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ABSTRACT Sampling frequency synchronization in orthogonal frequency division multiplexing (OFDM)
communications is critical for achieving the full advantages offered by this modulation scheme. In this paper,
we propose a novel and efficient, blind, cyclostationarity-based sampling frequency synchronization (CB-
SFS) algorithm for estimating the sampling frequency offset (SFO) in OFDM communications by exploiting
the relationship between the sampling frequency and the cyclostationary properties of the sampled received
signal. The proposed scheme is ignorant of the channel coefficients and does not require pilots. These
two properties are rather unique in this context and are not possessed by previous schemes which achieve
comparable estimation performance. These properties also make the proposed CB-SFS scheme suitable for
a wide range of communications scenarios. The main novelty of the new scheme is the understanding that
SFO alters the cycle frequencies at the receiver, yet these frequencies are a priori known for the discrete-
time (DT) transmitted signal, as they result from the periodic operation of the DT signal generation scheme
at the transmitter. We show that the mismatch between the measured and the expected cycle frequencies is
directly related to the SFO. Complexity analysis and numerical simulations are carried out and demonstrate
the superiority of the proposed CB-SFS algorithm compared to the existing approaches. It is illustrated
that the proposed algorithm can achieve a smaller estimation error at the same complexity order of current
algorithms while providing a higher spectral efficiency and robustness to additive stationary noise and to
multipath.

INDEX TERMS Orthogonal frequency division multiplexing, sampling frequency offset, synchronization,
cyclostationary processes, almost cyclostationary processes.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) is a
multicarrier modulation scheme which is widely used in
current wireless communications standards, and is also con-
sidered a major candidate for future communications sys-
tems [1]. Two of the major advantages of OFDMmodulation
are its spectral efficiency and its robustness to frequency-
selective fading [2]. However, these advantages are obtained
only when the OFDM receiver is synchronized with the trans-
mitter, as synchronization errors, and in particular sampling
frequency offset (SFO) and carrier frequency offset (CFO)
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induce intercarrier interference (ICI) which substantially
degrades communications performance [3]. For this reason,
estimation of SFO and of CFO have been receiving signifi-
cant research focus throughout the years.

Several algorithms for SFO synchronization in OFDM
communications have been proposed throughout the years.
These algorithms can be generally classified into two types:
Data-aided (DA) algorithms, which use dedicated pilot sym-
bols to facilitate parameter estimation, e.g., [4]–[8], and non-
data-aided (also referred to as blind) algorithms, which do
not use dedicated pilot symbols, e.g., [9]–[11]. As wire-
less spectrum is a very scarce resource, blind schemes are
advantageous to DA schemes in modern wireless commu-
nications systems, due to their higher spectral efficiency.
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In the class of DA schemes we note the work in [4], which
presents a DA SFO estimation algorithm for OFDM commu-
nications based on exploiting the phase differences between
the pilot symbols. In [5], the authors propose an algorithm
for SFO estimation using the channel frequency response,
where pilot patterns with a maximum channel power (i.e.,
the magnitude-squared of the channel frequency response)
are chosen to facilitate robustness of the estimate with respect
to the frequency-selectivity of the channel. In [6], a DA
algorithm for the joint acquisition of the SFO and the CFO
for OFDM signals is proposed. The algorithm uses two long
training symbols in the preamble and obtains closed-form
maximum-likelihood (ML) estimates of the SFO and the
CFO by exploiting the phase shift between the two training
symbols in the frequency domain. The work in [7] proposes
a DA algorithm for SFO estimation based on using continual
pilots which occupy the same subcarrier locations in different
OFDMsymbols. The SFO is then estimated using the selected
pilots set via a least-squares estimation (LSE). The work
in [8] proposes a DA ML scheme for estimating the SFO
which exploits the Toeplitz structure of the covariance matrix
of the time-domain observations to reduce the computational
complexity of the estimator.

In the class of blind schemes we note the work [9] which
proposes a blind frequency synchronization algorithm which
uses oversampling to fully exploit the phase shift among
neighboring samples, leading to a root-finding problem that
allows for a computationally efficient estimation. In [10],
a blind estimation algorithm is proposed which estimates
the SFO using the phase difference between the outputs of
two different fast Fourier transforms (FFTs) windows taken
within an OFDM symbol duration. This blind estimator is
stated in a closed form, thereby avoiding the computational
complexity of a grid search, which is common in SFO estima-
tion algorithms. Lastly, in [11] a blind SFO estimation algo-
rithm over frequency-selective fading channels is proposed,
which uses the second order statistics of the received OFDM
signal.

The fact that using pilots to facilitate synchronization
reduces the spectral efficiency of the communications link,
motivated the present work in which we introduce a novel,
efficient cyclostationarity-based sampling frequency syn-
chronization (CB-SFS) algorithm, which exploits the cyclo-
stationarity of the received signal without using a dedicated
pilot sequence, while requiring a reasonable complexity as
compared to the previously proposed algorithms. The novelty
of the proposed algorithm follows as it does not estimate
the sampling frequency directly, but instead it adjusts the
cycle frequencies of the sampled received signal, estimated
via [12], [13], to align with those of the transmitted signal.
Note that the cycle frequencies of the transmitted signal
are completely determined by the signal generation scheme,
hence are available at the receiver. The performance of the
proposed CB-SFS algorithm is evaluated and compared with
the major alternative approaches via an extensive numerical
study. It is shown that the CB-SFS algorithm achieves smaller

estimation errors with the same complexity order and with a
higher spectral efficiency compared to previously proposed
algorithms. The new algorithm is also robust to the actual
channel coefficients and to symbol timing offset (STO) syn-
chronization.

The rest of this paper is organized as follows: Section II
presents a brief review ofwide-sense cyclostationary (WSCS)
and of wide-sense almost-cyclostationary (WSACS) random
processes. Section III presents the system model. Section IV
provides a stochastic characterization of the discrete-time
(DT) received signal obtained by sampling the continuous-
time (CT) received signal. Section V presents the pro-
posed CB-SFS algorithm, along with its complexity analy-
sis. The numerical analysis and discussions are presented in
the Section VI, followed by the concluding remarks in the
Section VII.
Notations: In the following, complex conjugate, stochastic

expectation, and the convolution operator are represented by
(·)∗, E{·}, and ?, respectively. The sets of integers, positive
integers, rational numbers, real numbers and complex num-
bers are denoted by Z , N , Q, R, and C respectively. <{z}
and ={z} denote the real and the imaginary parts of z ∈ C.
For a set A, we use |A| to denote its cardinality. Lastly, CT
random processes are denoted using capital letters and round
brackets, e.g., X (t), where t ∈ R denotes the time. Similarly,
DT random processes are denoted using capital letters and
square brackets, e.g., X [n], where n ∈ Z is the DT index.

