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ABSTRACT Network congestion diffusion has become the most stubborn disease and scourge of networks.
With the help of widely used congestion distribution information, making full use of network capacity
dynamically is a feasible and hopeful way to alleviate network congestion diffusion. Existing studies
on network congestion diffusion considering congestion distribution information mainly focus on road
networks and describe the distribution information of congestion areas with statistical parameters but not
take dynamical congestion distribution into account. However, it is difficult to quantify dynamical congestion
distribution as it has multiple influencing factors and complex dynamical coupling relationships, and thus
there is still a lack of common network congestion diffusion model considering dynamical congestion
distribution information. Inspired by the Langevin diffusion model in signal transduction networks, we pro-
pose a novel model for common network congestion diffusion considering the influence of dynamical
congestion distribution information based on a set of differential equations. In these equations, we quantify
the crosstalk influence of dynamical distribution information by a parameter with reference to the routing
optimization method in the ant colony algorithm. And, then firstly the complex dynamical coupling network
congestion diffusion under the influence of congestion distribution information is analyzed and simulated in a
measurable way. The simulation results prove that there are obvious alleviated effects on network congestion
diffusion with proper information influence weights, which is shown to be a bathtub curve relationship. Our
model provides a simple mathematical approach to discover the relationship between network congestion
diffusion and the influence of dynamical congestion distribution information. Based on this relationship,
we can relieve network congestion by dynamically adjusting congestion distribution information influence.

INDEX TERMS Network congestion diffusion, information influence, congestion distribution, Langevin
diffusion model, ant colony algorithm, routing optimization method, signal transduction network.

I. INTRODUCTION
Network congestion diffusion, which means an excessive or
non-equal load distribution and diffusion process, is becom-
ing a common problem and always causing great economic
and social damages in many fields. For example, because
of road network congestion diffusion, more than one hour a
day is spent on commuting to and from work in American
metropolitan areas [1], and the figures are similar or even
worse in many developing countries [2], [3]. In addition to
the overall loss of time, congestion underlies many major
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economic and urban issues, such as increased gas consump-
tion, infrastructure deterioration, and CO2 emissions [4]. It is
reported that the economic loss of road congestion is about
2% of GDP, and the road congestion is also a primary air
pollution source [5], [6]. Meanwhile, the network congestion
diffusion in Internet and mobile telecommunication network
is becoming one of the top network failures [7]–[10], and
the famous disasters of electrical blackouts in Italy, US and
Canada are also due to network congestion diffusion [11],
and the blackout in USA and Canada resulted in $4 billion
loss [12].

As the ongoing rapid expansion of Internet of Things
(IoT), cyber-physical systems (CPS), etc., it is a feasible
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and hopeful way to alleviate network congestion diffusion
with the help of congestion distribution information, since
it has been proved that many other network congestion dif-
fusions are obviously influenced by information [13]–[16].
And here this congestion distribution information means the
distribution information with regard to the ratio of load to
capacity on different parts of a congestion network. Though
the interplay of capacity and load determines the level of
congestion [4], it is difficult either to enlarge capacity or to
decrease load in reality. And the red or yellow congested
road sections on Google maps are always helpful to relieve
network congestion diffusion by reminding drivers to choose
a better route, and then a worse traffic congestion diffusion
could be avoided [17]. With the help of the congestion dis-
tribution information, the network capacity can be fully uti-
lized in spatio-temporal patterns. Drivers with a Google map
will avoid the congestion road, which means that congestion
distribution information could influence routing paths and
change the load distribution and then possibly alleviate the
network congestion diffusion. Many studies have shown that
different congestion distribution information has different
influence on routing methods, and different routing methods
also have different influence on the network congestion diffu-
sion in road networks and other networks [4], [7], [18]–[23].
Tesla even declared that there would be no road congestion
if all cars were self-driving because of the perfect use of
information [24].

However, some researchers believe that perhaps network
congestion diffusion would be worse when users with the
congestion distribution information selfishly and unwisely
choose another longer way, which will cause more capacity
occupancy and intensify congestion diffusion. This means
that the congestion distribution information will not alleviate
network congestion diffusion absolutely due to various influ-
encing factors and complex relationships [25]. No conclusion
can be made that congestion distribution information from
Google or Baidu maps has a direct positive influence on
network congestion diffusion because there are no reliable
evidences [26].

