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ABSTRACT This paper considers the model-free optimal consensus problem of networked Euler–
Lagrange systems without velocity measurements. By employing the position information, a novel neural
network-based velocity observer is built for each agent to estimate the unmeasurable velocity vector and
unknown system model. Based on the estimated velocity information, we propose distributed optimal
control policies depended on the solutions to the coupled Hamilton–Jacobi–Bellman (HJB) equations.
Then, a model-free policy iteration (PI) algorithm is provided to learn the coupled HJB equations online.
To implement the PI algorithm, the critic-action neural networks are built and their weights are updated based
on the gradient descent method. The uniform ultimate boundedness of the integrated observer estimation
errors, the integrated consensus errors, and the weight estimation errors for the observer-critic-action neural
networks is demonstrated by the Lyapunov technique. Finally, the numerical simulation on a directed network
with six nonlinear manipulators is presented to validate the theoretical results.

INDEX TERMS Euler-Lagrange systems, adaptive dynamic programming, consensus control, adaptive
observer.

I. INTRODUCTION
Distributed control of networked Euler-Lagrange sys-
tems (NELSs) has attracted lots of attention due to
Euler-Lagrange equations are usually utilized to describe
the dynamical behaviors of many practical physical systems,
such as robotic manipulators, power electronic systems and
actuated autonomous vehicles. Extensive results have been
reported on distributed cooperation problems of NELSs
in [1]–[6]. The study of the consensus problem for NELSs
over an ideal and fixed communication network has been
considered in [7], which was extended to communication
delays or switching networks in [3], [8]. Later, by introducing
an auxiliary system, Hu et al. investigated the swarming
behavior of NELSs with cooperation-competition interac-
tions in [4]. It has been revealed that, under a stochastic
sampling communication setting, distributed consensus for
NELSs can be achieved in [9]. Most of these works assume
that the complete state information of the system is available.
Unfortunately, this assumption is rather restrictive and not
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realistic so as to stunt the application of the existing results
to practical systems.

It is usually difficult to access velocity information in
some mechanical systems since these systems may be either
not equipped with velocity sensors or those with velocity
sensors are often contaminated by noises. Hence, how to
avoid using the velocity information in addressing the con-
sensus problem of NELSs become a crucial and challeng-
ing issue. To deal with this issue, many works on partial
state feedback control have been presented in [10]–[14]. By
adopting the damping injecting principles of passivity-based
control, a position feedback consensus control protocol for
NELSs without velocity measurement was designed in [10].
For the finite-time tracking problem, Zhao et al. [11] built
a sliding-mode observer-based distributed consensus control
policy which only depends on the the position information.

In the process of achieving consensus, it is desirable to
optimize the system performance [15]–[18]. So far, adaptive
dynamic programming (ADP) [19], [20] combined rein-
forcement learning with adaptive control is an efficient and
promising method to address optimal consensus problem
forward in time. From the perspective of game theory, ADP
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technique was employed in [21], [22] to investigate the
optimal regulation problem of differential graph games, in
which all agents can achieve optimal consensus while they
are in Nash equilibrium. Extension to deal with the unknown
system dynamics can be found in [17], [23], where off-policy
reinforcement learning approach is introduced to address the
optimal synchronization problem for model-free homoge-
neous and heterogeneous MASs. By equipping with omnidi-
rectional vision sensors, [24] proposed the distributed optimal
consensus controllers for uncertain mobile multi-robot sys-
tems with external disturbances.

In this paper, we address the distributed optimal consensus
problem for NELSs without velocity measurements. Com-
bined with the above results, the main contributions of this
paper are given as follows.

1) By using only the position information of each agent,
we design a novel neural network-based observer to estimate
the velocity information and the system dynamic model.

2) It is noted that NELSs can be transformed into
second-order multi-agent systems (MASs) based on coordi-
nate transformation. Then we will employ ADP technique
to solve the optimal consensus problem for second-order
MASs.

3) Compared with the existing model-based adaptive con-
sensus approach of NELSs [6], [25], a distributed model-
free optimal consensus algorithm is proposed in which
the critic-action network framework is built to approx-
imate the optimal performance and optimal consensus
policies.

The rest of this paper is organized as follows. Section II
presents the graph theory and problem formulation.
Section III designs a neural network-based observer for each
agent, while optimal control policy is obtained in Section IV.
The critic-action network structure is built to implement the
proposed algorithm in Section V. A numerical simulation is
provided in Section VI. Finally, the conclusion is drawn in
Section VII.

