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ABSTRACT Real-time strategy (RTS) game is a kind of strategy game, in which the players compete
for resources on 2D terrain by establishing the economy, training army, and guiding them into battle in
real time. The winner prediction of the RTS games often involves studying a highly uncertain problem in
an adversarial environment. In addition, the limit of the number of samples restricts on the application
and performance of the prediction models. To obtain better winner prediction accuracy and maintain
the prediction uncertainty under an adversarial environment, this paper proposes a neural network-based
prediction method incorporated probability inference dealing with a small set of samples. This paper uses
a dataset released based on SC2LE, a reinforcement learning environment released jointly by Blizzard
Entertainment and DeepMind, and then employed the proposed neural processes model to build a winner
prediction model. To verify, this paper implemented different features types’ grouping and different game
length grouping experiments for demonstrating better adaptability to such problems. Furthermore, this paper
also implemented the SVM model experiments and compared the proposed method with the SVM model.
Finally, when making predictions on a 1000 size testing data, the results show that the proposed prediction
model achieves an accuracy of 0.811 at 200 and 0.821 at 1000 sizes of training sets, which is better than the
SVM model with small training datasets.

INDEX TERMS Neural networks, prediction, uncertainty, machine learning, neural processes, real-time

strategy game.

I. INTRODUCTION
Real-Time Strategy (RTS) is a sub-genre of strategy games,
in which players compete on a 2-D terrain, by building a
base, gathering resources, training units, and guiding them
into battle in Real-Time [14]. The RTS game’s prediction of
outcomes (Win or Defeat) is an interesting area for Artificial
Intelligence (AI) research. It is an effective environment,
to conduct experiments for complex adversarial systems in
RTS games [19], and the prediction of winners is done via
depiction as a typical, large-dimensional, non-linear, proba-
bilistic inference problem.

The main difficulty in predicting the winner arises from
the requirement to research a large number of variables,
in a wide, partially observable environment. RTS provides
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a game environment, with copious elements, for players to
compete against each other. Players are expected to carefully
adjust their strategies, based on a large number of observable
dynamic variables, such as resources, supplies, units, and
other factors, that will be referred to as features. When human
players play the game, they would always have proficient
knowledge on the contribution of each feature, which could
increase their chances of winning the game, and would adjust
their strategies accordingly [4]. However, for an Al, this
would be an intensely challenging question. There are multi-
ple complex interactions between features, that would lead to
situations where changes in outcome cannot be expressed by
linear functions. The unobservability of certain key features
increases the complexity of the problem. A lot of features
involved are completely random or unobservable, during the
preceding game-play, which may have a major impact on
a game’s outcomes. Thus, the final result of the game is
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often presented as a probability distribution, which depicts
the Win or Defeat possibility of a game player. By observing
the controllable variables, the game players can increase their
chances in incurring one of the possible outcomes. How-
ever, there is still a probability that the exact opposite could
happen.

The difficulty also arises from the fact that a player’s
strategy needs to be evaluated in an adversarial environ-
ment. Some units, in the game, have advantages against cer-
tain types of units, making certain strategies more effective
against others. If the player happens to choose a strategy
which restrains his opponent, he will have a higher proba-
bility of winning the game. Therefore, the observation of a
single player’s features is insufficient in making an accurate
prediction for the game’s outcome. Furthermore, in specific
maps, certain strategies could be more effective than others,
driving players to make different choices when facing differ-
ent opponents and scenarios. All these components increase
the difficulty of inference of game outcomes, and could cause
the probability of the outcome of the game to become more
uncontrollable.

According to the work carried out in this paper, we have
considered that the key variables affecting the competition
in the game are random and unpredictable. We have also
made assumptions that there is a series of unobservable latent
variables, which play a crucial role in the game’s competition.
We are unable to observe these latent variables directly, but
can establish the relationship between observable variables
and latent variables via a certain type of established model.
Moreover, we have considered that the model needs to work
in a Bayesian framework, to cope with the uncertainty of
latent variables. Thus, the result of the evaluation needs to
be a distribution function, rather than a specific value, for
a situation where the given number of observations is lim-
ited. Many models can be used to establish the relationship
between observable variables and implicit variables. For this
paper, we chose a newly presented, neural network called
Neural Processes (NPs) [6], [7], to cope with the limitations,
and uncertainty issues. The Neural Processes, which combine
the advantages of both the Neural Networks and the Gaussian
process, can be used to analyze the uncertainty problem for
smaller samples. As indicated in the following sections, this
model can incorporate various variables of complex adversar-
ial systems, and assist in providing a more convenient method
for solving the problems of outcome predictions.

In order to achieve the above mentioned objective, the pur-
pose of this paper is threefold: (i) to offer a novel approach for
prediction in an RTS game, like StarCraft 11, (ii) to apply the
Neural Processes approach for analyzing a larger dimension
of features in the game, from a publicly available dataset,
and (iii) to discuss the potential benefits of Neural Processes
approach towards the game’s outcome prediction problems,
by comparing several different models.

The structure of this paper can be divided as follows:
Section 2 introduces the background needed for research,
and presents certain models related to the subject’s topics.
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FIGURE 1. A screenshot of a StarCraft Il match of DeepMind'’s Al, called
Alphastar, which use Protoss (one of the three optional races) to beat
Team Liquid’s pro player MaNa on Dec 19, 2018.

Section 3 improves the NPs model and training process.
Section 4 addresses the case studies, the dataset, the network
structure, and the experimental design. Section 5 captures the
results of experimentation, and provides observations, based
on the results. Section 6 provides the results, and discusses the
performance of the proposed approach. Finally, Section 7 fur-
nishes a conclusion for the entire study.