Therefore, it is necessary to build a network congestion
diffusion model considering the influence of congestion
distribution information to analyze the network conges-
tion diffusion under the condition of congestion distribution
information influence.

Existing network congestion diffusion models considering
the influence of congestion distribution information mainly
focus on road networks. For example, based on cellular
automaton models, network congestion diffusion consider-
ing city central business congestion district distribution has
been simulated by giving an additional travel time weight
to describe the congestion district [27]. However the conges-
tion distribution influence expressed by a unified and fixed
weight is not suitable for distribution of dynamical vary-
ing congestion. Besides, using advanced traveler information
systems (ATIS) and Bureau of Public Roads (BPR) function
to make travel routing decisions and calculate travel time,

Zhong et al. [28] proposed a reliability-based congestion
model, which can be used to analyze the network congestion
diffusion. Similarly, Wang et al. [29] analyzed the network
congestion diffusion by modified BPR function. Jia et al.
[30] used available traffic big data and an autoregressive
integrated moving average model to predict a reliable con-
gestion time of urban transportation. But these models are
unsuitable for common networks because of their special
characters as they pay too much attention to the travel time
on road, restricting to road edges and unsuitable for nodes.
But in the common network, such as communication net-
work, the congestion happens always on nodes in stead of on
edges.

In common networks, network congestion diffusion mod-
els considering congestion related information can be divided
into two main types according to whether overload nodes or
edges will be removed from networks. The first type focuses
mainly on unrecoverable physical node or edge failures and
neglects the situations of recoverable performance degrada-
tion, such as the widely known cascading models, includ-
ing capacity-load models [31], [32], the binary influence
models [11], [33], and stochastic flow network models [34].
In power grid networks and some other networks, the nodes
or edges are indeed removed because the damaged nodes or
edges cannot be recovered and used again. In these networks,
the information influence is always considered as a control
signal and taken as a node and then interdependent networks
appear [11], [32]–[36]. However, in most networks, such as,
road networks or Internet, congested nodes or edges should
not be removed because they will soon recover their perfor-
mance with less congestion, and then performance degrada-
tion models appear. Zheng et al. [37] proposed a congestion
diffusion model, which is also a set of differential equations
to describe the flow interactions between a node and its neigh-
bors, but the node load distribution is considered completely
equally, and so the routing choice influenced by congestion
distribution information was not taken into consideration.
Serdar et al. [4] proposed that routing choices also had much
influence on congestion diffusion, so they examined con-
gestion relief contrasting with a centralized routing scheme
with varying levels of awareness of social good, based on the
assumption that users are partially altruistic or spiteful [38].
The awareness of social good could be considered as infor-
mation, but is different from our congestion distribution infor-
mation. Crucitti et al. [39] presented a cascading congestion
diffusion model based on the dynamical redistribution of the
flow on the network and found that there is a certain node
breakdown influence on the efficiency of entire system. These
models have given some close methods to describe network
congestion diffusion influenced by information, but the con-
gestion distribution information and its influence on routing
paths and then on the relief of network congestion is out of
consideration. There is still a lack of a common network con-
gestion diffusion model to simultaneously describe dynamic
recoverable performance degradation congestion diffusion
under the influence of congestion distribution information.
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The main contributions of this work include: (1) A novel
common network congestion diffusion model considering the
influence of dynamical congestion distribution information
is proposed, which is inspired by the Langevin diffusion
model applied for biomolecule concentration diffusion under
information influence in signal transduction networks; (2)
The influence of complex dynamical congestion distribution
information on congestion diffusion is described by ana-
lyzing the routing optimization method in the ant colony
algorithm.

This paper is mainly organized as follows: In Section II,
the related work of considering biomolecule concentration
diffusion under the influence of crosstalk information is
firstly discussed. In Section III, we innovate and transform
the related model by employing the basic idea of the rout-
ing optimization method in the ant colony algorithm to fit
a common network diffusion and then propose our novel
congestion diffusion model. In Section IV, the simulation and
discussion are carried out. The simulation results show that
there are different alleviation effects on network congestion
diffusion under different information influence factors, which
are consistent with actual situations.