II. PRELIMINARIES
A. GRAPH THEORY
Let G = {V, E} be a digraph in which V = {1, 2, N } is
the set of nodes and E ⊆ V × V is the set of directed
edges. A directed edge (i, j) ∈ E exists if and only if node
i can get the information from node j. And Ni = {j :
(i, j) ∈ E, j 6= i} denotes the neighbor set of node i and
N̄i = {Ni, i}. A directed path is a directed edge sequence
in the form of (i1, i2), (i2, i3), . . . , (ik−1, ik ). A digraph is
said to be strongly connected if there is a directed path
from one node to any other node. Graph G has a directed
spanning tree if there is a root node that has a directed
path to any other node. A = [aij] ∈ RN×N denotes the
nonnegative adjacency matrix of digraph G, where aij > 0
if (i, j) ∈ E , or else aij = 0. And L = [lij] ∈ RN×N

is the Laplacian matrix of digraph G with lii =
∑
j∈Ni

aij

and lij = −aij, i 6= j.

B. PROBLEM STATEMENT
Consider a group ofN agents governed by the Euler-Lagrange
equations, the dynamics of each agent can be described as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, . . . ,N (1)

where qi ∈ Rm is the generalized configuration coordinate,
Mi(qi) ∈ Rm×m denotes the inertia matrix, Ci(qi, q̇i) ∈ Rm×m

denotes the Coriolis and centrifugal force matrix, gi(qi) ∈ Rm

is the gravitational torque vector, and τi ∈ Rm is the vector of
control input torque exerted by the actuators.

Based on the structure of Euler-Lagrange systems, the fol-
lowing assumption is given.
Assumption 1 [4], [8]: The inertia matrices Mi(qi) are

symmetric positive definite and bounded, i.e., mmi ≤
‖Mi(qi)‖ ≤ mMi for all agents in which mmi = λmin(Mi(qi))
and mMi = λmax(Mi(qi)).

To simplify the dynamics model, vi = q̇i is defined as the
velocity vector of agent i. Thus the EL dynamics systems (1)
can be transformed into the second-order dynamic system as
follows

q̇i = vi
v̇i = −Fi(qi, vi)+M

−1
i (qi)τi (2)

where Fi(qi, vi) = M−1i (qi)(Ci(qi, vi)vi + gi(qi)).
Now the problem is formulated as follows.
Problem 1:Consider the NELSs given by (1), the following

distributed control protocol is designed as

ui = ki(qN̄i
, vN̄i

) (3)

where qN̄i
= {qj : j ∈ N̄i} and vN̄i

= {vj : j ∈ N̄i} such
that all the agents can achieve consensus, i.e., ‖qi−qj‖ → 0,
‖vi − vj‖ → 0, ∀i, j ∈ V .
The designed distributed controllers (3) rely on the local

position and velocity information. In practice, yet, the Euler-
Lagrange systems can only obtain the position information.
To address this issue, an adaptive observer will be designed
for each agent to estimate the unknown velocity information
and the unknown system model.

III. NEURAL NETWORK-BASED OBSERVER DESIGN
According to the approximation property of neural net-
works (NNs) [26], [27], the velocity dynamics of the ith agent
can be presented as

v̇i = −Fi(qi, vi)+M
−1
i (qi)τi

= wTF,iψF,i(qi, vi)+ εF,i(qi, vi)+ w
T
M ,iψM ,i(qi)τi

+ εM ,i(qi)τi

=
[
wTF,i wTM ,i

] [ψF,i(qi, vi) 0
0 ψM ,i(qi)

] [
1
τi

]
+
[
εF,i(qi, vi) εM ,i(qi)

] [ 1
τi

]
= wTo,iψi(qi, vi)+ εo,i(qi, vi) (4)
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where wo,i =
[
wTF,i w

T
M ,i

]T
denotes the unknown ideal

weight of the observer NN,

ψi(qi, vi) =
[
ψF,i(qi, vi) 0

0 ψM ,i(qi)

] [
1
τi

]
is the activation function vector and εo,i(qi, vi) =[
εF,i(qi, vi) εM ,i(qi)

] [ 1
τi

]
is the estimation error. Thus the

velocity of agent i can be identified by updating its observer
NN weights.

Throughout this section, the following standard assump-
tion resulting from the PE condition [28] is introduced for
the observer NNs.
Assumption 2: The ideal weight matrices, the activation

functions and the estimation errors of the observer NNs
are bounded, i.e., there exist positive constants wo,M , ψM
and εo,M such that ‖wo,i‖ ≤ wo,M , ‖ψi‖ ≤ ψM
and ‖εo,i‖ ≤ εo,M .
When using NNs to estimate the velocity vectors,

the dynamics (4) can be approximated by

˙̂vi = ŵTo,iψi(q̂i, v̂i) (5)

where ŵo,i is the estimated weight matrix, q̂i and v̂i are the
estimated values of qi and vi, respectively.