Il. RELATED WORKS

A. STARCRAFT WITH LARGE-DIMENSIONAL FEATURES
After AlphaGo successfully beat the top human Go-player,
in 2016, DeepMind announced that StarCraft would be
its next challenge. StarCraft 11 has many characteristics,
that are similar to complex adversarial systems, which
includes partial observable information, adversarial uncer-
tainty, decision-making in a dynamic environment, and a
huge state-space — everything that makes it the perfect case
study for an AI problem. Recently, DeepMind’s program,
AlphaStar, was able to defeat one of the professional Star-
Craft 11 players, with a score of 5-0, inspiring more research
into Al for the RTS games.

A lot of case studies on Al, like the case of Star-
Craft, have been conducted during the past ten years.
These works include the opening (first strategy) of oppo-
nents’ prediction, automatic strategy generation, unit nav-
igation, multiple units’ cooperation, build order opti-
mization, etc. The methods utilized include Bayesian
model, Unsupervised Machine Learning, Behavioral Tree,
Genetic-algorithm programming, and Case-based Reasoning
(CBR) [2], [3], [5], [13], [15], [16], [21]-[23], [27].

The usage of large-dimensional features of RTS games, for
prediction of the concerned issues in decision making, has
become an active area of research. Usually, the dimension
of features necessitates reduction, to make the predictions
stable. The features can be separated into different levels for
studies [14], such as the choice of opening strategy at a strate-
gic level [20], or the timing involved in unlocking new tech-
nology, at the tactical level, or the information regarding the
distance between units, in small-scale battles, at the reactive
control level [17]. Weber and Mateas [26] focus on the timing
aspects of a player’s strategic decisions. They recognize the
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opponent’s strategy through feature-vectors, encoded at the
time of the first production of units or buildings. Erickson and
Buro [4] proposed a model using logistic regression, to eval-
uate the RTS game state, which could predict the winner for
a given game’s state, by reducing the estimation error of ran-
dom variables, which in turn was done by establishing control
over the variables. They divided the game’s features into
subsets of Economic, Military, Map Coverage, Micro Skill
and Macro Skill, within different time intervals of the game-
play. Alvarez-Caballero [1] made use of 28 features to predict
the winner, at a high accuracy level, without completion of the
entire match.

B. DEALING WITH UNCERTAINTY USING A LATENT
VARIABLE MODEL

Latent variable models [9]-[12], [29] offer a unified mod-
eling approach for high-dimensional and uncertainty prob-
lems. It assumes that the randomness of the observed dataset
D (sampled from a high-dimensional space R?) is deter-
mined by a latent variable z, in a low-dimensional space
R™. Usually, the distribution g(z) can be inferred by an
observed dataset, through a statistical model, that connects
the latent (unobserved) variables to observed variables [18].
Given the structure of the mapping model, the model param-
eters are calculated by maximizing the likelihood probability
of observation data.

There are two ways to map the relationship between the
observed data and latent variables, via the latent variable
model — linear or nonlinear. A typical linear Latent vari-
able model for Probabilistic Principal Component Analy-
sis (PCA) was proposed by Tipping and Bishop [24], and
its nonlinear form is the Gaussian Process Latent Variable
Model (GPLVM), proposed by Lawrence [9]. In the field
of machine learning, the variational autoencoder (VAE) [8]
utilized latent variables for learning, and made remarkable
progress in recent years. VAE can flexibly train nonlinear
functions using neural networks, and is more proficient when
compared to GPLVM, in its implementation efficiency.

C. PREDICTION USING NEURAL PROCESSES

By employing the observable features and unobservable
implicit variables z, we can ascertain an approach to estab-
lish the relationship between the two. The Neural Network
has a natural advantage in establishing a nonlinear relation
mapping. It has higher computational efficiency, and a better
learning effect, when compared with other nonlinear models.
Since we require the evaluation of the game’s competition in
a Bayesian framework, we need a probabilistic approach to
modeling the problem.

The Neural Processes model is a learning method,
to represent distributions over functions, based on neural
networks [6], [7], which can provide the nonlinear func-
tional relationship between variables. NPs model captures
the global uncertainty of a stochastic processes F : X —
Y via a global latent variable z, which is represented by
a parameterized probability distribution p(z). For observed
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data pairs (x;, y;) with x; € X,y; € ), it learns the condi-
tional distribution p(z|x;, y;), and predicts y* by querying the
model with different xi* values and sampled z from p(z|x;, ;).
Since the latent variable z is a random variable, the predicted
y;“ is not a fixed value, but a sample from the distribution
p(yF|x}, z). NPs model can learn a distribution over a family
of functions, which is very similar to the idea of the Gaussian
process, and hence, is termed the Neural Process.

The Neural processes model is a black-box model, imply-
ing that it is suitable for building an effective prediction
model, when the model structure between the observation
variables and prediction results is unclear. When compared
with the Bayesian Network model used to predict the out-
comes of isolated battles [19], the Neural Process model is
more direct and efficient in solving the analysis and pre-
diction problems of complex adversarial systems, in a wide,
partially observable environment.

Ill. FRAMEWORK: LATENT VARIABLE MODEL AND
NEURAL PROCESSES MODEL

This section describes the model and analysis process used
for the prediction of the outcome of the game. The RTS
game outcomes prediction are required to solve the following
problems: (i) how to determine the key variables that affect
the winning or losing trend during the game, competing from
a large dimension of observed variables, (ii) how to introduce
the uncertainty of game competition into the model, including
the scene complexity and the observable part of the opponent
information, and (iii) how to solve the probabilistic inference
problem of small samples.