II. CYCLOSTATIONARY AND
ALMOST-CYCLOSTATIONARY RANDOM PROCESSES
We first recall the definition of aWSCS random process from
[14, Sec. 3.2]:
Definition 1: A proper complex CT (resp. DT) random

process X (t) (resp. X [n]) is said to be WSCS if both its mean
and its autocorrelation function (AF), are periodic with some
period T0 (resp. N0) for any lag value τ ∈ R (resp. 1 ∈ Z).
From the above definition, it follows that for the WSCS

random process X (t) (resp. X [n]), the mean mX (t) (resp.
mX [n]) and the AF RX (t, τ ) (resp. RX [n,1]) can be repre-
sented as

E
{
X (t)

}
, mX (t) = mX (t + T0) (1a)

E
{
X (t)X∗(t − τ )

}
, RX (t, τ ) = RX (t + T0, τ ), (1b)

E
{
X [n]

}
, mX [n] = mX [n+ N0] (2a)

E
{
X [n]X∗[n−1]

}
, RX [n,1] = RX [n+ N0,1]. (2b)

Since for a CT WSCS process X (t), the AF RX (t, τ ) is
periodically varying in the time variable t , it can be expanded
into a Fourier series in t , see [14, Eqn. (3.61)]:

RX (t, τ ) =
∞∑

k=−∞

Rk/T0
X (τ )ej2π

k
T0
t
,

where the coefficients Rk/T0
X (τ ) are referred to as the cyclic

autocorrelation function (CAF), k
T0
, where k ∈ Z , is referred
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to as the cycle frequency, and τ is the lag variable. The CAF
Rk/T0
X (τ ) is obtained using [14, Eqn. (3.63)]:

Rk/T0
X (τ ) =

1
T0

∫ T0/2

t=−T0/2
RX (t, τ )e

−j2π k
T0
t
dt. (3)

Similarly, for the DT WSCS process X [n], the AF RX [n,1]
can be expanded into a Fourier series as [14, Eqn. (3.108)]:

RX [n,1] =
∑
k∈N0

Rαk
X [1]ej2παkn, (4)

where αk ≡ k
N0
, k ∈ N0 , {0, 1, . . . ,N0 − 1} are the cycle

frequencies. The CAF Rαk
X [1] for the process X [n] can be

obtained using [14, Eqn. (3.109)]:

Rαk
X [1] =

1
N0

N0−1∑
n=0

RX [n,1]e−j2παkn. (5)

We next recall the definition of a WSACS random process,
see also [14, Sec. 3.2]:
Definition 2: A proper complex CT (resp. DT) random

process S(t) (resp. S[n]) is said to be WSACS if both its mean
and its AF are almost-periodic functions1 in the time variable
t (resp. DT index n).

From the above definition, it follows that for the CT
WSACS random process S(t), the mean E

{
S(t)

}
and the

AF RS (t, τ ) = E
{
S(t)S∗(t − τ )

}
can be represented

as [14, Eqns. (3.10), (3.73)]:

E
{
S(t)

}
=

∑
α∈A

µαS e
j2παt
; RS (t, τ ) =

∑
α∈A

Rα
S (τ )e

j2παt

(6)

whereA is a countable set of cycle frequencies which are pos-
sibly incommensurate. The CAF Rα

S (τ ) for S(t) is obtained
as the limit [14, Eqns. (3.11), (3.74)]:

Rα
S (τ ) = lim

T→∞

1
T

∫ T/2

t=−T/2
RS (t, τ )e−j2παtdt. (7)

Similarly, for the DT random process S[n], the meanE
{
S[n]

}
and theAFRS [n,1] = E

{
S[n]S∗[n−1]

}
can be represented

as [14, Eqn. (3.30)], [16, Eqn. (4.20)]:

E
{
S[n]

}
=

∑
α̃∈Ã

µα̃S e
j2πα̃n

; RS [n,1] =
∑
α̃∈Ã

Rα̃
S [1]ej2πα̃n

(8)

with Ã being a countable set of cycle frequencies which
are possibly incommensurate. The CAF Rα̃

S [1] of S[n] is
obtained as the limit [14, Eqn. (3.31)], [16, Eqn. (4.21)]

Rα̃
S [1] = lim

N→∞

1
2N + 1

N∑
n=−N

RS [n,1]e−j2πα̃n. (9)

1See [15, Ch. I] for the definition of an almost-periodic function.

III. SYSTEM MODEL
LetNsc denote the number of subcarriers in an OFDM symbol
and Dm,k denote the complex random data symbols at the
k-th subcarrier of the m-th OFDM symbol in the sequence,
k ∈ [0,Nsc − 1] and m ∈Z . We assume that each data sym-
bol Dm,k is selected uniformly from a finite, zero-mean and
proper complex set of constellation points D in an indepen-
dent and identically distributed (i.i.d.) manner over k and m.
Thus,

E
{
Dm,kD∗m̃,k̃

}
= σ 2

D · δ[m− m̃] · δ[k − k̃] (10a)

E
{
Dm,k

}
= 0,E

{
Dm,kDm̃,k̃

}
= 0. (10b)

The modulated DT sequence for the m-th OFDM sym-
bol is obtained from Dm,k by applying an inverse discrete
Fourier transform (IDFT) of size Nsc and then concatenating
a cyclic prefix (CP) of length Ncp samples to the IDFT output
sequence. It follows that the length of the resulting OFDM
symbol in time samples is Nsym = Nsc + Ncp. Letting T

(sync)
samp

be the sampling interval at the transmitter, we also define
Tsc , Nsc · T

(sync)
samp , Tcp , Ncp · T

(sync)
samp , and Tsym= Tsc +

Tcp. The transmitted complex baseband OFDM signal S(t)
can be represented as in [17, Eqns. (1)-(2)] (the reference
time for the phase is set to the start of each symbol, see,
e.g., [18, Eqn. (1)]):

S(t) =
1
√
Tsc

∞∑
m=−∞

Nsc−1∑
k=0

Dm,k e
j 2πTsc k(t−mTsym)p(t − mTsym)

(11)

where the real-valued pulse shaping function p(t) satisfies
p(t) = 1 for 0 ≤ t < Tsym and p(t) = 0 otherwise.
Letting fTx and φTx denote the carrier frequency and phase,
respectively, at the transmitter, the transmitted real passband
signal corresponding to the baseband signal S(t) is given as

Spass(t) = <
{
S(t)ej(2π fTxt+φTx)

}
. (12)

In this work, we consider a block fading passband channel
whose coherence time is on the order of the frame dura-
tion, which can be modeled as a causal linear time-invariant
system [17], [19]. Letting h(t) denote the channel impulse
response (CIR) and Wpass(t) denote the passband additive
white Gaussian noise (AWGN) at the receiver, the received
passband signal R(t) can be represented as Rpass(t) =
Spass(t) ? h(t)+Wpass(t), leading to the following expression

Rpass(t) =
∫
∞

λ=0
h(λ)Spass(t − λ)dλ+Wpass(t)

= <

{
1
√
Tsc

ej(2π fTxt+φTx)
∞∑

m=−∞

Nsc−1∑
k=0

Dm,k

∫
∞

λ=0
h(λ)

· e−j2π fTxλej
2π
Tsc

k(t−λ−mTsym)p(t − λ− mTsym)dλ
}

+Wpass(t). (13)
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The receiver uses an oscillator with frequency fRx and phase
φRx to downconvert the received passband signal to a base-
band signal R(t). Using the identity <{θ} = (θ + θ∗)/2, and
denoting 1f = fTx − fRx, 1φ = φTx − φRx, 6f = fTx + fRx,
and6φ = φTx+φRx, the downconverted baseband signal can
be written as

R(t) = Rpass(t) · e−j(2π fRxt+φRx)

=
1

2
√
Tsc

∞∑
m=−∞

Nsc−1∑
k=0

[
ej(2π1ft+1φ )Dm,k

∫
∞

λ=0
h(λ)

·e−j2π fTxλ ej
2π
Tsc

k(t−λ−mTsym) p(t − λ− mTsym)dλ

+e−j(2π6f t+6φ )D∗m,k

∫
∞

λ=0
h(λ)ej2π fTxλ

·e−j
2π
Tsc

k(t−λ−mTsym) p(t − λ− mTsym)dλ
]

+Wpass(t) · e−j(2π fRxt+φRx). (14)

The receive filter is a causal band-limited low-pass filter
(LPF) which keeps only the received baseband signal com-
ponent. Letting W (t) denote the circularly symmetric com-
plex normal noise process at the output of the receive LPF,
the output signal of the receive LPF can be expressed as

Y (t) =
1

2
√
Tsc

ej2π1ftej1φ
∞∑

m=−∞

Nsc−1∑
k=0

Dm,k

∫
∞

λ=0
h(λ)

·e−j2π fTxλej
2π
Tsc

k(t−λ−mTsym)p(t − λ− mTsym)dλ

+W (t). (15)

The signal path model from the transmitter to the receiver is
schematically depicted in Fig. 1.