Due to the velocities are unavailable, the passive observers
are designed by using the available position information to
estimate the velocity vectors and the system model. For each
agent, the following NN-based observer is designed as

˙̂qi = v̂i + ci1li(qi − q̂i)
˙̂vi = ŵTo,iψi(q̂i, v̂i)+ ci2l

2
i (qi − q̂i) (6)

where li > 0 is the observer gain to be determined later.
ci1, ci2 are coefficients of the Hurwitz polynomial fi(x) =
x2 + ci1x + ci2.
Remark 1: The proposed observers (6) are designed based

on the position information of itself. In comparison to dis-
tributed observers in [13], [29], the proposed observers (6)
can reduce communication and computation load.

From (2) and (6), the estimation error dynamics for the
position and velocity vectors can be derived as

˙̃qi = ṽi − ci1liq̃i
˙̃vi = w̃To,iψi(q̂i, v̂i)+ ζi − ci2l

2
i q̃i (7)

where q̃i = qi − q̂i and ṽi = vi − v̂i denote the position and
velocity estimation error, respectively, w̃o,i = wo,i−ŵo,i is the
weight estimation error, and ζi = wTo,i(ψi(qi, vi)−ψi(q̂i, v̂i))+
εo,i(qi, vi) is the bounded term based on Assumption 2.
Inspired by [30], [31], the weight update law of the ith

observer NN is given by

˙̂wo,i = σiψi(q̂i, v̂i)q̃Ti − γiŵo,i (8)

where σi > 0 is the learning rate, γi > 0 is a small constant.
Furthermore, the integrated observer estimation error for

each agent is defined as ηi = col(q̃i, ṽi/li). Then one has

η̇i = liCiηi + εi (9)

where Ci =
[
−ci1 1
−lici2 0

]
and εi =

[
0

w̃To,iψi(q̂i, v̂i)+ ζi

]
.

Given a positive definite matrix Qi, then there exists a
positive definite matrix Pi such that

CT
i Pi + PiCi = −Qi (10)

Definition 1 [32]: The error ξ is uniformly ultimately
bounded (UUB) with respect to a closed ball� if for ∀B > 0,
there exists tf (B) such that if ‖ξ (t0)‖ ≤ B, then ξ (t) ∈ �,
∀ t ≥ t0 + tf (B).
Theorem 1: Consider the NELSs (1), the NN-based

observers and the weight updated laws of NNs are provided
as (6) and (8), then the integrated observer estimation errors
ηi and the weight estimation errors w̃o,i are UUB.

Proof:Choose the Lyapunov candidate function of agent
i as follows

Lo,i = Lη,i + Lw,i (11)

where Lη,i = 1
2η

T
i Piηi and Lw,i =

1
2 tr(w̃

T
o,iw̃o,i).

Taking the derivative of Lη,i along the dynamics of the
integrated observer estimation error (9) yields

L̇η,i =
li
2
ηTi (C

T
i Pi + PiCi)ηi + η

T
i Piεi

= −
li
2
ηTi Qiηi + η

T
i Piεi

≤ −
li
2
λmin(Qi)‖ηi‖2 + ‖ηi‖‖Pi‖‖εi‖

≤ −
li
2
λmin(Qi)‖ηi‖2 +

1
2
‖ηi‖

2
‖Pi‖2

+
1
2
(‖w̃To,iψi(q̂i, v̂i)‖

2
+ ‖ζi‖

2) (12)

Based on Assumption 2, it is known that

‖ζi‖ ≤ ‖wTo,i(ψi(qi, vi)− ψi(q̂i, v̂i))‖ + ‖εo,i(qi, vi)‖

≤ 2wo,MψM + εo,M
≤ ζ̄ (13)

where ζ̄ = 2wo,MψM + εo,M .
Combined (12) with (13), one has

L̇η,i ≤ −
1
2
(liλmin(Qi)− ‖Pi‖2)‖ηi‖2

+
1
2
ψ2
M‖w̃o,i‖

2
+

1
2
ζ̄ 2 (14)

Then taking the derivative of Lw,i along (8) yields

L̇w,i = −tr(w̃To,i ˙̂wo,i)

= −tr(w̃To,i(σiψi(q̂i, v̂i)q̃
T
i − γiŵo,i))

= −tr(σiw̃To,iψi(q̂i, v̂i)q̃
T
i )+ tr(γiw̃

T
o,i(wo,i − w̃o,i))

≤
σiψM

2
(‖w̃o,i‖2 + ‖q̃i‖2)+

γi

2
(‖w̃o,i‖2 + w2

o,M )

− γi‖w̃o,i‖2

≤
σiψM − γi

2
‖w̃o,i‖2 +

σiψM

2
‖ηi‖

2
+
γi

2
w2
o,M (15)
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Substituting (14) and (15) into (11), one can obtain