II. RELATED WORK
The mechanism of network congestion diffusion under the
influence of congestion distribution information, is similar
to the mechanism of proteins concentration diffusion under
signal crosstalk regulations in signal transduction networks.
Information transmission in communication network is real-
ized by changing the stage of carriers at different nodes,
and the stage is expressed by an analog or digital value.
Correspondingly, signal transmission in signal transduction
networks is also realized by changing the concentration of
biomolecules, e.g., Ryan et al. provided a direct math func-
tion to express the concentration of Ca2+ varying with the
light signal in biological systems [40], and the signal trans-
duction is always realized by the concentration variation
of biomolecules in signal transduction networks [41], [42].
If we take the concentration of a biomolecule as congestion
of a node, then network congestion diffusion under the influ-
ence of congestion distribution among nodes can be taken
as concentration variation under crosstalk influence among
biomolecules. Both of them are dynamically varying under
crosstalk coupling influence between a physical network
layer and a logical network layer. After carefully studying
the diffusion model considering crosstalk pathways in signal
transduction networks which has been proposed by Ammar
et al. [43], we propose a novel network congestion diffusion
model considering the influence of congestion distribution
information.

The concentration variation under the crosstalk influence
among biomolecules in signal transduction networks was
expressed with the Langevin diffusion model [44]. There are
crosstalk pathways among different nodes in signal trans-
duction networks. As illustrated in Fig.1, Tareen et al. [43]
proved that the concentration of proteins was changed by the

FIGURE 1. Direct input-output and crosstalk channels in signal
transduction networks.

TABLE 1. Parameter denotations in the Langevin diffusion model.

direct input-output and crosstalk channels in signal transduc-
tion networks. In each channel, the input represents the con-
centration of inactivated proteins, and the output represents
the concentration of proteins activated by its input or other
inputs.

In order to model the dynamic behavior of a well-stirred
mixture of molecular species under the influence of concen-
tration information, Tareen et al. [43] employed the Langevin
diffusion model, which was expressed in (1) as follows:

dJ∗i (t)

dt
= Ai(t)+ Bi(t)ξi(t) (1)

The J∗i (t) describes the concentration of activated biomolecule
i at time t; Ai(t) and Bi(t) are the deterministic and stochastic
part of the Langevin diffusion model at time t respectively,
which are defined as:

Ai(t) =
∑
j

k(j,i)(t)J∗j (t)Ji(t)− λiJ
∗
i (t)

Bi(t) = [(
∑
j

k(j,i)(t)J∗j (t)Ji(t)+ λiJ
∗
i (t))/V (t)]

1
2 (2)

and the denotations of parameters in (2) are explained
in Table 1.

This classical model provides the dynamically varying
concentration influenced by other concentration information,
which also is the similar problem we are trying to solve.

III. INFORMATION INFLUENCING NETWORK
CONGESTION DIFFUSION MODEL AFTER
ADAPTIVE INNOVATIONS
Though the Langevin diffusion model discussed in Section II
can provide a frame structure for network congestion diffu-
sion model considering the influence of dynamical conges-
tion distribution information, there are still many differences
between signal transduction networks and common networks.
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TABLE 2. Denotation transformations of corresponding parameters.

Therefore, it is necessary to innovate and transform, and even
redefine the parameter denotations in the Langevin diffusion
model to fit a common network congestion diffusion and
some parameters need to be completely redefined. And these
works are also our main innovations.

A. TRANSFORMATION OF PARAMETER DENOTATION
IN LANGEVIN DIFFUSION MODEL
According to the parameter denotations in Langevin diffusion
model and similar meanings in a common network con-
gestion diffusion, the transformed denotations are listed in
Table 2.

Here, congestion distribution information is the differ-
ent proportion of load to capacity on every node, which is
expressed by J∗i (t) in Table 2. The sum of the J∗i (t) and Ji(t)
equals 1.