A. A LATENT VARIABLES MODEL WITH UNCERTAINTY
Consider a set of match data, M = {my, ..., m,} extracted
from a series of game replays. The match involves two players
and has an end of two possible outcomes, i.e. one player or
the other wins. Each m; contains a group of explicit features
x; labeled with a game outcome y;. Our goal is to build a
model that can predict the outcome y; with an input of x;.
We assume that there is a random latent variable z that can
capture the uncertainty of the prediction. If the dataset M is
obtained under a group of similar conditions (e.g., the same
match-up [20], same map or other conditions), it could be
sure that the entire dataset M will share a global distribution
P(z), representing the uncertainty of the whole dataset.
Since z is unobservable, the only thing we can do is to
estimate the posterior distribution P(z|x;, y;) of z through x;
and y;. Sometimes, the explicit features observed may not
be enough to dig out all the latent variables. In this case,
we can make an attempt by introducing additional observable
variables x, in order to figure out the latent variables as much
as possible, so that we can decrease the uncertainty to a con-
siderably more acceptable range. Fig. 2 shows the schematic
diagram of the proposed model. Since the distribution of z
implies the random variables from the observed features x;
to the game outcomes y;, the outcomes prediction y? can
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FIGURE 2. An overview of the proposed model. The training and prediction of the model use the same latent

variable z to presents the uncertainty of game outcomes.

be modeled by y;" = g(xj, 7) using some fixed, learnable
functions [7].

Some latent variables of z represent the complex inter-
action between in-game resources. Every player should uti-
lize the majority of the resources they possess during the
game-play (economy, units, abilities, etc.) correctly in order
to achieve the goal of winning the game. Even with the same
resources, the scheduling of resource utilization by differ-
ent players will lead to completely different outcomes. The
resource utilization mode usually causes a non-linear impact
on game outcomes, then it requires a nonlinear model to
analyze the relationship between them. Other latent variables
of z represent a large number of unknown variables that have
yet to be observed but could directly be related to game
competition, such as the opponent’s unit combination and
utilization mode. These variables cannot be fully observed but
can be inferred by evaluating the representations in the game.

In the model above, the predicted output y* is defined as a
continuous value between [0, 1] instead of the discrete values
0 or 1. In this way, based on the theory of neural network,
the deviation between the predicted game outcomes y* and
the actual outcomes y can be regarded as the optimization
target required to train the network.

B. A VARIATIONAL INFERENCE METHOD

The vector z in Fig. 2 is sampled from a condition distribution
of P(z|x, y), which is difficult to calculate directly. Since the
distribution is parameterized by a neural network, it could be
solved by a variational inference method with the NPs model,
just like VAE [8]. Specifically, it uses a simple distribution
0O(z|x, y) approximately approaching P(z|x, y), and describes
the deviation between them using KL-divergence:

KL [Q(z]x, I|P(z]x, y)]
= Eo(ix,y [log 0Glx, )] — Egelx.y [log PElx, »)]. (1)

The variational lower-bound (ELBO) is given by
following [7]:

n
P(2)
log P(y[x) = Egjr.y) [Z log P(yi|z. xi) + log —} :
P 0(zlx. y)

@
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Here, a special training method is introduced to the NPs
model. Given the observation set M = (x;, y;)1:n, it randomly
splits the observation set into a context set (x¢, y¢)1., and a
target set (X;, yr)m+1:» in multiple times, generating various
data to train the neural network. The learning objective is
using (x., yc) and x; to predicte y;. By this training method,
the NPs model uses Q(z|x., y.) to approximate the posterior
distribution P(z), so the ELBO is expressed as:

log P(ylxc,s, ye)

Q(Z|xc,tv yc,t) ’

3

n
> EoGiveyen Z log P(y|z, x;) + log
t=m+1

The approximated Q(z|xc, yc) and Q(z|xc,s, Y1) are assumed
subjecting to Gaussian distribution N(u, 0,) and
N(pie,r, 0¢,t), making the loss function to be solved easily.

C. MODEL STRUCTURE AND PROCESS

We refer to the network architectures proposed by [7] in
building our networks, which is structured in four compo-
nents. (1) An Encoder #, takes the input data and produces
a representation vector r; = h,(x;, y;) for each pair of match
data (x;, ;). (2) An Aggregator a summarises the encoded
inputs r; to obtain a single global representation r;, simply
using the mean function ry; = a(r;) = %Z;’:l ri. (3) An
Encoder /2, produces a vector of d; x 2 dimension containing
1(z) and o(z). (4) A Conditional decoder g takes inputs of
sampled global latent variable z as well as x; and outputs the
prediction value y;.

To understand the process of our model, the procedure of
the proposed prediction approach, which includes five steps,
is shown in Fig. 3. The detailed steps are introduced step-by-
step as follow:

1) Step 1: the entire data set is divided into a training set and
a test set with sizes of Ny and Ny .

2) Step 2: before starting the training, a group of sub-sets
S; is set up as a data pool to receive data extracted from
the training set. We firstly add a data sample of size Ng
extracted randomly to the sub-sets S;.
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FIGURE 3. An overview of the training process. Since the split of the context set and target set is random, the parameters of the NPs
network trained would be different even if the precisely same sub-set is given. Here we set up a set of neural processes to analyze the

average accuracy of prediction results.

3) Step 3: a set of networks is trained with the input data in
sub-sets S;. The training is carried out with an epoch size
of eqin. For each epoch, the S; is randomly split into a
context set and a target set with equal size, and is encoded
by the encoder %, and the aggregator a to obtain the
parameters of a global latent distribution Q(z|xc s, yc.r). To
obtain a prediction at a target x;, the model samples z from
O(z|xc.t, Ye.r) and concatenate it with x;, and map (z, x;)
through the conditional decoder g to obtain a sample from
the predictive distribution of y;. After training, record
the parameters of Q(z|x.;,yc) from each S;, used for
prediction later.

4) Step 4: the prediction process preserves the conditional
decoder g. It samples z from Q(z|xc s, Yc.r), and then con-
catenates z with x;* in the test set and map (z, x;°) through
g to a sample from the predictive distribution of y;.