L̇o,i = L̇η,i + L̇w,i

≤ −
1
2
(liλmin(Qi)− ‖Pi‖2)‖ηi‖2 +

1
2
ψM‖w̃o,i‖2 +

1
2
ζ̄ 2

+
σiψM − γi

2
‖w̃o,i‖2 +

σiψM

2
‖ηi‖

2
+
γi

2
w2
o,M

≤ −
1
2
(liλmin(Qi)− ‖Pi‖2 − σiψM )‖ηi‖2

−
1
2
(γi − (σi + 1)ψM )‖w̃o,i‖2 +

1
2
ζ̄ 2 +

γi

2
w2
o,M

Setting li >
‖Pi‖2+σiψM
λmin(Qi)

and γi > (σi + 1)ψM , if the
following inequalities hold

‖ηi‖ >

√
ζ̄ 2 + γiw2

o,M

liλmin(Qi)− ‖Pi‖2 − σiψM
= 2η,i

or

‖w̃o,i‖ >

√
ζ̄ 2 + γiw2

o,M

γi − (σi + 1)ψM
= 2o,i

then we can obtain L̇o,i < 0. This means that the integrated
observer estimation error ηi and the weight estimate error w̃o,i
for each agent are UUB.
Remark 2: It is noted that L̇o,i is negative definite outside

the ball 2i = {(ηi, w̃o,i)|‖ηi‖ > 2η,i and ‖w̃o,i‖ > 2o,i}.
The size of the error bound 2η,i and 2o,i can be arbitrarily
small by selecting the suitable parameters li, σi and γi.

IV. ADP-BASED OPTIMAL CONSENSUS
CONTROLLER DESIGN
To synthesize the system performance, the optimal consensus
problem of NELSs will be transformed into a distributed opti-
mal regulation of second-order MASs in this section. Then
we employ ADP technique to design the optimal consensus
control policies for second-order MASs.

A. OPTIMAL CONSENSUS CONTROLLER DESIGN
The local neighbor position and velocity consensus errors for
agent i are defined as follows

eqi =
∑
j∈Ni

aij(qi − qj)

evi =
∑
j∈Ni

aij(vi − vj) (16)

Then the dynamics of the local neighbor position and
velocity consensus errors are derived as

ėqi =
∑
j∈N̄i

lijvj

ėvi =
∑
j∈N̄i

lij(−Fj(qj, vj)+M
−1
j (qj)τj) (17)

For each agent in digraph G, the dynamics of integrated
local neighbor consensus error are given by

ėi =
∑
j∈N̄i

lij(
[

vj
−Fj(qj, vj)

]
+

[
0

M−1j (qj)

]
τj)

=

∑
j∈N̄i

lij(F̄j(qj, vj)+ M̄j(qj)τj)

= Li(F̄(q, v)+ M̄ (q)τ ) (18)

where ei = col(eqi , e
v
i ) is the integrated local neighbor con-

sensus error, q = col(q1, . . . , qN ) and v = col(v1, . . . , vN )
denote the global position and velocity vectors, Li =
Li ⊗ I2m, F̄(q, v) = col(F̄1(q1, v1), . . . , F̄N (qN , vN )) and
M̄ (q, v) = col(M̄1(q1, v1), . . . , M̄N (qN , vN )) in which
F̄j(qj, vj) = col(vj,−Fj(qj, vj)) and M̄j(qj) = col(0,M−1j
(qj)), τ = col(τ1, . . . , τN ) is the global control input torque.
In order to find an optimal control policy for agent i,

we define a value function which depends on the local neigh-
bor consensus error ei and the control input torques τN̄i

of
agent i and its neighbors as follows,

Vi(ei, τN̄i
) =

∫
∞

t
(eTi Siiei +

∑
j∈N̄i

τTj Rijτj)dς (19)

where τN̄i
= {τj : j ∈ N̄i}, Sii and Rij are symmetric

positive definite matrices. In practical, Vi(ei, τN̄i
) denotes the

local performance on energy consumption of agent i during
consensus evolution.
Based on Leibniz’s formula, the coupled Hamiltonian equa-
tion of agent i is given by

Hi(ei,Vei , τN̄i
) = eTi Siiei +

∑
j∈N̄i

τTj Rijτj

+V T
ei Li(F̄(q, v)+ M̄ (q)τ ) (20)

where Vei = ∂Vi(ei)/∂ei denotes the partial derivative of the
value function Vi(ei) with respect to ei.
Using the stationarity conditions, the optimal control pol-

icy for each agent can minimize the value function (19), thus
one has

τ ∗i = −
1
2
diR
−1
ii M̄

T
i (qi)V

∗
ei (21)

where V ∗i (ei) denote the optimal value function of agent i.
Inserting (21) into (20), the coupled HJB equation for each

agent is rewritten as

0 = Hi(ei,V ∗ei , τ
∗

N̄i
)

