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ABSTRACT Differential signals play significant roles in control practices, but they are prone to noise
corruption. A noise-tolerant time-optimal system-based tracking differentiator (TD) was first proposed
by Jingqing Han, which is constructed in the form of state feedback control for a discrete-time and
double-integral system. However, its performances of signal-tracking filtering and differentiation extraction
are sensitive to the sampling period. To relax the sensitivity on the sampling period, a time-criterion-based
feedback control algorithm is proposed to construct the TD. The control algorithm is derived by comparing
the time that the initial state is driven to the switching curve or the origin with any given sampling period.
The impact of the algorithm parameter setting on filtering is analyzed in the frequency domain. Meanwhile,
a compensation scheme is introduced to deal with the trade-off between the filtering ability and phase delay.
The simulation results show that the proposed TD has smaller static errors in signal-tracking filtering, and
better differentiation acquisition compared with others. The experiments conducted on STM32F405 reveal
that the proposed TD uses the shortest execution time among others for processing the same input signals.

INDEX TERMS Tracking differentiator, discrete time, time criterion, filtering, differentiation, phase delay
compensation.

I. INTRODUCTION
The differentiation of a given signal in real time is a
well-known yet challenging problem in control theory and
engineering [1], [2]. For example, the proportional-integral-
derivative (PID) control law developed in the last century
still plays an essential role in modern control-engineering
practices [3], [4]. Therein, the derivative control mode gives
the controller an additional control action when the error
changes consistently. However, derivative signals are prone
to noise corruption and the derivative controls usually can-
not be effectively implemented [5], [6]. For this reason,
great efforts have been devoted to designing new differen-
tiators, such as high-gain observer-based differentiator [7],
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linear time-derivative tracker [8], super-twisting second-
order sliding-mode algorithm [9], robust exact differentia-
tor [10], and finite time-convergent differentiator [11], [12]
among others [13]- [15].

Initially proposed by Han [16], [17], the discrete-time
optimal control based tracking differentiator (TD) with the
noise-tolerant characteristic has widely used in filtering and
differentiation acquisition [16]. The advantage of this TD is
that it sets a weak condition on the stability of the systems to
be constructed for TD and requires a weak condition on the
input. In addition, it has advantageous smoothness compared
with the sliding-mode-based differentiators encountered with
the chattering problem [18]. Han used this TD as an important
part of his active disturbance rejection control (ADRC) [19].
He also presented a nonlinear PID control based on this
TD [20]. Therein, the TD acts not only as the derivative
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extraction, but also as a transient profile that the output
of a plant could reasonably follow to avoid the setpoint
jump in PID.

It is well known that the continuous-time time-optimal
solution, i.e., bang-bang control, could incur considerable
numerical errors in a discrete-time implementation [16].
To address this difficulty and construct a discrete-time TD,
a discrete-time solution (denoted as Fhan) for a discrete dou-
ble integral system was proposed by Han [16]. This control
algorithm Fhan is determined by comparing the location of
the initial state with the isochronic region that has to be
obtained through a complicated non-linear boundary trans-
formation [21]. For a discrete double integral system, driving
a state point on the phase plane to the origin by using theFhan
algorithm, its state trajectory is suboptimal [21]. A bigger
sampling period that may be needed in some engineering
scenarios may result in bigger static errors or overshoots in
signal tracking and differentiation extraction, which means
that, in order to make Han’s TD highly accurate in signal-
tracking and differentiation extraction, one has to impose
strict constraints on the sampling period.

To relax this particular constraint and improve perfor-
mances in signal-tracking and differentiation extraction,
an efficient time-criterion based control algorithm is pro-
posed in this paper to construct the TD. Since the proposed
algorithm is determined by comparing the time that the initial
state sequence is driven to the switching curve or the origin
with any given sampling period (the reason why we term it as
via time criterion), it relaxes the strict constraint on selecting
a proper sampling period for the proposed algorithm under
different engineering scenarios.

The rest of the paper is organized as follows: the problem
and the objective are explained in Section II. The time-
criterion based feedback control algorithm and its corre-
sponding TD are presented in Section III. The filtering
ability analysis and a phase delay compensation scheme
are given in Section IV. In Section V, simulation results
among different differentiators on signal-tracking filtering,
differentiation exaction and algorithm execution time (based
on STM32F405) are demonstrated. Section VI concludes the
paper.