5) Step 5: here we would get a group of prediction samples of
y; foreach S;, and we summarizes the prediction accuracy
results. Then, we add a new random extracted sample of
size N to the subset S;, and repeat the process starting
from step 2.

IV. CASE STUDY

In this section, the case configuration used to verify the feasi-
bility of the model described above is introduced. By using
a public dataset, we want to determine whether the model
above can establish a correlation between multi-dimensional
features and the winning rate of the game in this public
dataset, as well as how the latent variables work in predicting
the winning rate. We configure the NPs network architectures
according to the characteristics of the dataset and study the
prediction effect of different feature sets through the compar-
ison of the grouped experiments.

A. DATASET
There have been various datasets proposed by StarCraft
over the last few years. SC2LE (StarCraft 11 Learning
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Environment [25] is a reinforcement learning environment

based on the StarCraft 11 game released jointly by Blizzard

Entertainment and DeepMind. Huikai Wu and Junge Zhang

released a new dataset MSC based on SC2LE, which focuses

on macro-management in StarCraft 11 [28]. The data set

presented a series of playback eigenvector data through a

standard process for SC2LE replays.

MSC provides two sub-datasets: a Global Feature Vec-
tor dataset and a Spatial Feature Tensor dataset, only the
Global Feature Vector dataset is used in our model training.
The dataset is formatted as a (T, M) matrix F, where F[z, :]
is the feature vector for game frame ¢. Each row of F is
an M-dimensional vector, with M varying as [RACE] v.s.
[RACE)]. Features which are used in our model are as follow:
1) Reward: i.e., the game outcomes. 0: Defeat, 1: Win.

2) Cumulative Score: Contains score, idle production time,
idle worker time, total value units, total value structures,
killed value units, and killed value structures, etc.

3) Resources: Contains various resources in game-playing,
such as minerals, vespene, supply cap, supply used, idle
worker count and army count, etc.

4) Upgrades: There are two types of upgrades that improve
the functionality of player’s units in StarCraft 11.

a. Numerical Upgrades refers to those upgrades which
increase the attack and defense values of player’s units,
increasing their efficiency.

b. Qualitative Upgrades affect how units function apart
from their numerical combat effectiveness, which
might for instance improvement of a unit. For exam-
ple, Personal Cloaking enables Ghosts (a specialized
infantry unit own by Terran) to use the Cloak abil-
ity, rendering a unit invisible to enemies unless it is
revealed by detectors or effects.

MSC contains temporal information. In order to improve
the network training speed, the original data is averaged
according to the time dimension and the temporal information
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is discarded. Once the mean is obtained, it is normalized.
After normalizing the features, the data is represented in the
form of a machine learning problem.

B. FEATURES

The features are grouped into two categories: Category A
contains the Non-adversarial features, while category B con-
tains the Adversarial ones shown in Table 1.

TABLE 1. Input features grouped by two categories.

Features Remarks

Category A:

idle production time cumulative idle time of production
idle worker time cumulative idle time of workers
total value units value of units produced over entire game
collected resources

spent resources

total minerals and vespene collected
total minerals and vespene consumed

supply cap a cap on how many units can be built

upgrades percentage of time which an upgrade takes
effect over the entire game

Category B:

collection rate collection rate of minerals and vespene

killed units value units value player has killed

structures value player has killed

amount measured in supply how many units
a player owns

proportion measured in supply how many
army units within player’s total units

killed structures value
supply used

army proportion

Category A’s features provides an indication of the factors
which are strongly associated with a player’s own perfor-
mance and weakly with the opponent. These features, includ-
ing resources, upgrades and accumulated idle time represent
the performance and strategy choices on the player’s side.
Category B’s features indicate the competitive factors that
exist between opponents and players. These types of fea-
tures would change dramatically on the basis of engagement
between the sides of the two players.

Some of the cumulative scores and resource features are
included in category B because they are very adversarial; for
example, the killed units value and the killed structures value
are closely related to the combat situation of the two sides.
However, the resources collection rate would frequently fluc-
tuate as a result of the interference of the opposite side,
making it more similar to the adversarial features. So, it is
also included in category B.

C. NETWORK STRUCTURES

Fig. 4 shows the network structures with an input of both
Non-adversarial and Adversarial features. The input to the
neural network is an N x 751 consisting of an N size data
samples with 749 features. The data samples size N varies
with the progress of training. The Encoder %, is a 2-layer
neural network followed by a ReLU function. The dimension
d, of r; is predefined as same as d; of z, less than the size of
the feature set. The Aggregator a summarises the encoded
inputs r; using the mean function. The Encoder 7, is a
1-layer neural network, which outputs ©(z) by a aggregator
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and o (z) by a softplus function. The Conditional decoder g
is a 2-layer neural network followed by a Sigmoid function.
Here, we determine the dimension d, according to the input
features, as shown in Table 2.

TABLE 2. The dimension of input features and latent variable z.

Input features Feature dimension d, dimension

only category A 405 2
only category B 344 2
both category A and B 749 4

V. THE PROBABILITY DISTRIBUTION OF PREDICTION
In this section, we present the results of our approaches for
winner prediction by probabilistic inference.

As mentioned in section 3.1, the predicted output is defined
as a continuous value between [0, 1] instead of discrete val-
ues. Thus, the Neural Processes model can give multiple
predictions with a single inference by sampling the latent
variables. In this way, by mapping the predicted value to a
finite closed interval [0, 1], the probability distribution p(y*)
of the outcomes can be estimated and the data can be analysed
in a probabilistic way.