= eTi Siiei −
1
4
d2i V

∗T
ei M̄i(qi)R

−1
ii M̄

T
i (qi)V

∗
ei

+
1
4

∑
j∈Ni

d2j V
∗T
ej M̄j(qj)R

−T
jj RijR

−1
jj M̄

T
j (qj)V

∗
ej

−
1
2

∑
j∈Ni

djlijV ∗Tei M̄j(qj)R
−1
jj M̄

T
j (qj)V

∗
ej

+

∑
j∈N̄i

lijV ∗Tei F̄j(qj, vj) (22)

100774 VOLUME 7, 2019



H. Zhang et al.: Model-Free Optimal Consensus Control of Networked Euler–Lagrange Systems

To find the optimal consensus control policies, it requires
to obtain the solutions of (22). Yet, it is difficult to find the
solutions due to the nonlinear nature of the coupled HJB
equations.

B. MODEL-FREE PI ALGORITHM
Here, a model-free PI algorithm working together with
NN-based observers is developed to solve the coupled HJB
equations (22). The NN-based observers (6) and the weight
update laws (8) which only depend on the measurable posi-
tion information provide the estimation of the system model
and the velocity vectors. Thus based on the estimations,
we develop the model-free PI algorithm for the integrated
error system (18) as shown in the following.

Algorithm 1 guarantees that the value functions and control
policies can converge to their optimal values, i.e., V (l)

i → V ∗i
and u(l)i → u∗i as l → ∞. The convergence analysis of
Algorithm 1 is similar to [18], [21], thus it is omitted here.

Algorithm 1 PI Solutions for Second-Order MAS

Step 1: Initialization
Start with the admissible control policies u(0)i , i ∈ V .
Step 2: Neural network observation
Update the weight law (8), estimate the inertia matrix
M̂i(qi) and compute the estimated values of q̂i and
v̂i according to (6).
Step 3: Policy evaluation
Employing the estimation information of M̂i(qi),
q̂i and v̂i, solve the Hamilton equations
Hi(ei,V

(l)
ei , τ

(l)
N̄i
) = 0

Step 4: Policy improvement
Seek the control inputs using

τ
(l+1)
i = −

1
2diR

−1
ii
ˆ̄MT
i (qi)V

(l)
ei

Step 5: Stop Criterion
If ‖V (l+1)

i − V (l)
i ‖ ≤ ε (ε is a small positive constant ),

stop and acquire the approximated optimal control
policies u∗i ; Otherwise, set l = l + 1 and go to Step 3.

V. IMPLEMENTATION OF CRITIC-ACTION NN STRUCTURE
In this section, the critic-action network framework based on
model-free PI algorithm will be introduced to approximate
the solutions to the coupled HJB equations (22).

A. CRITIC NN DESIGN
Similar to observer NNs, the value functions can be approxi-
mated by the critic NNs as

Vi(êi) = wTc,iφc,i(êi)+ εc,i(êi)

where wc,i ∈ Rhvi is the ideal weight vector with hvi being
the number of neurons in the hidden layer, φc,i(êi) ∈ Rhvi

is the activation function, εc,i(êi) is the approximation error

and êi = Licol(q̂, v̂) is the estimation of the local neighbor
consensus error ei.

Taking the derivative of Vi with respect to êi yields

Vêi = ∇φ
T
c,iwc,i +∇εc,i

where ∇φc,i = ∂φc,i(êi)/∂ êi and ∇εc,i = ∂εc,i(êi)/∂ êi.
Suppose that ŵc,i is the weight estimation of wc,i, then the

output of the critic NN and its derivative are given by

V̂i(êi) = ŵTc,iφc,i(êi) (23)

V̂êi = ∇φ
T
c,iŵc,i (24)

Then, the approximated Hamiltonian equation of agent i
corresponding to (20) is rewritten as

Hi(êi, V̂ei , τN̄i
) = êTi Siiêi +

∑
j∈N̄i

τTj Rijτj

+ ŵTc,i∇φc,iLi(F̄(q̂, v̂)+ M̄ (q̂)τ ) (25)

Based on (25), we select the weight update law of the critic
NN for agent i as

˙̂wc,i = −αi
∂Ei
∂ŵc,i

= −αi
ρi(ρTi ŵc,i + ri(êi, τN̄i

))

ρTi ρi + 1
(26)

where αi > 0 is the learning gain, ρi = ∇φc,i ˙̂ei, and
ri(êi, τN̄i

) = êTi Siiêi +
∑

j∈N̄i
τTj Rijτj.