B. DENOTATION INNOVATION FOR CROSSTALK
INFLUENCE PARAMETER
After the above transformations in Table 2, every parame-
ter has a clear corresponding meaning except the crosstalk
parameter k(i,j)(t). Thus it is necessary to redefine a proper
denotation of the crosstalk influencing parameter between
origin node and destination node under dynamical congestion
distribution information influence. This parameter represents
the flow on the edges between connected nodes influenced
by node congestion information. The routing optimization
selection probability considering the mutual information in
the hybrid ant colony algorithm provided a referential rea-
sonable equation to deal with the similar problem [45]. The
routing optimization selection probability is expressed in (3)
as follows:

p(i,j)(t) =
[τ(i,j)(t)]α[ 1

d(i,j)
]β [MI(i,j)]γ∑

s∈allowedSET
[τ(i,s)(t)]α[ 1

d(i,s)
]β [MI(i,s)]γ

(3)

where τ(i,j)(t) is the pheromone, a kind of chemical factor
excreted by ants for others to follow the same way; d(i,j) is
the distance of the path; MI(i,j) is the mutual information
which also helps to choose a better way. And this equation

is telling us a common path selection probability rule,
in which the relationship between path selection probability
and the positive or negative influencing factors is described
clearly.

Inspired by routing optimization selection probability con-
sidering the mutual information in the hybrid ant colony
algorithm, we propose a crosstalk parameter k(i,j)(t), which
can be expressed in (4).

k(i,j)(t) = p(i,j)(t) =
(kj)α( 1

J∗j (t)
)β (J∗i (t))

γ∑
i∈DC

(kj)α( 1
J∗j (t)

)β (J∗i (t))
γ

(4)

where k(i,j)(t) is given by p(i,j)(t), whichmeans the probability
of load transforming from node i to node j at time t , kj is
the degree of node j. J∗i (t) and J

∗
j (t) represent the congestion

information of origin node i and destination node j at time
t respectively because the proportion of load to capacity on
nodes can be taken as its quantitative congestion information;
α, β and γ are the influencing factors of degree, destination
node and origin node, respectively.

Equation (4) provides a clear description of load trans-
forming probability, which has a positive correlation with
the degree of destination node j and current load proportion
on origin node i, and has a negative correlation with cur-
rent load proportion on destination node j. The reason why
we give such an equation is that the degree of a node is
always used to express the importance of this node in various
fields [46]–[48], and it is obvious that if the more load of
destination node, and the less empty capacity of the node to
accept the new incoming load so the probability is lower; If
the origin node has more load proportion, the transforming
probability will be increased because more load are badly
needed to be transformed. The whole equation is proposed
according to the hybrid ant colony algorithm, and the sim-
ulation results prove that it is proper and reasonable in real
situations.

C. MODEL FOR NETWORK CONGESTION DIFFUSION
INFLUENCED BY CONGESTION DISTRIBUTION
INFORMATION
After the above adaptive innovations in subsection III-A and
subsection III-B, the meanings of relative parameters have
been given. Then a novel model for network congestion
diffusion influenced by dynamical congestion distribution
information is obtained according to (1) and (4) and Table 2.
And the model can be expressed in (5) as follows:

dJ∗i (t)

dt
= [

∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)− λiJ
∗
i (t)]

+ [
∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)+ λiJ
∗
i (t)]

1
2 ξi(t) (5)

Since this differential Equation (5) provides the load
proportion variation rate on nodes, the computer simula-
tion formula can be obtained according to the following

VOLUME 7, 2019 102067



G. Wen et al.: Network Congestion Diffusion Model Considering Congestion Distribution Information

FIGURE 2. Network congestion diffusion process among nodes.

Equation (6).