II. PROBLEM STATEMENT
To construct a TD, the first procedure is to determine a con-
trol algorithm for a double-integral system that is described
by [16] {

ẋ1 = x2,
ẋ2 = u, |u| ≤ r,

where r is a constant constraint of the control input. The
resulting feedback control algorithm that drives the state from
any initial point to the origin in the shortest time is

u = −rsign(x1 − v+
x2|x2|
2r

)

where v is the desired value for x1. 0(x1, x2) = x1 +
x2|x2|
2r

is the switching curve [22], [23]. Using this principle, one
can construct the corresponding TD, that is, obtaining the
desired trajectory and its derivative by solving the following
differential equations:

 v̇1 = v2,

v̇2 = −rsign(v1 − v+
v2|v2|
2r

)

where v1 is the desired trajectory, and v2 is its derivative [16].
Based on the analysis above, the main procedure to construct
the TD is to derive an efficient control algorithm for a double-
integral system. Then, it can be easily extended to handle the
tracking problem by replacing the first state variable x1 with
x1 − v, where v is the desired value of x1.

Consider a standard discrete-time double-integral system
that is described by:

x(k + 1) = Ax(k)+ Bu(k), |u(k)| ≤ 1 (1)

where A =
[
1 h
0 1

]
, B =

[
0
h

]
, h is the sampling period. The

objective is to design a feedback control algorithm (denoted
as Ftd) for system (1) such that the state x(k) is driven back
to the origin in a finite number of steps. In order to relax the
particular constraint on the sampling period for Fhan based
TD, the control signal sequence in Ftd , i.e., u(0), u(1), . . . ,
u(k) is determined by comparing the time that the initial state
point is driven back to the switching curve or the origin with
any given sampling period h.
The time that any initial state point M (x10, x20) is driven

back to the switching curve, i.e., 0(x1, x2) = x1 +
x2|x2|
2 ,

is denoted as tA, and the time that the state point located on
the switching curve is driven back to the origin is denoted

as tB. We can determine that tA = sx20 +
√
sx10 + 1

2x
2
20 and

tB = |x20|, where s = sign(x10) + 1
2x20|x20|). The work of

identifying the control signal sequence that drives any initial
state to the origin can be divided into the following two tasks:
Task 1: Determine the control signal sequence when the

initial state point M (x10, x20) is not located on the switching
curve by comparing time tA with the sampling period h.
Task 2: Determine the control signal sequence when the

state point M (x10, x20) is located on the switching curve by
comparing time tB with the sampling period h.

III. ALGORITHM CONSTRUCTION
By fulfilling the above mentioned tasks, for anyM (x10, x20),
we have the corresponding feedback control algorithm for
system (1). This is denoted as u(k) = Ftd(x1(k), x2(k), r, h),
where the parameter r is a constant constraint of the control
input. Note that, since system (1) is a standard discrete-time
double-integral system, there exists r = 1. To clearly present
the algorithm, we list the satisfying conditions for any initial
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state pointM (x10, x20) as follows:
�1 = {(x10, x20)|x10 +

x20|x20|
2

> 0}

�2 = {(x10, x20)|x10 +
x20|x20|

2
< 0}

�3 = {(x10, x20)|x10 +
x20|x20|

2
= 0}

The resulting control algorithm is

u(k) =



−s, if M ∈ �1 ∪�2, h ≤ tA
1
2
−

1
h
x20 −

1
2

√
1+

4
h
x20 +

8
h2
x10

if M ∈ �1, h > tA

−
1
2
−

1
h
x20 +

1
2

√
1−

4
h
x20 −

8
h2
x10

if M ∈ �2, h > tA
−sign(x20), if M ∈ �3, h ≤ tB
6
h2
x10 +

2
h
x20, if M ∈ �3, h > tB

(2)

where s = sign(x10 + 1
2x20|x20|), tA = sx20 +

√
sx10 + 1

2x
2
20

and tB = |x20|. The detailed deduction of the control algo-
rithm Ftd is given in Appendix A.

The proof that the proposed control input fulfills the given
constraint, i.e, |u(k)| ≤ 1 in system (1) shall then be pre-
sented. The main result is the Theorem 1 below. Note that,
when the state point M (x10, x20) is located on the switching
curve, i.e, Γ (x10, x20) = 0, the control input satisfies the
constraint apparently since h > tB = |x20|. Hence, we only
need to prove that the control input fulfills |u(k)| ≤ 1 when
the state point M (x10, x20) is not located on the switching
curve.
Theorem: The control law u(k) in (2) satisfies the condition
|u(k)| ≤ 1.
Proof: See Appendix B.
The control algorithm in (2) can be easily extended to the

tracking problem by replacing x1(k) in (1) with x1(k)− v and
we can then construct the following TD:

u(k) = Ftd(x1(k)− v(k), c1x2(k), r0, c0h)
x1(k + 1) = x1(k)+ hx2(k)
x2(k + 1) = x2(k)+ u(k)h

(3)

where v is the given signal, c1 is the damping factor, r0 is the
quickness factor, c0 is the filtering factor and h is any given
sampling period. The filtering factor is of high importance in
signal-tracking filtering performance.
Remark 1: Determined by comparing the time that the

initial state point is driven back to the switching curve or
the origin with any given sampling period h, the control
algorithm Ftd that is used to construct the TD relaxes the
strict constraint on the sampling period for the existing TD.
For a general discrete-time double-integral system, its control
algorithm Ftd can be derived by substituting x1 and x2 with z1
and z2, respectively, where z1 =

x1
r and z2 =

x2
r . Meanwhile,

tA = sx20/r +
√
sx10/r + 1

2r2
x220 and tB = |x20|/r .