Let w̃c,i = ŵc,i − wc,i, then we have

˙̃wc,i = ˙̂wc,i − ẇc,i

= −αi
ρi(ρTi ŵc,i + ri(êi, τ̂N̄i

))

ρTi ρi + 1

= −αi
ρi(ρTi w̃c,i + εHJ ,i)

ρTi ρi + 1
(27)

where εHJ ,i = wTc,iρi + ri(êi, τN̄i
).

B. ACTION NN DESIGN
Here, an action NN is employed to approximate the control
policy for agent i as follows

τi(êi) = wTa,iφa,i(êi)+ εa,i(êi)

where wa,i ∈ Rhci×m is the ideal weight matrix with hci being
the number of neurons in the hidden layer, φa,i(êi) ∈ Rhci is
the activation function, and εa,i(êi) is the approximation error.

Let ŵa,i be the weight estimation ofwa,i, then the estimated
control policy for agent i can be expressed as

τ̂i(êi) = ŵTa,iφa,i(êi) (28)

Furthermore, the optimal control policy of agent i using the
gradient of the value function (30) can be given as

τi = −
1
2
diR
−1
ii M̄

T
i (q̂i)∇φ

T
c,iŵc,i
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Then the approximation error of the ith action NN is
defined as

νa,i := ŵTa,iφa,i(êi)+
1
2
diR
−1
ii M̄

T
i (q̂i)∇φ

T
c,iŵc,i (29)

Based on (29), the weight update law of the action NN for
agent i is selected as

ŵa,i = −
βiφa,i(êi)νTa,i

φTa,i(êi)φa,i(êi)+ 1
(30)

Let w̃a,i = ŵa,i − wa,i, then one can obtain

˙̃wa,i = ˙̂wa,i − ẇa,i

= −
βiφa,i(êi)νTa,i

(φTa,i(êi)φa,i(êi)+ 1)2

= −
βiφa,i(êi)(w̃Ta,iφa,i(êi)+ Diw̃c,i + ϒi)

T

φTa,i(êi)φa,i(êi)+ 1

where Di = 1
2diR

−1
ii M̄

T
i (q̂i)∇φ

T
c,i and ϒi = Diwc,i +

wTa,iφa,i(êi).
Assumption 3: The ideal weight matrices, the activation

functions and the reconstruction errors of the critic and action
NNs are bounded, that is, there exist positive constants wc,M ,
wa,M , φc,M , φa,m, φa,M , εc,M and εa,M such that ‖wc,i‖ ≤
wc,M , ‖wa,i‖ ≤ wa,M ‖φc,i‖ ≤ φc,M , φa,m ≤ ‖φa,i‖ ≤ φa,M ,
‖εc,i‖ ≤ εc,M and ‖εa,i‖ ≤ εa,M .
Theorem 2: Consider the error dynamics be given by (18).

Let the critic-action NN for agent i be given by (23) and (28),
the update laws for the two NNs are provided by (26) and
(30). Then the integrated consensus error ei, the critic and
action NN estimation errors w̃c,i and w̃a,i are UUB.

Proof: Choose a local Lyapunov function candidate as

Ls,i = Li,1 + Li,2 + Li,3 + Li,4 (31)

where Li,1 = tr(w̃Tc,iw̃c,i)/2αi, Li,2 = tr(w̃Ta,iw̃a,i)/2βi, Li,3 =
tr(w̃To,iw̃o,i), Li,4 = eTi ei + 20iVi .
Based on Assumption 1 and 3, it is easily known that εHJ ,i,

Di and ϒi are bounded, i.e., there exist positive constants
εHJ ,M , DM and ϒM such that ‖εHJ ,i‖ ≤ εHJ ,M , ‖Di‖ ≤ DM
and ‖ϒi‖ ≤ ϒM .

According to (27), we take the derivation of Li,1 as

L̇i,1 =
1
αi
tr(w̃Tc,i ˙̃wc,i)

= −tr(
w̃Tc,iρi(ρ

T
i w̃c,i + εHJ ,i)

ρTi ρi + 1
)

=
−w̃Tc,iρi(w̃

T
c,iρi)

T
− w̃Tc,iρiεHJ ,i

ρTi ρi + 1
(32)

Due to w̃Tc,iρi(w̃
T
c,iρi)

T > 0, then there exists a constant
3i > 0 such that 3i‖w̃c,i‖2 ≤ w̃Tc,iρi(w̃

T
c,iρi)

T . And it can

observe that
ρTi ρi

ρTi ρi+1
≤ 1, then one has

L̇i,1≤−
3i

ρTi ρi + 1
‖w̃c,i‖2 +

1

2(ρTi ρi + 1)
(‖w̃Tc,iρi‖

2
+ ε2HJ ,i)