FIGURE 1. A schematic description of the signal path model.

IV. STATISTICS OF THE CT SIGNALS AND OF THE
SAMPLED RECEIVED SIGNAL
In this section we establish the cyclostationarity of the
CT transmitted and received signals along the signal path,
and subsequently we consider the statistics of the sampled
received signal.

A. CYCLOSTATIONARITY OF S(t), R(t), and Y (t)
From (10)-(11), the first-order statistics of S(t) is

mS (t) , E
{
S(t)

}
=

1
√
Tsc

∞∑
m=−∞

Nsc−1∑
k=0

E{Dm,k}ej
2π
Tsc

k(t−mTsym)

·p(t − mTsym)

= 0

= mS (t + Tsym). (16)

Next, the AF of S(t), denoted, RS (t, τ ) , E
{
S(t)S∗(t − τ )

}
can be expressed as:

RS (t, τ ) =
1
Tsc
σ 2
D

Nsc−1∑
k=0

ej2π
k
Tsc
τ
∞∑

m=−∞

p(t − mTsym)

· p(t − τ − mTsym)

(a)
=

1
Tsc
σ 2
D

Nsc−1∑
k=0

ej2π
k
Tsc
τ
∞∑

m=−∞

p(t − mTsym)

· p(t − τ − mTsym)

= RS (t + Tsym, τ ), (17)

where in step (a) we set m= (m − 1). It follows from (16)-
(17) that mS (t) = mS (t + Tsym) and RS (t, τ ) = RS (t +
Tsym, τ ), and thus, the transmitted baseband signal S(t) is
WSCS with period Tsym for a sufficiently long sequence of
OFDM symbols. Note that strictly speaking, (16)-(17) hold
when m varies over the entire set Z , thus for a finite number
of OFDM symbols, S(t) can bewell approximated as aWSCS
process when the number of OFDM symbols is sufficiently
large. Next, using (10) and (14), it directly follows that the
first-order statistics of R(t) satisfies

mR(t) , E
{
R(t)

}
= 0 = mR(t + Tsym). (18)

In Appendix A, the second-order statistics of R(t), denoted
RR(t, τ ) is derived using (10) and (14), and is shown to satisfy
RR(t, τ ) = RR(t + Tsym, τ ). It therefore follows that R(t) is
WSCS with period Tsym for a sufficiently long sequence of
OFDM symbols.

Lastly, we consider the statistics of the CT received signal
Y (t). Using (10) and (15), we obtain that the first-order
statistics of Y (t) satisfies

mY (t) , E
{
Y (t)

}
= 0 = mY (t + Tsym), (19)

and derive the AF of Y (t) as

RY (t, τ ) , E
{
Y (t)Y ∗(t − τ )

}
=

1
4Tsc

σ 2
D e

j2π1fτ
∞∑

m=−∞

Nsc−1∑
k=0

ej2π
k
Tsc
τ

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp(t − λ− mTsym)dλ
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·

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃p(t−τ−λ̃−mTsym)d λ̃

+RW (τ )

= RY (t + Tsym, τ ), (20)

where RW (τ ) , E
{
W (t)W ∗(t − τ )

}
. It follows from

(19)-(20) that the received baseband signal Y (t) is WSCS
with period Tsym for a sufficiently long sequence of OFDM
symbols.

B. STATISTICS OF THE SAMPLED RECEIVED SIGNAL
In order to apply digital processing, the receiver first
samples Y (t). In the following we analyze the relationship
between the sampling interval and the statistics of the result-
ing DT signal.

1) SYNCHRONOUS SAMPLING OF Y (t)
First consider the case in which the sampling interval Tsamp
is commensurate with the symbol period Tsym, namely

Tsym
Tsamp

=
U
V

(21)

where, U ,V ∈ N have no common factors [20, Sec. 3].
We refer to this situation as synchronous sampling. The
resulting DT signal, denoted YDT[n], is expressed as:

YDT[n] , Y (n · Tsamp)

=
1

2
√
Tsc

ej(2π1fnTsamp+1φ )
∞∑

m=−∞

Nsc−1∑
k=0

Dm,k

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λej

2π
Tsc

k
(
n−mU

V

)
Tsamp

·p
((

n− m
U
V

)
Tsamp − λ

)
dλ+W (n · Tsamp)

(22)

From the statistics of Dm,k in Eqn. (10) and from (22),
we obtain that mYDT [n] , E

{
YDT[n]

}
= 0, and that the AF of

YDT[n] is expressed as:

RYDT [n,1]

, E
{
YDT[n]Y ∗DT[n−1]

}
=

1
4 Tsc

σ 2
D

∞∑
m=−∞

Nsc−1∑
k=0

ej2π
(
1f+

k
Tsc

)
1·Tsamp

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp
((

n−m
U
V

)
Tsamp−λ

)
dλ

·

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃p
((

n−1−m
U
V

)
Tsamp−λ̃

)
d λ̃

+RW [1]

(b)
=

1
4 Tsc

σ 2
D

∞∑
m=−∞

Nsc−1∑
k=0

ej2π
(
1f+

k
Tsc

)
1·Tsamp

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp
((

n−m
U
V

)
Tsamp−λ

)
dλ

·

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃p
((

n−1−m
U
V

)
Tsamp−λ̃

)
d λ̃

+RW [1]

= RYDT [n+U ,1] (23)

where RW [1] , E
{
W [n]W ∗[n − 1]

}
, W [n] , W (n ·

Tsamp), and in step (b) we set m = (m − V ). Combined
with mYDT [n] = 0, we obtain that YDT[n] obtained through
synchronously sampling Y (t), is a DT WSCS process. Note
that if Tsamp = T (sync)

samp then it follows from (21) that
U = Nsym and V = 1.

2) ASYNCHRONOUS SAMPLING OF Y (t)
Next, consider the case in which the sampling interval
Tsamp is incommensurate with the symbol period, see also
[21, Sec. II-B], namely,

Tsym
Tsamp

=
U
V
+ ξ ; ξ /∈ Q, ξ ∈ (0, 1). (24)

This situation is referred to as asynchronous sampling. For
YDT[n] obtained with asynchronous sampling we can write

YDT[n]

, Y (n · Tsamp)

=
1

2
√
Tsc

ej(2π1fnTsamp+1φ )
∞∑

m=−∞

Nsc−1∑
k=0

Dm,k

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λej

2π
Tsc

k
(
n−m(UV +ξ )

)
Tsamp

·p
((

n− m
(
U
V
+ ξ

))
Tsamp − λ

)
dλ+W (n · Tsamp)

(25)

Using the statistics of Dm,k , given in (10), and the expres-
sion (25), we evaluate the mean of YDT[n] as mYDT [n] ,
E
{
YDT[n]

}
= 0, and the AF of YDT[n], RYDT [n,1] ,

E
{
YDT[n]Y ∗DT[n−1]

}
as:

RYDT [n,1]

=
1

4 Tsc
σ 2
D

∞∑
m=−∞

Nsc−1∑
k=0

ej2π
(
1f+

k
Tsc

)
1·Tsamp

∫
∞

λ=0
h(λ)