J∗i (t + 1) = J∗i (t)+ [
∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)− λiJ
∗
i (t)]

+ [
∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)+ λiJ
∗
i (t)]

1
2 ξi(t)

= (1− λi)J∗i (t)+
∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)

+ (
∑
j∈DC

k(j,i)(t)J∗j (t)Ji(t)+ λiJ
∗
i (t))

1
2 ξi(t) (6)

where J∗i (t) denotes the load proportion of node i at time t;
Ji(t) denotes the empty capacity proportion of node i at time t;
λi is the processing ability of node i, which means the percent
of the current load can be transformed away. DC means the
set of direct connected nodes in the network. According to (4),
k(i,j)(t) denotes the crosstalk strength at which the load is
transmitted from node i to node j, and this crosstalk parameter
k(i,j)(t) can be expressed in (7).

k(i,j)(t) =
(kj)α( 1

J∗j (t)
)
β
(J∗i (t))

γ∑
i∈DC

(kj)α( 1
J∗j (t)

)β (J∗i (t))
γ

(7)

and the meanings of these parameters are the same as before.
Congestion distribution information is the load proportion

on different nodes. Load proportions on nodes are dynami-
cally varying and coupling with the node processing ability,
congestion distribution of nodes, network topology and etc.
A dynamical coupling process of network congestion diffu-
sion among nodes is illustrated in the following Fig.2.

Equations (6) and (7) give description of network conges-
tion diffusion among nodes on the micro level, and conges-
tion diffusion of the whole network is generally described
by Equation (8) as follows, which is the variance of the
load on all nodes and a popular congestion parameter

FIGURE 3. Flow chart of simulations.

definition [37], [49].

D(t) =

√√√√ 1
N

N∑
i=1

(J∗i (t)− J
∗(t))2 (8)

where the N represents the number of all nodes; And J∗(t)
is the mean load proportion of all nodes at time t . Then D(t)
can represent the network congestion at time t .

IV. SIMULATIONS AND DISCUSSIONS
The proposed model in subsection III-C should be tested to
prove its reasonableness and validity. In this section, net-
work congestion diffusion under the influence of congestion
information is simulated in a certain network. Here are the
simulation steps. As shown in Fig.3, the simulation flow is
provided as follows:

Step 1:Initialization
First, a network should be provided. Here a BA (Barabasi-

Albert) network and an ER (Erdos-Renyi) network with 200
nodes and 5800 edges are produced randomly, and thus N =
200 andM = 5800. The load congestion proportions of nodes
are also given randomly with the normal distribution ranged
from 0 to 1, and a node with load congestion proportion
1 means a congested node with no capacity to accept any
extra load from others and vice versa. In the simulation,
the relative parameters λ, α, β and γ respect the processing
ability, node degree influencing factor, destination node con-
gestion influencing factor, origin node congestion influencing
factor respectively, and they should be settled at the begin-
ning according to the purpose of a certain simulation. The
node processing ability λ is assumed to be the same in our
simulation.
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FIGURE 4. Congestion diffusion with different information influence factors in BA network and ER network.

Step 2: To calculate crosstalk parameter k(j,i)(t)
With the given parameters in Step1 and Equation (7),

the crosstalk parameter k(j,i)(t) is calculated for Equation (6).
The parameter k(j,i)(t) needs to be calculated circularly and
dynamically because the load congestion is varying with
time. The k(j,i)(t) should be set to be 0 if the load of destination
node exceeds its full capacity.

Step 3: To refresh the load in the next time
The load of every node is dynamically varying because part

of the load flows out due to the processing ability, and there
are new load incomes from the directly connected nodes.
Equation (6) can be used to calculate the load in the next time.

Step 4: To calculate network congestion
The aim of the model is to consider the congestion distri-

bution information influence on the network congestion dif-
fusion. The congestion information influence can be adjusted
by β and γ , and the congestion diffusion of thewhole network
can be described by D(t) in Equation (8).

Step 5: To judge whether the congestion stabilization
Since the aim of this paper is to model network congestion

diffusion under the influence of congestion distribution infor-
mation, it is necessary to get the stable value of D(t) under
certain information influencing factors β and γ . Therefore,
we give a value e, which is the upper error limit of D(t)
between two following steps. According to Equation (9),
the simulation will stop if the D(t) is stable and within the
given upper error limit e. In our simulations, the value of e is
set to 0.0001.

|D(t + 1)− D(t)| ≤ e (9)

From the above simulation, we obtain some interesting
relationships between the network congestion diffusion and
the influence of congestion distribution information. Because
the congestion distribution information is the load congestion

FIGURE 5. Relationship between information influence factors and the
congestion diffusion.

situation on different nodes, which are expressed by a plenty
of J∗i (t), and the γ and β are the influencing factors of the
congestion distribution information. Thus, it is meaningful to
discuss the overall congestion D(t) varying with the β or γ
since the γ equals β. Results in Fig.4 and Fig.5 are obtained
with λ = 0.5, α = 0.5, and γ = β. The reason why we let
γ = β is that both γ and β belong to congestion information
influence, and the situation is similar when the parameters
vary.