≤ −(
3i

ρ2M + 1
−

1
2
)‖w̃c,i‖2 +

1
2ρ2m + 1

ε2HJ ,M (33)

Taking the derivative of Li,2 yields

L̇i,2 =
1
βi
tr(w̃Ta,i ˙̃wa,i)

= −tr(
w̃Ta,iφa,i(w̃

T
a,iφa,i + Diw̃c,i + ϒi)

T

φTa,iφa,i + 1
)

= −
(w̃Ta,iφa,i)

T w̃Ta,iφa,i

φTa,iφa,i + 1
−

(w̃Ta,iφa,i)
TDiw̃c,i

φTa,iφa,i + 1

−
(w̃Ta,iφa,i)

Tϒa,i

φTa,iφa,i + 1
(34)

Since (w̃Ta,iφa,i)
T w̃Ta,iφa,i > 0, there exists a constant

5i > 0 such that 5i‖w̃a,i‖2 ≤ (w̃Ta,iφa,i)
T w̃Ta,iφa,i. And it is

known that
φTa,iφa,i

φTa,iφa,i+1
≤ 1, then (34) can be rewritten as

L̇i,2 ≤ −
5i‖w̃a,i‖2

φ2a,M + 1
+
‖φa,i‖

2
‖w̃a,i‖2

2(φTa,iφa,i + 1)
+
‖Di‖2‖w̃c,i‖2

2(φTa,iφa,i + 1)

+
‖φa,i‖

2
‖w̃a,i‖2

2(φTa,iφa,i + 1)
+

‖ϒi‖
2

2(φTa,iφa,i + 1)

≤ −(
5i

φ2a,M + 1
− 1)‖w̃a,i‖2 +

D2
M

2(φ2a,m + 1)
‖w̃c,i‖2

+
ϒ2
M

2(φ2a,m + 1)
(35)

Subsequently, consider the third term, Li,3, the derivative
remains the same as in (15), so it yields

L̇i,3 ≤ (σiψM − γi)‖w̃o,i‖2 + σiψM‖η̃i‖
2
+ γiw2

o,M (36)

Next, consider the derivative of Li,4 with respect to time,
then one has

L̇i,4 = 2eTi ėi + 20iV̇i
= 2eTi Li(F̄(q, v)+ M̄ (q)τ )− 20iri(ei, τN̄i

)

=

∑
j∈N̄i

2lijeTi (F̄j(qj, vj)+ M̄j(qj)τj)

− 20ieTi Siiei − 20i
∑
j∈N̄i

τTj Rijτj

≤

∑
j∈N̄i

(‖lijmMi‖2 − 20iλmin(Rij))‖τj‖2 + 2(‖N̄i‖

− 0iλmin(Sii))‖ei‖2 +
∑
j∈N̄i

‖lijF̄j(qj, vj)‖2 (37)

where ‖N̄i‖ denotes the number of agent i and its
neighborhood.
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FIGURE 1. Communication graph of six 2-DOF nonlinear manipulators
with revolute joints.

FIGURE 2. The estimation errors of the position and velocity vectors.

Finally, based on (33), (34), (36), and (37), the derivative
of Lsi is written as

L̇s,i ≤ −(
3i

ρ2M + 1
−

1
2
)‖w̃c,i‖2 +

1
2ρ2m + 1

ε2HJ ,M

− (
5i

φ2a,M + 1
− 1)‖w̃a,i‖2 +

D2
M

2(φ2a,m + 1)
‖w̃c,i‖2

+
ϒ2
M

2(φ2a,m + 1)
+ (σiψM − γi)‖w̃o,i‖2 + σiψM‖η̃i‖2

+ γiw2
o,M +

∑
j∈N̄i

(‖lijmMi‖2 − 20iλmin(Rij))‖τj‖2

+ 2(‖N̄i‖ − 0iλmin(Sii))‖ei‖2 +
∑
j∈N̄i

‖lijF̄j(qj, vj)‖2

≤ −(γi − σiψM )‖w̃o,i‖2 − (
3i

ρ2M + 1
−

D2
M

2(φ2a,m + 1)

−
1
2
)‖w̃c,i‖2 − (

5i

φ2a,M + 1
− 1)‖w̃a,i‖2 + 2(‖N̄i‖

−0iλmin(Sii))‖ei‖2 +
∑
j∈N̄i

(‖lijmMi‖2 − 20i

× λmin(Rij))‖τj‖2 +4i (38)

FIGURE 3. The NN weight estimations: (a) Observer NNs; (b) Critic NNs;
(c) Action NNs.

where4i =
1

2ρ2m+1
ε2HJ ,M +

ϒ2
M

2(φ2a,m+1)
+σiψM2

2
η,i+γiw

2
o,M +∑

j∈N̄i
‖lijF̄j(qj, vj)‖2.