·e−j2π
(
fTx+ k

Tsc

)
λp
((

n− m
(
U
V
+ ξ

))
Tsamp − λ

)
dλ
∫
∞

λ̃=0
h(λ̃)

·ej2π
(
fTx+ k

Tsc

)
λ̃p
((

n−1− m
(
U
V
+ ξ

))
Tsamp − λ̃

)
d λ̃

+RW [1]

6= RYDT [n+ Ũ ,1], ∀Ũ ∈ N (26)

Comparing (26) with (23), it is observed that ξ /∈ Q implies
that the AF of YDT[n] is an almost-periodic function of time,
and combined with mYDT [n] = 0, we obtain that YDT[n],
generated using asynchronous sampling, is a DT WSACS
process.
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V. CB-SFS: AN EFFICIENT SAMPLING FREQUENCY
SYNCHRONIZATION ALGORITHM
In [18] it is shown that a DT OFDM signal obtained via
sampling at intervals of T (sync)

samp , exhibits cyclostationarity
with a period of Nsym. Accordingly, the cycle frequencies for
such a DT OFDM signal are αk, k

Nsym
=k · α1; k=0, 1, · · · ,

Nsym − 1, where α1= 1
Nsym

is referred to as the fundamental
cycle frequency. Let N1 denote the set of lags 1 ∈ Z
for which ∃n ∈ Z such that RYDT [n,1] 6= 0, and let
Awscs denote the set of cycle frequencies for YDT[n]. As the
additive noiseW [n] is stationary, it follows thatRαk

W [1] = 0,
∀αk 6= 0, [18, Sec. II].
In the proposed CB-SFS algorithm we use the cycle fre-

quencies estimation algorithm proposed in [12, Sec. III], [13],
which is based on the autocorrelated CAF. In the fol-
lowing, we briefly review this algorithm: The CAF corre-
sponding to the sampled signal YDT[n] can be estimated
as [12, Eqns. (3), (4)]:

Rα
YDT [1] = lim

L→∞

1
2L + 1

L∑
n=−L

YDT[n] · Y ∗DT[n−1]e−j2παn

for each 1 ∈ N1. Consider a segment of YDT[n] whose
length, denoted with Nseg, satisfies Nseg > max

1∈N1

|1|.

The segmented CAF of YDT[n] can now be expressed as
[12, Eqn. (12)], [13, Eqn. (12)]:

Rα
YDT [n,1]

Nseg
=

1
Nseg

n+Nseg−1∑
k=n

YDT[k] · Y ∗DT[k −1]e−j2παk .

(27)

Given that a total of Nc samples of YDT[n] were received,
then we consider n in the range 0 ≤ n ≤ Nc − 1, and
the autocorrelated CAF is evaluated as [12, Eqn. (13)],
[13, Eqn. (13)] (we set YDT[n] = 0 for n < 0 or n ≥ Nc):

RYDT [α,1;Nlag] =
1
Nc

Nc−Nseg∑
n=Nlag

Rα
YDT [n,1]

Nseg

·

(
Rα
YDT [n− Nlag,1]

Nseg

)∗
(28)

From [12, Sec. III-A], [13, Secs. 3.1, 3.3] it follows that the
optimal value of the lag parameterNlag, which guarantees that
the cycle frequencies are unambiguously obtained from the
autocorrelated CAF, is equal to Nseg. Using this assignment,
and summing over the lag variable 1 ∈ N1, we obtain the
cost function [13, Eqn. (24)]

CYDT (α) =
∑
1∈N1

RYDT [α,1;Nseg]. (29)

In [12, Appendix], [13, Sec. 3.2] it is shown that for
sufficiently large values of Nc, the autocorrelated CAF
(28) approaches the expression (assuming synchronized
sampling)

RYDT [α,1;Nseg] ≈
∑

αY∈Awscs

∣∣∣RαY
YDT

[1]
∣∣∣2δ(α − αY )
· ej2π (α−αY )Nseg

and the cost function (29) approaches

CYDT (α) ≈
∑

αY∈Awscs

∑
1∈N1

∣∣∣RαY
YDT

[1]
∣∣∣2δ(α − αY )
·ej2π (α−αY )Nseg (30)

It can be observed from (30) that the peaks of CYDT (α) occur
at the cycle frequencies of the set Awscs. For asynchronous
sampling Eqn. (30) holds with the countable set of cycle
frequencies Awsacs is used instead of the finite set Awscs.
Hence, an efficient algorithm for acquisition of the cycle
frequencies can be implemented by searching for the peaks
of the cost function CYDT (α). Considering a maximal value of
α denoted by αNT , then for the rangeA, (0, αNT ], an efficient
estimate of the cycle frequencies of YDT[n], denoted ÂDT, can
be implemented by identifying the local maxima of CYDT (α)
considering only values above a threshold amplitude level
CTH, e.g.,

ÂDT =

{
α ∈ A

∣∣∣{CYDT (α)>CTH
}
∩
{
α is a local maxima

}}
(31)

In the rest of this paper we denote the parameters cor-
responding to a non-synchronized sampling rate using the
superscript (ns), e.g., T (ns)

samp 6= T (sync)
samp denotes the non-

synchronized sampling interval.

A. EVALUATING THE COST FUNCTION FOR
f (ns)samp > f (sync)samp AND FOR f (ns)samp < f (sync)samp

We next illustrate the relationship between the cost function
and the sampling frequency offset. To that aim we consider
the following scenario:

Consider a transmitted sequence of M OFDM symbols
where each OFDM symbol comprises of Nsym = Nsc + Ncp
samples. The total number of samples in the transmitted
sequence is therefore Nc = M · Nsym. We consider a slowly
varying frequency selective fading channel such that the
channel remains constant over the transmission of M subse-
quent OFDM symbols [17], [19]. Assuming L paths between
the transmitter and the receiver, the CIR can be written as

h(t) =
L−1∑
l=0

al · δ(t − τl), (32)

where al and τl represent, respectively, the path gain and path
delay corresponding to path l. In the numerical evaluations,
unless stated otherwise, we use a multipath delay profile with
L = 6 different paths specified in Table 1. In each frame,
M = 20 OFDM symbols are transmitted with Nsc = 128 and
Ncp = 32, hence, Nsym = 160.
Let the synchronized sampling rate be f (sync)samp =

1
T (sync)
samp
=

4 MHz [22]. Fig. 2 depicts the cost functions C(sync)YDT
(α) and

C(ns)YDT
(α) for sampling rates f (sync)samp and f (ns)samp = 0.7 · f (sync)samp ,

respectively, with M = 20, Nseg = 28, and Eb/N0 = 5 dB.
As the peaks along the cycle frequency axis correspond to the
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TABLE 1. Multipath delay profile.

FIGURE 2. The cost functions C(sync)
YDT

(α) and C(ns)
YDT

(α)
(
refer Eqn. (29)

)
for

sampling rates f (sync)
samp and f (ns)

samp = 0.7 · f (sync)
samp , respectively.

values of the cycle frequencies (see (30)), then with NT=2,
the estimated cycle frequencies from C(ns)YDT

(α) in the range
A = (0, α2] = (0, 0.0125] consist of a single cycle frequency
α̂
(ns)
1 = 0.00892. Recall that the stationary AWGN does not

exhibit cyclostationarity, hence, it does not affect the non-
zero cycle frequencies. We observe that when f (ns)samp< f

(sync)
samp ,

the cycle frequencies are distanced further apart in the axis of
cycle frequencies than for the original signal.

FIGURE 3. The cost functions C(sync)
YDT

(α) and C(ns)
YDT

(α)
(
refer Eqn. (29)

)
for

sampling rates f (sync)
samp and f (ns)

samp = 1.3 · f (sync)
samp , respectively.