Take three samples as examples, as shown in Fig. 5. The
predicted results are presented in a statistical bar chart. The
figures (a) to (e) show the results of training for 100, 150, 200,
250, and 300 times. When the network training number is
small, the predicted results are scattered between [0,1]. With
an increase to the number of network trainings, the prediction
results gradually become concentrated and gather near a cer-
tain value. We analyze the success rate of the prediction test
set by taking the prediction result mean closer to 0 or 1 as the
criterion of prediction result. Take the figure as an example,
the red column represents the winning or losing situation of
this sample, with 0 being negative and 1 being the winner.
The bars of other colors represent the prediction results. Here,
100 samples of the hidden variable z are taken for each
prediction, so each graph shows the statistics of 100 times
of data.

The probability distribution p(y*) is a posterior distribu-
tion. When the Neural Processes make predictions, the distri-
bution of the latent variable, z about the test set is unknown.
Therefore, we cannot make predictions without prior knowl-
edge of the latent variable z. Fortunately, we can use the
network parameters obtained from the training set as the prior,
assuming that the unknown uncertainties of the samples in
the test set are similar to the training set. It works because the
chosen datasets are all replays between Terrans (one of the
three optional races in the game). By inputting z, sampled
from the standard Gaussian distribution into the trained net-
work, we can obtain the latent variables which conform to
prior knowledge.

The distribution p(z) represents the uncertain variables
in the training set, but when the number of network train-
ing increases, this uncertainty may collapse. In order to
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diagram for clarity. The last layers are followed by an output layer using the sigmoid activation function, and the output of the network is

the prediction of the game outcome.
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FIGURE 5. The prediction results in the form of histograms. There only gives three data samples to show

the probability distribution of prediction.

keep the prediction uncertainty, the NPs trains network
by randomly dividing the training set into “context set”
and ‘‘target set” to generate new data. This approach
has a potential benefit in that it is very effective when
dealing with small datasets because the training set can
be separated several times in order to generate enough
samples.

Even so, with an increase to the number of trainings,
the uncertainty will still a reduction. To maintain this uncer-
tainty, we need to determine the appropriate number of

VOLUME 7, 2019

training times. In the experiment, the posterior distribution of
the predicted results is represented by a statistical histogram.
By observing the dispersion degree of this posterior distribu-
tion, it can be decided when to stop the training. The Highest
Posterior Density (HPD) interval is often used to describe
the dispersion degree of the Posterior probability distribu-
tion. An HPD interval is the minimum interval containing
a certain proportional probability density, such as 90%HPD
or 95%HPD. Here, 90%HPD was selected as the index to
evaluate the degree of dispersion of the posterior distribution.
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TABLE 3. Prediction accuracy of the game outcomes compared NPs with SVM model.

Model  Features  Game length Training set size
20 40 60 80 100 200 300 400 500 1000
NP A total 0.494 0.510 0.511 0.531 0.560 0.591 0.600 0.602 0.606 0.626
NP B total 0.562 0.646 0.686 0.739 0.764 0.811 0.818 0.815 0.822 0.821
NP A+B total 0.509 0.526 0.549 0.570 0.591 0.690 0.722 0.733 0.737 0.740
SVM A total 0.493 0.496 0.493 0.498 0.571 0.551 0.569 0.560 0.586 0.631
SVM B total 0.496 0.498 0.598 0.616 0.634 0.627 0.639 0.635 0.643 0.661
SVM A+B total 0.505 0.498 0.502 0.568 0.581 0.612 0.638 0.662 0.672 0.682
NP A short 0.542 0.563 0.594 0.616 0.612 0.640 0.646 0.654 0.658 0.668
NP B short 0.638 0.703 0.756 0.788 0.795 0.804 0.818 0.829 0.833 0.830
NP A+B short 0.521 0.533 0.537 0.558 0.583 0.688 0.762 0.768 0.767 0.769
SVM A short 0.501 0.594 0.524 0.527 0.530 0.567 0.644 0.687 0.686 0.705
SVM B short 0.501 0.501 0.501 0.615 0.737 0.768 0.807 0.780 0.812 0.834
SVM A+B short 0.501 0.527 0.598 0.648 0.682 0.758 0.779 0.797 0.800 0.840
NP A middle 0.542 0.530 0.562 0.587 0.612 0.621 0.628 0.628 0.633 0.635
NP B middle 0.643 0.732 0.763 0.781 0.797 0.805 0.809 0.812 0.809 0.815
NP A+B middle 0.563 0.660 0.677 0.678 0.683 0.734 0.765 0.767 0.769 0.769
SVM A middle 0.517 0.515 0.605 0.590 0.660 0.686 0.675 0.692 0.696 0.711
SVM B middle 0.485 0.717 0.766 0.752 0.753 0.803 0.816 0.817 0.816 0.833
SVM A+B middle 0.534 0.638 0.722 0.732 0.726 0.765 0.787 0.793 0.805 0.824
NP A long 0.495 0.511 0.516 0.517 0.520 0.538 0.539 0.547 0.555 0.568
NP B long 0.584 0.592 0.635 0.667 0.680 0.714 0.720 0.721 0.720 0.733
NP A+B long 0.527 0.536 0.550 0.572 0.583 0.625 0.638 0.645 0.654 0.675
SVM A long 0.499 0.533 0.507 0.496 0.520 0.567 0.563 0.570 0.584 0.614
SVM B long 0.490 0.490 0.498 0.626 0.624 0.655 0.659 0.661 0.664 0.675
SVM A+B long 0.547 0.578 0.575 0.624 0.653 0.660 0.659 0.671 0.683 0.710
1.0 63
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08 60 M WJJ, “‘WH 1 L ”» ‘\h i WW
[ I | | 14 ./ i
208 o el N Sl (0 e
" W \' |
2 2 |
8 0.4 ét) 54 |‘ N
0.2 51
00 Mm‘MMM‘M’WAWWWVWWMWWWWW%WWW
0 400 800 1200 1600

2000
Training epoch

FIGURE 6. The 90%HPD curve of the first training on 20 training samples
and the second training on 40 training samples.