For simplicity, the following new variables is defined as

$i,1 = γi − σiψM

$i,2 =
3i

ρ2M + 1
−

D2
M

2(φ2a,m + 1)
−

1
2

$i,3 =
5i

φ2a,M + 1
− 1

$i,4 = 2(0iλmin(Sii)− ‖N̄i‖)

If0i satisfies0i > max{ 2‖N̄i‖
λmin(Sii)

,
‖lijmMi‖2

2λmin(Rij)
} and the inequal-

ities ‖w̃o,i‖ >
√

4i
$i,1

or ‖w̃c,i‖ >
√

4i
$i,2

or ‖w̃a,i‖ >
√

4i
$i,3

or ‖ei‖ >
√

4i
$i,4

hold, then L̇s,i < 0. This implies that the
integrated error, the weight estimation errors of the observer-
critic-action NNs are UUB.
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FIGURE 4. The neighbor consensus errors of the position and velocity
vectors.

VI. SIMULATION
This section presents a numerical simulation to verify the
resulting optimal consensus control algorithm. The NELS is a
connection of six 2-DoF nonlinearmanipulators with revolute
joints as shown in Fig. 1. Refer to [25], [33], each agent is
modeled as a two-link robotic manipulator with the the inertia
and Coriolis matrices given by

Mi(qi) =
[
δi1 + δi2 + 2δi3cos(qi2) δi2 + δi3cos(qi2)
δi2 + δi3cos(qi2) δi2

]
Ci(qi, q̇i) =

[
−δi2sin(qi2)q̇i2 −δi2sin(qi2)(q̇i1 + q̇i2)
δi2sin(qi2)q̇i1 0

]

and the gravity vector given by

gi(qi) =
[
δi4gcos(qi1)+ δi5gcos(qi1 + qi2)

δi5gcos(qi1 + qi2)

]
where δi1 = Ji1 + mi2l2i1, δi2 = Ji2 + 0.25mi2l2i2, δi3 =
0.5mi2li1li2, δi4 = (0.5mi1 + mi2)li1, δi5 = 0.5mi2li2.
In the simulation, the parameters of six robot manipulators

are: mi1 = 4kg,mi2 = 2kg and li1 = 0.4m, li2 = 0.4m
for agent i = 1, 2, 3; mi1 = 1.5kg,mi2 = 3kg and li1 =
0.3m, li2 = 0.3m for agent i = 4, 5, 6, the weight matrices
Sii = 5I4, Rii = I2, Rij = 0.5I2, and the gains σi = 2, γi = 5,
αi = 3× 10−2, βi = 5× 10−2. The observer-critic-actor NN
activation functions are chosen as

ψi(q̂i, v̂i) =


q̂Ti q̂i 0 0
v̂Ti v̂i 0 0
0 q̂2i1 q̂i1q̂i2
0 q̂i1q̂i2 q̂2i2

[ 1
τi

]

φc,i(ei) = [tanh(e2i1) tanh(ei1ei2) tanh(ei1ei3)

tanh(ei1ei4) tanh(e2i2) tanh(ei2ei3) tanh(ei2ei4)

tanh(e2i3) tanh(ei3ei4) tanh(e
2
i4)]

T

φa,i(ei) =
[
tanh(ei1) tanh(ei2) tanh(ei3) tanh(ei4)

]T

Fig. 2 shows the estimation errors of the position and veloc-
ity for all agents, from which it can be observed that the esti-
mated positions and velocities using the designed NN-based
observers can converge to their real values well. In Fig. 3,
the evolutions of the weight estimation for the observer-
critic-action networks are depicted which shows that they
are UUB. Moreover, Fig. 4 plots the local consensus error
result for the positions and velocities of the manipulators, it is
easily observed that the NELS can reach consensus under the
proposed optimal controllers.

VII. CONCLUSION
In this paper, for the NELSs without velocity measurements,
we built a distributed optimal control scheme using only the
position information. For each agent, an NN-based observer
was designed to estimate the unknown system dynamicmodel
and unmeasured velocity vectors. Besides, the UUB of the
integrated observer estimation errors and the weight estima-
tion errors for observer NNs was proven. From the differen-
tial game point of view, the optimal consensus problem of
NELSs was transformed into an optimal regulation problem
of second-order MASs. To solve the optimal consensus issue
online, a model-free PI algorithm was introduced to obtain
the solutions of the coupled HJB equations. Then, the update
rules for the critic-action network weight were designed and
the stability of the closed-loop system was demonstrated.
Finally, the simulation was provided to verify the effective-
ness of the proposed approach. The proposed approach was
based on local cooperation but not competition, so one future
challenging problem is how to address the distributed coordi-
nation and competition problem.
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