Fig. 3 depicts the cost functions C(sync)YDT
(α) and C(ns)YDT

(α) for

the sampling rate f (sync)samp and f (ns)samp=1.3 · f
(sync)
samp , respectively,

with M = 20, Nseg = 28, and Eb/N0 = 5 dB. With NT =

2, the estimated cycle frequencies based on C(ns)YDT
(α) in the

range A = (0, α2] = (0, 0.0125] are α̂1 = 0.00480, and
α̂2=0.00961. It is observed that for f (ns)samp > f (sync)samp the cycle
frequencies are closer in the axis of cycle frequencies than for
the original signal.
Remark 1: As explained in [12, Sec. III], [13, Sec. 3.1]

the resolution of the cycle frequencies estimation is 1
Nseg

,
hence, as Nseg increases, the resolution and accuracy of
the CAF estimation via (27) improves, which improves the
accuracy of the cycle frequencies estimation scheme based
on (29). On the other hand, it directly follows from Table 2
that the computational complexity increases linearly as Nseg
increases. It thus follows that the value of Nseg is selected
as a compromise between these two opposite effects, and
that it is generally preferred to use the minimal Nseg which
facilitates the required estimation accuracy, see [13, Sec. 3.3].
In the numerical evaluations reported in the manuscript we
used Nsym = 160, hence, the fundamental cycle frequency
of the transmitted signal is 1

160 = 0.00625. The smallest
observed fundamental cycle frequency is obtained for the
largest considered SFO, which in our evaluations corresponds
to f

(ns)
samp = 1.3. For this SFO, the fundamental cycle fre-

quency of the received DT signal is 1
1.30.00625 = 0.0048.

Therefore, the smallest positive integer P such that 1
2P <

0.0048 is 8: 2−8 ≈ 0.0039, hence, Nseg = 256 is the minimal
Nseg which provides the required resolution. Lastly, we note
that Nseg is restricted to be a power of 2 in order facilitate the
application of the FFT in the evaluation of Eqn. (27), leading
to a more computationally efficient implementation, see also
[13, Sec. 3.3].

B. SEQUENTIAL STEPS OF THE CB-SFS ALGORITHM
The observations in Figs. 2 and 3 facilitate the motivation
for the robust blind CB-SFS algorithm we present in this
subsection for estimating T (sync)

samp . We first note that as prac-
tically ξ is very small, then the cycle frequencies of the
WSACS process are nearly equidistant, hence, the WSACS
process can be (nearly) regarded as a WSCS process for
the practical purpose of SFO estimation, as we apply in the
proposed algorithm. We further note that while previous SFO
estimation algorithms assumed a perfect symbol time offset
synchronization at the receiver (see, e.g., [17]), the proposed
estimator assumes that the receiver is not synchronized with
respect to theOFDMsymbol time, which is amore practically
relevant scenario for SFO estimation in wireless communica-
tions systems. To overcome the lack of symbol time offset
synchronization, the receiver uses an extended observation
window of lengthNsym ·(M+1) samples as depicted in Fig. 4.
We next detail the steps of the CB-SFS algorithm:

1) PARAMETER INITIALIZATION
The receiver initially obtains the following parameters:
• αNT : The cycle frequency corresponding to the NT-th
peak of the cost function (29) in the rangeA = (0, αNT ]
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TABLE 2. Computational complexity of the cb-sfs method (a detailed derivation is provided in appendix B).

FIGURE 4. Extending the observation interval to accommodate lack of
STO synchronization.

for synchronized sampling. This parameter is uniquely
determined by the OFDM symbol length Nsym, hence,
using its a-priori knowledge of Nsym, the receiver knows
the cycle frequencies for synchronous sampling, which
are given by αk , k

Nsym
; 0 ≤ k ≤ NT, and sets

αNT =
NT
Nsym

.

• T (ns)
samp : The current sampling interval at the receiver.

• M : The total number of OFDM symbols used for SFO
estimation.

• Nseg : The segment length used for the evaluation of the
cost function (29).

2) ALGORITHM STEPS
Using the measurements {YDT[n]}

Nc−1
n=0 , the CB-SFS algo-

rithm now proceeds with the following steps:
1) Evaluate the segmentedCAF ofYDT[n],Rα

YDT
[n,1]

Nseg
via (27).

2) Evaluate the autocorrelated CAF RYDT [α,1;Nlag] via
(28), using the segmented CAF with Nlag = Nseg,
as suggested in [12, Sec. III-A], [13, Secs. 3.1, 3.3].

3) Compute the cost function C(ns)YDT
(α) via (29) for the

values of α ∈
{ i
Nseg

αNT ; i = 1, 2, · · · ,Nseg
}
.

4) Estimate the cycle frequencies in the range A =

(0, αNT ]. Let the highest cycle frequency identified by
the receiver in this range be denoted by α̂(ns)Nlast

, and
the peak count corresponding to that cycle frequency
be the Nlast-th peak. Let α(ns)1 be the fundamental
cycle frequency for the non-synchronously sampled
signal YDT[n]. Since for DT cyclostationary processes,
the cycle frequencies are integer multiples of the fun-
damental cycle frequency, the fundamental cycle fre-
quency can be estimated as

α̂
(ns)
1 =

α̂
(ns)
Nlast

Nlast
. (33)

5) Lastly, the synchronized sampling interval is esti-
mated as

T̂ (sync)
samp =

(
α1

α̂
(ns)
1

)
T (ns)
samp. (34)

Remark 2: The cycle frequency offset between the funda-
mental frequencies is obtained as

1̂α1 = α̂
(ns)
1 − α1

Note that when 1̂α1 > 0, then T (ns)
samp > T (sync)

samp while when
1̂α1 < 0, then T (ns)

samp < T (sync)
samp .

C. COMPLEXITY OF THE CB-SFS ALGORITHM
Table 2 details the computational complexity of the pro-
posed CB-SFS algorithm in terms of complex multiplications
(CMs) and complex additions (CAs), where the complexities
of computing the different quantities used in the algorithm
are stated in Table 2 as well. In the table, |N1| represents
the total number of lag values for which the correlation is
non-zero for at least one time instant within a period. Note
that the cycle frequencies are estimated using a grid search in
the parameter α. In the numerical evaluations we implement
this search using Nseg points, and this value is used in the
complexity expressions in Table 2.

VI. NUMERICAL RESULTS AND DISCUSSIONS
The numerical evaluations use the OFDM signal parameters
detailed in Section III, namely, for each OFDM symbol,
Nsc = 128 and Ncp = 32, hence, Nsym = 160.

A. DEMONSTRATION OF THE CB-SFS ALGORITHM
In the following we illustrate the computations of the
steps of the proposed CB-SFS algorithm for a specific test
scenario.
Initialization:
• NT = 2, thus A = (0, 0.0125].

• T (ns)
samp = T (sync)

samp /
√
2, M = 20, Nseg = 28.

The computations in the steps of the CB-SFS algorithm are
as follows:

Steps 1 − 3: In steps 1-3, the cost function of (29) is
computed for the received signal obtained by sampling at
T (ns)
samp, denoted C(ns)YDT

(α), for Eb/N0 = 10 dB and a chan-

nel whose CIR is h(t) = δ(t). Fig. 5 depicts C(ns)YDT
(α) for

α ∈ A. In Fig. 5 we also include the cost function for the
synchronized sampling interval T (sync)

samp , denoted C(sync)YDT
(α),

only for the purpose of highlighting the operation of the
algorithm. It is emphasized that C(sync)YDT

(α) is not required for
the estimation process. It can be observed from the figure that
the SFO results in an offset between the cycle frequen-
cies of the signal obtained with non-synchronized sampling
relative to those of the signal obtained with synchronized
sampling.
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FIGURE 5. The cost function (refer Eqn. (29)) for the sampling intervals
T (sync)
samp and T (ns)

samp.