As shown in the Fig.4, the network congestion diffusion
value D(t) can be stable as time goes on. Besides, the larger
the information influence factor is, the better the congestion
diffusion is, but this effect will change when the influence
factor is too large.

In the Fig.5, the information influence on the congestion
diffusion is obvious and the relationship between information
influence factor β and the congestion diffusion D(t) is clear.
A proper β will result in less congestion diffusion D(t) and
here the congestion diffusion D(t) becomes the least when
the β approaches the value of 2.5. This means that if the
influence of information is properly adjusted and then the
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FIGURE 6. Relationship between the processing ability and the
congestion diffusion.

whole network system will achieve a least congested state,
which will bring great contributions for large-scale network
systems. A reasonable phenomenon is found that the ER
network is less congested than the BA network because the
node degree distribution in the ER network is more regular
than in the BA network. And the trends of two networks
grow to be increasingly similar as the information influencing
factor β grows greater and the relative influence of degree
grows smaller. The different congestion diffusion trends at
the beginning are caused by different distributions of degrees
and their relative influencing values of information.

According to the curves in Fig.5, the influence of informa-
tion on the congestion diffusion unstrictly follows a bathtub
curve, which means that too large or small information influ-
ence will lead to serious congestion diffusion, and there is
a relatively broad range in which the information influence
makes little difference. A best value of information influence
still exists because the bathtub curve is not so strict. And
this law will helps to reach the optimal state of network con-
gestion by dynamically adjusting the influence of congestion
distribution information. For example, we can adjust the color
depth of congested roads on navigation maps, which will
change the congestion information influence and then adjust
the network congestion.

Fig.6 shows the relationship between congestion D(t) and
processing ability λ. It is reasonable that BA networks are
more congested than ER networks because the node degree
distribution in BA networks is more irregular than that in ER
networks. Besides, when the processing ability λ is larger,
the average load will be less, and then the congestion D(t)
will be relieved and less. The results in Fig.6 are obtained
with varying λ under the condition of α = 1, γ = β = 1 and
many other simulation results have been carried out and the
conclusion is similar.

In the Fig.7, the relationship between congestion D(t) and
degree influencing factor α is shown. It is reasonable that BA
networks are more congested than ER networks because the
node degree distribution in BA networks is more irregular
than that in ER networks. Besides, the degree influencing
factor α is larger, the irregularity of node degree will be

FIGURE 7. Relationship between degree influencing factors and the
congestion diffusion.

greater, and then the congestion D(t) will be increased. The
data in Fig.7 are obtained with varying α under the condition
of λ = 0.5, γ = β = 1. Many other simulation results have
been carried out and the conclusion is similar.

As mentioned above, the phenomena shown in these
figures are suitable to the actuality, and the simulation results
are reasonable. Hence, our model is a feasible mathematical
method to describe network congestion diffusion under the
influence of congestion distribution information.

V. CONCLUSION
In this paper, by analyzing the Langevin diffusion model of
biomolecule concentration in signal transduction networks
and the routing optimization method in the ant colony algo-
rithm, a novel model is proposed to describe network con-
gestion diffusion under the influence of congestion distribu-
tion information after adapting innovation. Then the dynamic
process of common network congestion diffusion under the
influence of congestion distribution information is firstly
described by a set of differential equations. Simulation results
show that network congestion diffusion under information
influence can be reasonably interpreted by our model, and
the bathtub curve law reflecting network congestion diffu-
sion under information influence appears. This model pro-
vides a novel method to study network congestion diffusion
under information influence and more valuable rules can
be obtained in future works. Besides, network congestion
diffusion under multiple influencing factors can be further
studied based on the similar method.
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