the matrix or tensor factorization methods. Then
the Relative Mean Error (RME) is:

RME =

∥∥∥(X− X)
∥∥∥
F

‖X‖F
(14)

The best possible score is zero which shows the recovered
data matches with original data completely.

G. SIMULATION ENVIRONMENT
WeusedMatlab 2017a onWindows 8 operating systemwith a
core i3 processor and 6 GBRAM. CP-WOPT is implemented
using Tensor Toolbox.

H. STATISTICS
A three-way ANOVA was used to assess which method had
the least amount of RME. Three factors: methods (NMF,
PARAFAC and CP-WOPT), Movement type (hand open,

hand close, pronation and extend hand) and missing data
percentage (10%, 20%, 30%, 40% and 50%) were used, post
hoc pairwise comparisons were made using Tukey’s HSD
tests if required. Statistical significance was set at P < 0.05
for all comparisons.

III. RESULTS
In this paper, the proposed framework is tested on both syn-
thetic and EMG data set to recover both unstructured and
structured missing data. For both cases, we assess the perfor-
mance of our proposed framework CP-WOPT against matrix-
based method NMF and tensor-based method PARAFAC to
recover both types of missing data. Our results show that
missing values can be efficiently recovered with CP-WOPT
as compared to NMF and PARAFAC.

A. ESTIMATION PERFORMANCE ON SYNTHETIC DATA
In Fig. 3, we compare the estimation performance of matrix
and tensor-based factorization methods to recover unstruc-
tured missing data in the synthetic dataset for different pro-
portions, e.g. 60%, 70%, 80%, 90% and 95%. In Fig. 4,
we show the capability of different methods to recover struc-
tured missing data. Structured missing data is modeled by
replacing entire 10,20,30,40 and 50 columns (which are chan-
nels in case of EMG data) with zeroes.

B. ESTIMATION PERFORMANCE ON REAL EMG DATA
Fig. 5 shows a segment of original EMG data with no missing
values, the same EMG segment with unstructured missing
values, and lastly the recovered EMG signal. A segment
of the original EMG signal is shown in Fig. 5(a) with no
missing values and it contains information of movement of
muscle from a single channel. Fig. 5(b) shows the same EMG
signal with unstructured missing values, which are the input
signal to factorization methods. It can be seen in Fig. 5(b)
that a lot of values with different amplitudes are replaced by
zeroes to model unstructured missing data. Fig. 5(c) shows
a recovered EMG signal when CP-WOPT is applied on the
EMG signal of Fig. 5(b). It can be seen in Fig. 5(c) that all the
missing values that were replaced by zeroeswere successfully
recovered with amplitudes around 0.48.

Fig. 6 illustrates a segment of EMG data with no miss-
ing values having same four movements where each move-
ment exists at higher amplitudes from which first half (with
two movements) and second half (with two movements) is
removed and then recovered. In Fig. 6(a), EMG signal with
no missing values is shown that has been obtained from a par-
ticular channel. The four epochs of higher amplitudes indicate
execution of movement however it can be seen that there is a
very small difference between amplitudes of movement and
no-movement (at rest) epochs. In Fig. 6 (b & d), first and sec-
ond half (the worst case of removing 50% of data) of channel
values is removed to model the structured missing data. It is
tantamount to the scenario where data of two movements
is missed completely. In Fig. 6(c & e), recovered signal by
CP-WOPT is shown inwhich it can be seen that the difference
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FIGURE 3. RME of NMF, PARAFAC and CP-WOPT methods for 60%, 70%, 80%, 90% and 95% missing data for synthetic data of sizes 60× 40× 40,
120× 100× 80 and 180× 150× 120.

FIGURE 4. RME of NMF, PARAFAC and CP-WOPT methods for 10, 20, 30, 40 and 50 columns missing in structured manner from synthetic data of
size 120× 100× 80.

FIGURE 5. (a) Original EMG data (b) unstructured missing data (c) recovered missing data by CP-WOPT.

between amplitudes of movement and no-movement epochs
have increased which clearly differentiate epochs.

Fig. 7 shows a comparison of three methods to recover
unstructured missing data. There was a significant decrease
(P < 0.05) in the RME value with CP-WOPT as compared to
PARAFAC and NMF across all four movements and different

percentage of missing data. From each of four movements,
we remove 60%, 70%, 80%, 90% and 95% data randomly in
an unstructured manner.

In Fig. 8, results are shown when NMF, PARAFAC
and CP-WOPT are applied, respectively, to recover struc-
tured missing data. Results clearly show that CP-WOPT
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FIGURE 6. (a) Original EMG data (b & d) first and second half of a channel missing (c) & (e) recovered missing
channel by CP-WOPT.