Next, steps 4 and 5 are computed as follows:
4) For non-synchronized sampling interval T (ns)

samp, using
the cost function C(ns)YDT

(α), we obtain the cycle fre-

quency α̂(ns)Nlast
, which corresponds to the Nlast-th peak

in the range A, as α̂(ns)Nlast
= α̂

(ns)
2 = 0.008848. The

fundamental cycle frequency for the non-synchronized
sampling can be obtained as

α̂
(ns)
1 =

α̂
(ns)
Nlast

Nlast
=

0.008848
2

= 0.004424.

Note that the cycle frequency offset for the fundamental
cycle frequency can be obtained as

1̂α1 = α̂
(ns)
1 − α1 = −0.001826,

which is in agreement with Remark 2.
5) The synchronized sampling interval T (sync)

samp can be esti-
mated as

T̂ (sync)
samp =

(
α1

α̂
(ns)
1

)
T (ns)
samp = 0.25µsec

The SFO can be estimated using the estimate T̂ (sync)
samp as

η̂ =
T (ns)
samp − T̂

(sync)
samp

T̂ (sync)
samp

= −0.29289.

Note that the exact SFO can be computed from the relation-
ship T (ns)

samp = T (sync)
samp /

√
2 as:

η =
T (ns)
samp − T

(sync)
samp

T (sync)
samp

= −0.2928932.

It can be observed that the proposed CB-SFS algorithm yields
an accurate estimate η̂ of the SFO η.

B. PERFORMANCE COMPARISON WITH
PREVIOUS WORKS
We evaluated the performance of the proposed CB-SFS algo-
rithm in estimating SFOs in the range of f (ns)samp= 0.7 · f (sync)samp

to f (ns)samp = 1.3 · f (sync)samp . Therefore, the normalized sampling
frequency f

(ns)
samp , f (ns)samp/f

(sync)
samp ranges from 0.7 to 1.3.

In the following, comparisons are made with three previously
proposed algorithms: The first is the DA ML algorithm pro-
posed in [8, Algorithm 1]. Here, two time domain observa-
tions containing the repetitive training sequences are used for
computing the correlation, followed by interpolation and zero
padding. Subsequently, a grid search is applied to obtain the
estimated SFO. The second previously proposed algorithm is
the SFO estimation scheme proposed in [5], which estimates
the SFO using cyclic delay diversity (CDD), based on the
pilot carriers having maximum channel powers. We note that
while CDD is designed for MISO channels, we assume that
the estimator can achieve periodicity of the channel in the cur-
rent setup - which is an assumption which favors CDD. The
third previously proposed algorithm is the scheme proposed
in [7] which estimates the SFO via an efficient LSE based on
continual pilots. In the ML, CDD and the LSE algorithms,
BPSK modulation is used for the pilot symbols where the
CDD algorithm and the LSE algorithm are each implemented
with N (LSE)

p =N (CDD)
p =14 pilots. In this context, it is empha-

sized that the proposed CB-SFS algorithm does not require
the use of pilot symbols for SFO estimation thereby avoiding
the associated decrease in spectral efficiency. We note that
the LSE and the CDD schemes use the channel coefficients
in computing the estimated SFO. Thus, when considering the
practical application of these schemes, these coefficients have
to be estimated. In the simulations reported in this section we
use the exact channel coefficients for these algorithms, hence
CDD’s and LSE’s performance in the simulations are lower
bounds on their actual performance. An important aspect in
the application of the CB-SFS algorithm is that as the CB-SFS
algorithm uses the periodicity of the statistics to determine
the SFO, then in order to facilitate its application, it needs to
observe a minimal number of OFDM symbols, irrespective
of the number of subcarriers per OFDM symbol. Based on
preliminary numerical tests we obtain that it is sufficient to
use 13 OFDM symbols to obtain the full performance of the
CB-SFS algorithm. This is mainly due to the need to facilitate
cycle frequency estimation for asynchronous sampling, giv-
ing rise to WSACS statistics of the received signal. Accord-
ingly, the numerical evaluations use the signal parameters
detailed at the beginning of Section VI, where in each frame
M = 13 OFDM symbols are transmitted. The channel model
used is detailed in Section III, namely, the channel is modeled
as a multipath channel with a multipath delay profile consist-
ing of L = 6 different paths, whose coefficients are specified
in Table 1. We note that for the specified OFDM parameters,
with f (sync)samp =

1
T (sync)
samp

= 4 MHz [22], this corresponds to

an overall duration of 0.52 msec which implies that the CB-
SFS algorithm is applicable also to time-varying channels
(note that the typical coherence time for wireless channels
in the frequency range of 700-2400 MHz is 5-10 msec [23],
[24]). Each simulation point was evaluated with 105 exper-
iments. In the following, comparisons will be made w.r.t.
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Eb/N0, see, e.g., [22], [25], to facilitate a fair comparison
with different modulations. Lastly, we note that while [10]
and [11] proposed blind SFO estimation algorithms, we did
not include them in the numerical study as their performance
were inferior to those of the CDD and LSE algorithms as can
be observed in [10, Sec. IV] and [11, Sec. IV].

FIGURE 6. MSE vs. f
(ns)
samp for the ML, the CDD, the LSE and the CB-SFS

algorithms corresponding to different modulation formats for
Eb/N0=−5 dB with the multipath channel specified in Table 1.

FIGURE 7. MSE vs. Eb/N0 for the ML, the CDD, the LSE and the CB-SFS
algorithms corresponding to different modulation formats with
f

(ns)
samp=1− 0.2 ·

√
2 ≈ 0.71 and the multipath channel specified in Table 1.

Fig. 6 depicts the mean-squared error (MSE) performance
for SFO estimation, normalized to f (sync)samp , for the ML algo-
rithm, the CDD algorithm, the LSE algorithm and the pro-
posed CB-SFS algorithm vs. f

(ns)
samp, for Eb/N0 = −5 dB.

Here, the ML, CDD, LSE and CB-SFS algorithms are set
to be symbol synchronized, i.e., operate with perfect STO
synchronization. Superiority and robustness of the CB-SFS
algorithm, compared to the CDD, LSE and ML algorithms
is evident. Fig. 7 depicts the MSE performance of the ML
algorithm, the CDD algorithm, the LSE algorithm and the
CB-SFS algorithm vs. Eb/N0 for the asynchronous sampling
frequency of f

(ns)
samp=1− 0.2 ·

√
2 ≈ 0.71, where perfect STO

FIGURE 8. BER vs. Eb/N0 for the ML, the CDD, the LSE and the CB-SFS
algorithms corresponding to different modulation formats with
f

(ns)
samp=1− 0.2 ·

√
2 ≈ 0.71 and the multipath channel specified in Table 1.

synchronization is considered at the receiver. The CB-SFS
algorithm, the LSE and the CDD algorithms show improve-
ment in the MSE with an increase in Eb/N0 whereas the ML
algorithm attains an error floor.