Fig. 6 shows the 90%HPD of the prediction results with the
increase of training epoch, and in Fig. 7 the accuracy with the
increase of training epoch is shown.

VI. EXPERIMENTAL RESULTS

In this section, we conducted two sets of experiments to study
the impacts of features types and game length on prediction
accuracy. The first set of experiments compares the accuracy
of the predictions with different input features. The second set
of experiments compares the effects of different game length
on the prediction results. The winner prediction results are
summarized in table 3.
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FIGURE 7. The accuracy curve of the first training on 20 training samples
and the second training on 40 training samples.

A. ACCURACY ACROSS THE FEATURE TYPES
Experiments were performed in three groups. Group 1 takes
only category A as inputs to train the network. Here, a total
of d. = 405 non-adversarial features is extracted from MSC
dataset. Group 2 takes only category B as inputs, which has
a total of d. = 344 non-adversarial features. Group 3 takes
both two categories features so that the input dimension of
the network reached d = d. + d,. We are interested in how
these two types of features help to capture latent variables and
make more accurately predictions about the game outcome.
Table 3 also includes a simple SVM prediction models for
comparison of prediction accuracy. In order to obtain stable
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FIGURE 9. The comparison results of prediction accuracy in different game length.
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FIGURE 10. The distribution of game length of TvT replays in MSC
dataset. The different length games would have a significant difference in
the style of game-playing, so the parameters of the prediction model will
also be different. We divided the replays into three groups according to
the game length.

results, the mean accuracy of 10 predicted results was used as
data for analysis, and the mean of the prediction accuracy on
testing data is used for comparison.

Experiments were carried out for multiple times, and the
size of training sub-sets increased by each time, from 20 to
1000. We are interested in how the training set size affected
the accuracy of the prediction results of the test set. It is quite
obvious that NPs model provides higher prediction accuracy
at the training sets size are small.

Fig. 8 shows the change of the prediction accuracy with
an increase of sub-sets size. As can be seen, the predic-
tion accuracy with features A4B increased from 0.509 for
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20 times to 0.740 for 1000 times. However, the accuracy
rate was not significantly improved after the training set size
reached about 300, which remained around 0.72. The accu-
racy of prediction results using only non-adversarial features
or adversarial features as input is also similar.

B. ACCURACY ACROSS THE GAME LENGTH

Generally, players’ strategies and tactics vary from the dif-
ferent phases in the StarCraft matches. Correspondingly,
we should use different parameters of the network to pre-
dict game results. Through grouping the replays according
to the length of replays, we can study the impact game
length has on the prediction accuracy. We divided the data
set according to the replay frame into three groups: a short-
length, a middle-length, and a long-length group, as showen
in Fig. 10. The short-length group contains the replays with
the frames smaller than 450, the middle-length group with the
frames of 450 to 650, and the long-length group the frames
larger than 650.

The sample sizes of training set and test set for grouping are
summarized in table 4. The prediction accuracy of the NPs
and SVM models for the three grouped samples is given in
Fig. 9. It can be seen that the prediction accuracy of the SVM
model for short and middle length grouping is significantly
improved compared with that of ungrouping, while the pre-
diction accuracy of NPs model is not significantly improved
after grouping. Considering that we have provided the game
length as an input feature to the two models, such results show
that the neural network structure adopted by NPs can better
learn the impact of game length on the prediction results.
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TABLE 4. The sample sizes of the training set and test set.

Game Training set Training sub-sets Test set

length size size size

total 8794 20 to 1000 1000

short 3534 20 to 1000 1000

medium 3258 20 to 1000 1000

long 3002 20 to 1000 1000
VIl. CONCLUSION AND FUTURE WORK

In this work, a probability inference method for the prediction
of game outcomes by StarCraft 11 replays was described.
The NPs neural networks model was developed to esti-
mate the winner of the game through adversarial features
and non-adversarial features. The model is able to give a
good prediction of game outcomes in the case of processing
large-dimensional features data with uncertainty under an
adversarial environment.

We compared the training dataset size requirements of the
NPs model with the SVM model. The experimental results
demonstrate that the NPs prediction accuracy is higher when
training with small datasets. Moreover, the NPs can give a
prediction accuracy rate of over 80% for data sets mixed with
different lengths of game time, which is much better than the
SVM model.

In future work, many extended researches could be devel-
oped as follows:

1y

2)

3)

Based on feature selection, the proposed prediction
method will get better results.

By replacing the mean value of features with dynamic data
containing time dimension information, we can apply the
model to predict the winner of game-playing in real-time.
With an improved classifier, a useful model could be
developed for evaluating the strategies and situations of
players. It can be used to improve the adaptability of game
Al, making it more likely to choose the right strategy.

REFERENCES

[1]

[2]

[3]

[4]

[51

A. A. Caballero, J. J. M. Guervés, P. Garcia-Sanchez, and A. F. Ares,
“Early prediction of the winner in StarCraft matches,” in Proc.
9th Int. Joint Conf. Comput. Intell., Jan. 2017, pp. 401-406.
doi: 10.5220/0006587304010406.

N. A. Barriga, M. Stanescu, and M. Buro, “Combining
strategic learning with tactical search in real-time strategy
games,” in Proc. 13th AAAl Conf. Artif. Intell. Interact. Digit.
Entertainment,  Sep. 2017, pp. 9-15. [Online]. Available:
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15814

G. Bosc, P. Tan, J.-F. Boulicaut, C. Raissi, and M. Kaytoue, “A pat-
tern mining approach to study strategy balance in RTS games,” IEEE
Trans. Comput. Intell. AI Games, vol. 9, no. 2, pp. 123-132, Jun. 2017.
doi: 10.1109/TCIAIG.2015.2511819.