FIGURE 7. RME for recovering 60%, 70%, 80%, 90% and 95% unstructured EMG missing data by NMF, PARAFAC and CP-WOPT.

outperformed PARAFAC and NMF in recovering structured
even for the extreme case when half of the channel data is
missing. In structured missing data, we gradually increased
the proportion of missing data from 10% to 50%. Remov-
ing 10% data from first half means data removal of first
10% samples from all six channels of particular movement
whereas removing 50% data means data removal of first 50%
samples (as shown in Fig. 6(b)) from all channels. Likewise,
removing 10% data from second half means data removal
of last 10% of samples from all six channels of particular
movement whereas removing 50% means data removal of
last 50% of samples (as shown in Fig. 6(d)).

In Fig. 9, we show computational complexity of NMF,
PARAFAC and CP-WOPT. It can be seen that CP-WOPT
takes slightly more time than NMF and PARAFAC to esti-
mate 10%, 20%, 30%, 40% and 50% structured missing
values to produce the reconstructed EMG data.

IV. DISCUSSION
We assessed matrix and tensor factorization techniques to
evaluate their performance to recover missing data for syn-
thetic and real EMG data. For matrix and tensor factorization
we applied NMF, and PARAFAC and CP-WOPT respec-
tively. One of the reason for tensor factorization to outperform
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FIGURE 8. RME for recovering structured missing samples from first and second half of real EMG data by NMF, PARAFAC and CP-WOPT.

FIGURE 9. Comparison of computational time of NMF, PARAFAC and CP-WOPT.

NMF is the arrangement of EMG data in a multidimen-
sional way. This multidimensional arrangement of the data to
constitute a tensor captures the global structure of observed

data and models it efficiently by covering entire spatial and
temporal dimension with an additional feature of multi-mode
correlations. Moreover CP-WOPT outperforms PARAFAC
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as well because it is a weighted version of PARAFAC and
models only the known values of EMG data. The key finding
is that tensor factorization technique CP-WOPT in which
only known samples are modeled outperformed both NMF
and PARAFAC. The performance of NMF and PARAFAC to
recovermissing data was almost the same as both themethods
model, both known and unknown values.

Although PARAFAC is a tensor-based technique with the
benefit of preserving the multi-way nature of data, yet its
performance is comparable with NMF. The results reveal
that CP-WOPT outperformed both NMF and PARAFAC
to recover both unstructured and structured missing data.
Usually, factorization methods find latent factors and then
exploits those latent factors to predict the missing values.
However, Matrix factorization based latent factors only cap-
ture two-dimensional linear relationships for estimatingmiss-
ing values, which can be improved if multi-linear relations are
used. The main advantage of working through latent factors is
that they let us take into account the information of the tensor
explicitly by exploiting the multilinear interactions between
obtained latent factors. For example, in our case, EMG data
has dimensions: samples × channels × movements.
Once we obtain latent factors, the inter-relation between

factors of EMG data in each mode can be analyzed, such that
columns of the first factor explicitly describes EMG signal,
columns of seconds factor describes channels and columns
of the third factor depicts movement-wise data. The main
advantage of employing tensor factorization is that solution
provided by it is unique [28]. Moreover, tensor factorization
offers better computational capabilities and storage [29].

We divided the missing data into two categories:
1) unstructured missing data and 2) structured missing data.
CP-WOPT gave promising results in recovering unstructured
and structured (which is a more realistic assumption in
Muscle-Computer Interface)missing data. This study is a pre-
liminary step in the feasibility of improving the accuracy of
classificationmethods to efficiently classify handmovements
using surface EMG signals. Performance of classification
methods will improve because firstly missing data is replaced
with efficiently calculated estimated data and secondly; it
increases the total size of data. However, the study presented
here is an offline analysis and based on a small number of
able-bodied subjects, which limits the possibility of gener-
alizing the results. Furthermore, the relation between RME
and classification performance needs to be developed so that
it can be claimed that improved RME improves the classifi-
cation performance for myoelectric control application.

V. CONCLUSION
In this paper, we addressed the problem of recovering two
types of missing data in surface EMG signals: unstructured
and structured missing data, using NMF which is a matrix-
factorization method, and PARAFAC and CP-WOPT which
are tensor-factorization methods. In NMF, EMG data is
matricized unlike in PARAFAC and CP-WOPT. CP-WOPT
outperformed both NMF and PARAFAC in terms of RME

because CP-WOPT has the ability to recover missing data
efficiently such that it models only the known samples from
EMG signals, which make it very useful for improving the
performance of classification methods. However, this study
is limited to offline analysis of sEMG signals.
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