We note that as the key performance parameter for commu-
nications systems is the BER at the receiver, it is important
to understand how the BER is affected by the MSE of the
SFO estimation. In this context, we note that as SFO results
in loss of orthogonality between subcarriers, then a larger
SFO directly leads to a higher BER, and thus it follows that
a larger MSE in SFO estimation results in a higher BER.
To demonstrate this relationship, we repeated the simulations
corresponding to Fig. 7, but this time depicting the uncoded
BER instead of the MSE for 16QAM, QPSK and BPSK,
vs. Eb/N0, for f

(ns)
samp = 1 − 0.2 ·

√
2 ≈ 0.71. The results

are depicted in Fig. 8. Comparing with Fig. 7, a direct
proportional relationship between the MSE and the uncoded
BER is clearly observed. It is also observed that for QPSK and
BPSK, the uncoded BER with CB-SFS practically coincides
with the uncoded BER obtained with ideal SFO correction.
This further demonstrates the superiority of CB-SFS over the
baseline schemes. Lastly, we note that a similar relationship
between uncoded BER and MSE in SFO estimation can be
observed in [5, Figs. 1, 2, 4] which depict the MSE and the
uncoded BER for the CDD algorithm vs. SNR.

Next, Fig. 9 presents the normalized MSE performance of
the ML algorithm, the CDD algorithm, the LSE algorithm
and the CB-SFS algorithm for f

(ns)
samp== 1− 0.2 ·

√
2 ≈ 0.71

and Eb/N0 = −5 dB, at STO values of 4, 7, 11 and 15
samples w.r.t. sequence start time. The CB-SFS algorithm
uses an extended observation interval of (M + 1) · Nsym
instead of M · Nsym to account for the STO. It is observed
that both the CB-SFS and the CDD algorithms demonstrate
robustness to STO synchronization errors, while STO effect
is more pronounced for the LSE and the ML algorithms. The
robustness of the CDD algorithm follows as the signal design
facilitates SFO estimation in which the impact of STO is
significantly reduced by averaging, while for the LSE and
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FIGURE 9. MSE vs. STO for the ML, the CDD, the LSE and the CB-SFS
algorithms for 16QAM modulation with f

(ns)
samp=1− 0.2 ·

√
2 ≈ 0.71 at

Eb/N0=−5 dB over the multipath channel specified in Table 1.

for the ML algorithms, the received signal model used for
designing the estimator does not account for STO, resulting
in the STO having a significant effect on the phase component
which is used for the estimation of the SFO. Recall that
the superior performance of the CF-SFS algorithm, observed
in Figs. 6, 7, and 9, are obtained using a short synchro-
nization sequence, which comprises of only 13 OFDM sym-
bols, with an overall time duration of 0.52 msec (assuming
f (sync)samp =

1
T (sync)
samp
= 4MHz [22]). This clearly indicates that the

CB-SFS algorithm is suitable for SFO synchronization also
over time-varying channels.

FIGURE 10. MSE vs. f
(ns)
samp for the ML, the CDD, the LSE and the CB-SFS

algorithms corresponding to different modulation formats for
Eb/N0=−5 dB with the multipath channel specified in Table 1. LSE and
CDD use additional pilots to approach the performance of CB-SFS.

In order to demonstrate the tradeoff between performance
and spectral efficiency, we increased the number of pilots
in the LSE and the CDD algorithms such that their MSE
performances approach that of the CB-SFS. To that aim, we
used N (LSE)

p = 22 and N (CDD)
p = 26 pilots. For this setup,

Fig. 10 depicts theMSE performance evaluated at normalized
sampling frequency f

(ns)
samp and Eb/N0=−5 dB, subject to

perfect STO synchronization at the receiver. It can be noted
from the figure that indeed, using more pilots has improved
the performance of the LSE and of the CDD algorithms,
which are now quite close to that of the CB-SFS algorithm,
at the expense of decreasing the spectral efficiency (com-
puted as the ratio of the number of subcarriers used for data
transmission to the total number of subcarriers of the OFDM
symbol, Nsc): The spectral efficiencies of the LSE algorithm
and of the CDD algorithm are now lower than that of the
CB-SFS algorithm by 18% and 21% respectively. This loss
in spectral efficiency is a critical consideration in design of
practical systems.

C. COMPARISON OF COMPUTATIONAL COMPLEXITY
AND REQUIRED A-PRIORI KNOWLEDGE
The numerical evaluations show that the CB-SFS algorithm,
which does not require a pilot sequence, achieves excellent
performance at a high spectral efficiency as all subcarriers
are used for data transmission. Specifically, considering the
scenario in Fig. 10 where MSE performance of CDD and
LSE are quite close to that of CB-SFS, we observe that the
spectral efficiency of the CB-SFS algorithm is 18%-21%
higher than that of the CDD and LSE algorithms. In order
to present the complete picture we must also address the
computational complexity cost of this performance advan-
tage. Table 3 details the computational complexity of the
algorithms compared above in terms of their CMs and CAs
per grid search point. For LSE, as no grid search is used,
the overall computational complexity is included. Table 3 also
includes the spectral efficiency for the parameters of Fig. 10

In the following discussion, we compare the computational
complexity of the different algorithms via their order of CMs,
as multiplications dominate the computational complexity.
Using the parameters for which the plots in Fig. 10 were
generated, for evaluating the CM computational complexity
via the expressions in Table 3, we obtain that the CB-SFS
algorithm has a CM complexity per grid search point on the
order ofO

(
1.440·103 ·M

)
, and the CM complexity of theML

algorithm and of the CDD algorithm per grid search point is
on the order of O

(
16.384 · 103 ·M

)
and O

(
0.416 · 103 ·M

)
,

respectively. As the LSE algorithm does not employ a grid
search, then for maintaining fairness of comparison we nor-
malize its total CM complexity expression from Table 3 by
the size of the grid used in the numerical evaluations, which
is Nseg = 28. This results in a normalized CM complexity
for the LSE on the order of O

(
2.112 · 103/256 · M

)
=

O
(
0.00825 · 103 · M

)
. It follows that the computational

complexity of the new CB-SFS algorithm is lower than that
of the ML algorithm but somewhat higher than that of the
CDD and the LSE algorithms, yet, similarly to ML, LSE and
CDD, the complexity of CB-SFS is linear in the length of the
sequence, M . At the same time, CB-SFS offers much higher
spectral efficiency for the same performance as well as high
robustness to channel CIR, due to blindness of the scheme,
as well as to STO synchronization errors.
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TABLE 3. Computational complexity of the estimation schemes (per grid search point).

In terms of the required a-priori knowledge, the proposed
CB-SFS algorithm requires only the knowledge of the cycle
frequency threshold parameter αNT for estimating the cycle
frequencies. This parameter directly follows from the value
of Nsym, which is a system parameter. The ML algorithm
in [8, Algorithm 1] requires knowledge of the predefined
pilot sequence. Similarly, the LSE algorithm of [7] requires
knowledge of the dedicated continual pilot symbols, and the
CDD algorithm of [5] requires knowledge of the suitable
cyclic delay and predefined pilot symbols, which are used
for sampling frequency synchronization. As both LSE and
CDD use the channel coefficients in the computation of
the estimates, then, for time-varying channels, it should be
noted that the channel has to be estimated using a relatively
small number of observations. This will necessarily lead
to unreliable estimates, which, in turn, will further degrade
the performance of these schemes compared to their perfor-
mance depicted in the simulations using the exact channel
coefficients.

VII. CONCLUSIONS
In this paper, a computationally and spectrally efficient blind
algorithm for sampling frequency synchronization is pro-
posed. The algorithm first estimates the cycle frequencies
of the DT received signal and then determines the sampling
frequency offset as the offset required to align the cycle fre-
quencies of the DT received signal with those of the DT trans-
mitted signal, which are a-priori known at the receiver. To the
best of our knowledge, this is the first instance of an SFO
estimation algorithm based on the DT received signal which
does not require knowledge of the channel and does not use
pilots or non-linearities. The numerical simulations show that
the proposed CB-SFS algorithm yields excellent estimation
performance for a wide range of sampling frequency off-
sets, and exhibits robustness to channel multipath. Moreover,
the analysis shows that the proposed algorithm is computa-
tionally feasible when compared with the existing estimators.