G. K. S. Erickson and M. Buro, ‘“Global state evaluation in
StarCraft,” in Proc. 10th AAAI Conf. Artif. Intell. Interact. Digit.
Entertainment (AIIDE) Sep. 2014, pp. 1-7. [Online]. Available:
http://www.aaai.org/ocs/index.php/ AIIDE/AIIDE14/paper/view/8996

P. Gardia-Sanchez, A. Tonda, A. M. Mora, G. Squillero, and J. J. Merelo,
“Towards automatic StarCraft strategy generation using genetic program-
ming,” in Proc. IEEE Conf. Comput. Intell. Games (CIG), Aug./Sep. 2015,
pp. 284-291. doi: 10.1109/CI1G.2015.7317940.

101618

[6]

[7]

[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Condi-
tional neural processes,” in Proc. 35th Int. Conf. Mach. Learn., Jul. 2018,
pp- 1690-1699. [Online]. Available: http://arxiv.org/abs/1807.01613

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende,
S.M. A.Eslami, and Y. W. Teh, “Neural processes,” 2018,
arXiv:1807.01622. [Online]. Available: https://arxiv.org/abs/1807.01622
D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. 2nd Int. Conf. Learn. Representations (ICLR), Dec. 2014, pp. 1-14.
[Online]. Available: http://arxiv.org/abs/1312.6114

N. Lawrence, “Probabilistic non-linear principal component
analysis with Gaussian process latent variable models,” J. Mach.
Learn. Res., vol. 6, pp. 1783-1816, Jan. 2015. [Online]. Available:
http://jmlr.org/papers/v6/lawrence05a.html

N. D. Lawrence, “Learning for larger datasets with the Gaussian pro-
cess latent variable model,” in Proc. 11th Int. Conf. Artif. Intell.
Statist. (AISTATS), Mar. 2007, pp. 243-250. [Online]. Available:
http://jmlr.org/proceedings/papers/v2/lawrence07a.html

S. Lipovetsky, “Latent variable models and factor analysis,” Technomet-
rics, vol. 43, no. 2, p. 111, 2001. doi: 10.1198/tech.2001.s568.

S. Mohamed and B. Lakshminarayanan, ‘“Learning in implicit
generative models,” 2016, arXiv:1610.03483. [Online]. Available:
https://arxiv.org/abs/1610.03483

I.-S. Oh and K.-J. Kim, “Testing reliability of replay-based imitation
for StarCraft,” in Proc. IEEE Conf. Comput. Intell. Games (CIG),
Aug./Sep. 2015, pp. 536-537. doi: 10.1109/C1G.2015.7317899.

S. Ontaiién, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game Al research and compe-
tition in StarCraft,” IEEE Trans. Comput. Intell. AI Games. vol. 5, no. 4,
pp. 293-311, Dec. 2013. doi: 10.1109/TCIAIG.2013.2286295.

G. Robertson and I. Watson, “Building behavior trees from observations
in real-time strategy games,” in Proc. Int. Symp. Innov. Intell. Syst. Appl.
(INISTA), Sep. 2015, pp. 1-7. doi: 10.1109/INISTA.2015.7276774.

K. Shao, Y. Zhu, and D. Zhao, “Cooperative reinforcement learning for
multiple units combat in starCraft,” in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Dec. 2017, pp. 1-6. doi: 10.1109/SSCIL.2017.8280949.

K. Shao, Y. Zhu, and D. Zhao, “StarCraft micromanagement with
reinforcement learning and curriculum transfer learning,” IEEE Trans.
Emerg. Topics Comput. Intell. vol. 3, no. 1, pp. 73-84, Feb. 2019.
doi: 10.1109/TETCI.2018.2823329.

A. Skrondal and S. Rabe-Hesketh, “Latent variable modelling: A sur-
vey,” Scand. J. Statist.. vol. 34, no. 4, pp. 712-745, Dec. 2010.
doi: 10.1111/j.1467-9469.2007.00573.x.

M. Stanescu, S. P. Hernandez, G. Erickson, R. Greiner, and
M. Buro, ‘“Predicting army combat outcomes in StarCraft,”
in Proc. 9th AAAI Conf. Artif. Intell. Interact. Digit. Enter-
tainment (AIIDE), Oct. 2013, pp. 86-92. [Online]. Available:
http://www.aaai.org/ocs/index.php/ AIIDE/AIIDE13/paper/view/7381

G. Synnaeve and P. Bessiere, “A Bayesian model for opening pre-
diction in RTS games with application to StarCraft,” in Proc. IEEE
Conf. Comput. Intell. Games (CIG), Aug./Sep. 2011, pp. 281-288.
doi: 10.1109/CIG.2011.6032018.

G. Synnaeve and P. Bessiere, “A Bayesian model for plan
recognition in RTS games applied to StarCraft,” in Proc.
7th  AAAI  Conf. Artif. Intell. Interact. Digit.  Entertain-
ment (AIIDE), Oct. 2011, pp. 79-84. [Online]. Available:

http://www.aaai.org/ocs/index.php/AIIDE/AIIDE1 1/paper/view/4062

G. Synnaeve and P. Bessiere, “Multiscale Bayesian modeling for RTS
games: An application to StarCraft Al IEEE Trans. Comput. Intell.
Al Games. vol. 8, no. 4, pp. 338-350, Dec. 2016. doi: 10.1109/
TCIAIG.2015.2487743.

M. E. Taylor, N. Carboni, A. Fachantidis, I. Vlahavas, and L. A. Torrey,
“Reinforcement learning agents providing advice in complex video
games,” Connect. Sci., vol. 26, no. 1, pp. 45-63, Mar. 2014.
doi: 10.1080/09540091.2014.885279.

M. E. Tipping and C. M. Bishop, “Probabilistic principal compo-
nent analysis,” J. Roy. Stat. Soc.. vol. 61, no. 3, pp. 611-622, 1999.
doi: 10.1111/1467-9868.00196.

O. Vinyals et al., “StarCraft II: A new challenge for reinforcement
learning,” 2017, arXiv:1708.04782. [Online]. Available:
https://arxiv.org/abs/1708.04782

B. G. Weber and M. Mateas, “A data mining approach to strategy pre-
diction,” in Proc. IEEE Symp. Comput. Intell. Games (CIG), Sep. 2009,
pp. 140-147. doi: 10.1109/CIG.2009.5286483.

VOLUME 7, 2019


http://dx.doi.org/10.5220/0006587304010406
http://dx.doi.org/10.1109/TCIAIG.2015.2511819
http://dx.doi.org/10.1109/CIG.2015.7317940
http://dx.doi.org/10.1198/tech.2001.s568
http://dx.doi.org/10.1109/CIG.2015.7317899
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
http://dx.doi.org/10.1109/INISTA.2015.7276774
http://dx.doi.org/10.1109/SSCI.2017.8280949
http://dx.doi.org/10.1109/TETCI.2018.2823329
http://dx.doi.org/10.1111/j.1467-9469.2007.00573.x
http://dx.doi.org/10.1109/CIG.2011.6032018
http://dx.doi.org/10.1109/TCIAIG.2015.2487743
http://dx.doi.org/10.1109/TCIAIG.2015.2487743
http://dx.doi.org/10.1080/09540091.2014.885279
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1109/CIG.2009.5286483

M. Lin et al.: Uncertainty-Incorporated Approach to Predict the Winner in StarCraft Il Using Neural Processes

IEEE Access

[27] S. Wender and I. Watson, “Combining case-based reasoning and reinforce-
ment learning for unit navigation in real-time strategy game AL” in Proc.
22nd Int. Conf. (ICCBR), Sep. 2014, pp. 511-525. doi: 10.1007/978-3-319-
11209-1_36.

[28] H. Wu, J. Zhang, and K. Huang, “MSC: A dataset for macro-
management in StarCraft II,” 2017, arXiv:1710.03131. [Online]. Avail-
able: https://arxiv.org/abs/1710.03131

[29] C. Yoo, “The Bayesian method for causal discovery of latent-variable
models from a mixture of experimental and observational data,” Com-
put. Statist. Data Anal.. vol. 56, no. 7, pp. 2183-2205, Jul. 2012.
doi: 10.1016/j.csda.2012.01.010.

MU LIN received the B.S. degree from the Col-
lege of Mechatronics Engineering and Automa-
tion, National University of Defense Technology
(NUDT), Changsha, China, in 2006, where he is
currently pursuing the M.S. degree with the Col-
lege of Systems Engineering. His research inter-
ests include systems engineering and simulation,
machine learning, and data mining.

TAO WANG received the Ph.D. degree in soft-
ware engineering from the National University of
Defense Technology (NUDT), Changsha, China,
where he is currently an Associate Professor. His
research interests include systems engineering and
simulation, multi-agent decision making under
uncertainty, and data mining.

XIAOBO LI received the Ph.D. degree in con-
trol science and engineering from the National
University of Defense Technology (NUDT),
Changsha, China, where he is currently an Asso-
ciate Professor. His research interests include
systems engineering and simulation, multi-agent
decision making under uncertainty, and SoS engi-
neering.

VOLUME 7, 2019

JINJUN LIU received the Ph.D. degree in mil-
itary science from the Air Force Command
College, Beijing, China. He is currently an Assis-
tant Researcher with the Academy of Military Sci-
ences. His main research interests include system
engineering and system evaluation.

YANFENG WANG received the Ph.D. degree
in military science from the Rocket Force Com-
mand College, Wuhan, China. He holds a Post-
doctoral position with the National University of
Defense Technology (NUDT). His research inter-
ests include systems engineering and simulation.

YIFAN ZHU received the Ph.D. degree in sys-
tems engineering from the National Univer-
sity of Defense Technology (NUDT), Changsha,
China, where he is currently a Professor. His
research interests include systems engineering and
simulation.

WEIPING WANG received the Ph.D. degree in
systems engineering from the National Univer-
sity of Defense Technology (NUDT), Changsha,
China, where he is currently a Professor. His
research interests include systems engineering and
simulation.

101619


http://dx.doi.org/10.1007/978-3-319-11209-1_36
http://dx.doi.org/10.1007/978-3-319-11209-1_36
http://dx.doi.org/10.1016/j.csda.2012.01.010

	INTRODUCTION
	RELATED WORKS
	STARCRAFT WITH LARGE-DIMENSIONAL FEATURES
	DEALING WITH UNCERTAINTY USING A LATENT VARIABLE MODEL
	PREDICTION USING NEURAL PROCESSES

	FRAMEWORK: LATENT VARIABLE MODEL AND NEURAL PROCESSES MODEL
	A LATENT VARIABLES MODEL WITH UNCERTAINTY
	A VARIATIONAL INFERENCE METHOD
	MODEL STRUCTURE AND PROCESS

	CASE STUDY
	DATASET
	FEATURES
	NETWORK STRUCTURES

	THE PROBABILITY DISTRIBUTION OF PREDICTION
	EXPERIMENTAL RESULTS
	ACCURACY ACROSS THE FEATURE TYPES
	ACCURACY ACROSS THE GAME LENGTH

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MU LIN
	TAO WANG
	XIAOBO LI
	JINJUN LIU
	YANFENG WANG
	YIFAN ZHU
	WEIPING WANG