APPENDIX A
CYCLOSTATIONARITY OF R(t )
Using the statistics of Dm,k in (10) and the expressions for
R(t) in (14), the AF of R(t) can be derived as (35), as shown
at the top of the next page. Next, from (10) it follows that
E
{
(Dm,k )2

}
= 0, hence the expression for RR(t, τ ) in (35)

specializes to (36), as shown at the top of the next page.
Letting m = (m − 1), then, as m varies from −∞ to ∞,

it follows that m varies from −∞ to ∞ as well. Hence,
the expression for RR(t + Tsym, τ ) can be obtained from
Eqn. (36) as in Eqn. (37), as shown at the top of the next
page. It follows from the Eqns. (36) and (37) thatRR(t, τ ) =
RR(t + Tsym, τ ). Hence, combined with (18) it follows that
R(t) is a WSCS process.

APPENDIX B
COMPUTATIONAL COMPLEXITY OF
THE CB-SFS ALGORITHM
As discussed earlier in the Sec. V, the optimal value of the lag
parameter Nlag, which guarantees that the cycle frequencies
are unambiguously obtained from the autocorrelated CAF,
is equal to Nseg. The computational complexity of the CB-
SFS algorithm follows from the first three steps. This com-
plexity is derived in the following.

Step 1 (Computing the segmented CAF for the entire
computation): The segmented CAF of YDT[n] in (27) is
expressed as:

Rα
YDT [n,1]

Nseg
=

1
Nseg

n+Nseg−1∑
k=n

YDT[k]·Y ∗DT[k −1] · e−j2παk

Note that YDT[k] is obtained for 0 ≤ k ≤ Nc− 1. Now, when
n in (27) equals n = Nseg we have:

Rα
YDT [Nseg,1]

Nseg
=

1
Nseg

2Nseg−1∑
k=Nseg

YDT[k]·Y ∗DT[k−1]·e−j2παk

where the number of CAs is Nseg−1 and the number of CMs
is 2Nseg.
For evaluating the total number of CAs, note that the

remaining values of n vary from Nseg+ 1 upto Nc−Nseg, see
(28), where for each index n,Rα

YDT
[n,1]

Nseg
can be obtained

fromRα
YDT

[n− 1,1]
Nseg

with one addition (of YDT[n+Nseg−

1] · Y ∗DT[n + Nseg − 1 − 1] · e−j2πα(n+Nseg−1)) and one
subtraction (of YDT[n−1] ·Y ∗DT[n−1−1] ·e−j2πα(n−1)). The
total number of corresponding CAs is thus 2

(
(Nc − Nseg) −

(Nseg + 1) + 1
)
= 2(Nc − 2Nseg). Adding the number of

CAs for the initial computation of Rα
YDT

[Nseg,1]
Nseg

, which
is Nseg − 1, it follows that the total number of CAs is 2(Nc −

2Nseg)+ (Nseg−1) = 2Nc−3Nseg−1. Using Nseg resolution
points for α in the range (0, αNT ] and accounting for the
|N1| lag values with non-zero correlation, we obtain that the
total number of CAs for the computation of all the values
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RR(t, τ ) , E
{
R(t)R∗(t − τ )

}
=

1
4 Tsc

∞∑
m=−∞

Nsc−1∑
k=0

[(
σ 2
De

j2π
(
1f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp(t − λ− mTsym)dλ

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃

·p(t − τ − λ̃− mTsym)d λ̃
)
+

(
E
{
(Dm,k )2

}
ej4π fTxtej2φTxe−j2π

(
6f+

k
Tsc

)
τ ej4π

k
Tsc

(t−mTsym)

·

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp(t − λ− mTsym)dλ

∫
∞

λ̃=0
h(λ̃)e−j2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)
+

(
E
{
(D∗m,k )

2}e−j4π fTxte−j2φTxej2π(1f+
k
Tsc

)
τ e−j4π

k
Tsc

(t−mTsym)
∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λp(t − λ− mTsym)dλ

·

∫
∞

λ̃=0
h(λ̃)e−j2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)
+

(
σ 2
De
−j2π

(
6f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)ej2π

(
fTx+ k

Tsc

)
λ

·p(t − λ− mTsym)dλ
∫
∞

λ̃=0
h(λ̃)e−j2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)]
+RW (τ ) (35)

RR(t, τ ) =
1

4 Tsc

∞∑
m=−∞

Nsc−1∑
k=0

[(
σ 2
D e

j2π
(
1f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λ p(t − λ− mTsym

)
dλ

·

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)
+

(
σ 2
D e
−j2π

(
6f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)ej2π

(
fTx+ k

Tsc

)
λ

·p(t − λ− mTsym)dλ
∫
∞

λ̃=0
h(λ̃)e−j2π

(
fTx+ k

Tsc

)
λ̃ p(t − τ − λ̃− mTsym)d λ̃

)]
+RW (τ ) (36)

RR(t + Tsym, τ ) =
1

4 Tsc

∞∑
m=−∞

Nsc−1∑
k=0

[(
σ 2
D e

j2π
(
1f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)e−j2π

(
fTx+ k

Tsc

)
λ p(t − λ− mTsym)dλ

·

∫
∞

λ̃=0
h(λ̃)ej2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)
+

(
σ 2
D e
−j2π

(
6f+

k
Tsc

)
τ

∫
∞

λ=0
h(λ)ej2π

(
fTx+ k

Tsc

)
λ

·p(t − λ− mTsym)dλ
∫
∞

λ̃=0
h(λ̃)e−j2π

(
fTx+ k

Tsc

)
λ̃p(t − τ − λ̃− mTsym)d λ̃

)]
+RW (τ ) (37)

of the segmented CAF used in the estimation of the cycle
frequencies is (2Nc − 3Nseg − 1)|N1|Nseg.

For evaluating the total number of CMs, again note that
beyond k = Nseg, we have that the value of k varies
from Nseg + 1 up to Nc − Nseg (see (28)), where each new
value is associated with 2 multiplications. Therefore, the total
number of CMs beyond the first evaluation (corresponding
to k = Nseg) is 2

(
(Nc − Nseg) − (Nseg + 1) + 1

)
=

2(Nc − 2Nseg). Adding the 2Nseg multiplications from the
initial calculation results in a total number of CMs of 2(Nc −

2Nseg) + 2Nseg = 2(Nc − Nseg). Accounting for the Nseg
resolution points for α and for the |N1| lag values with non-
zero correlation, it follows that the total number of CMs for
evaluating all the required values of the segmented CAF is
2(Nc − Nseg)|N1|Nseg.
Step 2 (Computing the autocorrelated CAF for the entire

computation): Using (28), the autocorrelated CAF (with
Nlag = Nseg) is evaluated as:

RYDT [α,1;Nseg] =
1
Nc

Nc−Nseg∑
n=Nseg

Rα
YDT [n,1]

Nseg

·

(
Rα
YDT [n− Nseg,1]

Nseg

)∗

It is observed that the total number of CAs required for
evaluating all values of the autocorrelated CAF required for
cycle frequencies estimation is (Nc−2Nseg) |N1|Nseg and the
total number of CMs is (Nc − 2Nseg + 1) |N1|Nseg.
Step 3 (Evaluating the cost function): The cost function is

presented in Eqn. (29) as:

CYDT (α) =
∑
1∈N1

RYDT [α,1;Nseg].

The total number of CAs for evaluating the cost function at
all resolution points is thus (|N1| − 1)Nseg.
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