IV. STRUCTURE ANALYSIS AND PHASE DELAY
COMPENSATION
A. STRUCTURE ANALYSIS
For a given signal sequence v(k)(k = 0, 1, 2, . . .),
the discrete-time TD in (3) can be approximately transformed
into a linear format as presented below by taking on the proper
parameter r0 (the quickness factor):

x(k + 1) = Gx(k)+ Hv(k), k = 0, 1, 2 . . . (4)

where x(k) = [x1(k), x2(k)]T and H = [ 1
c20
, 2
c20h

]T . G =

[G1,G2]T where G1 = [1 − 1
c20
, (1 − c1

c20
)h] and G2 =

[− 2
c20h
, 1− 2c1

c0
].

We assume that the given signal is v(t) =
∑N

i=1 Aie
j(wit+φi0)

+ξ (t), where ξ (t) is a width-steady process. Then we have

x(k) = Gkp0 +
N∑
i=1

(ejwihI2 − G)−1HAiej(wikh+φi0) + η(k),

(5)

where η(k + 1) = Gη(k) + Hξ (k), k = 0, 1, 2, . . ., and p0
is determined based on initial conditions x(0) and η(0). If the
convergence of (5) is sufficient and necessary, then the spec-
tral radius of matrix G satisfies ρ(G) < 1. Hence, x1(k) =
CGkp0 +

∑N
i=1 C(e

jwihI2 − G)−1HAiej(wikh+φi0) + Cη(k) by
choosing C = [1, 0]. When the transfer function of the
discrete-time system is denoted as 8(z) = C(zI2 − G)−1H ,
x1(k) can be expressed as follows:

x1(k) = CGkp0 +
N∑
i=1

8(ejwih)Aiej(wikh+φi0) + Cη(k). (6)

The characteristics of magnitude frequency and phase fre-
quency for the TD in (3) are analyzed as follows. Given a
sine signal v(t) = Aej(wt+φ0), the tracking output signal yout is
also a sine signal when the particular signal sequence is long
enough and the spectral radius of matrixG satisfies ρ(G) < 1.
We suppose that the output signal is yout = βv(t− τ0), where
β is the dynamic amplifier factor and τ0 is the time delay.
By choosing the filtering factor c0 that satisfies condition
c0wh� 1, we have β =

1

1+ 0.5c20(c
2
1 − 1)w2h2

τ0 = (c0c1 − 1)h
(7)

Furthermore, when the damping factor c1 = 1, we have
β = 1 and τ0 = (c0 − 1)h. Based on the conditions above,
the characteristics of magnitude frequency and phase fre-
quency are shown in Fig. 1, which illustrates that the filtering
ability performs better as the filtering factor c0 increases.
However, the phase delay will increase in the proposed TD
as the filtering factor c0 increases.

The filtering characteristics are compared between Ftd
based TD and Fhan based TD. Here, we consider only
the width-steady random process. For a discrete-time linear-
TD, the width-steady input leads to the width-steady output.
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FIGURE 1. Characteristic curves of magnitude frequency and phase
frequency for Ftd based TD.

FIGURE 2. Output sequence variance R vs filtering factor c0 for two
algorithms.

When the random input sequence ξ (t) is a white noise
sequence, Rξ = Qδ(τ ), where δ(τ ) is the Kronecker delta
function [24], [25] andQ is the constant matrix. The variance
matrix satisfies the equationRη(k+1) = GRη(k)GT+HQHT .
When the constant k is large enough, Rη(k) converges to the
constant matrix, i.e.,

Rη = GRηGT + HQHT . (8)

The above equation is a Lyapunov function of a discrete-
time system that demonstrates the relationship between the
output sequence’s variance R and filtering factor c0. For Fhan
algorithm, the matrices G and H are

G =

 1 h
1
c0h

1−
2
c0

 , H =

 0
1

c20h

 ,
respectively. By assuming that the density of the white noise
power spectrum is Q = 1, we achieve the results as shown
in Fig. 2.

As demonstrated in Fig. 2, the TD can filter random noises
when the proper filtering factor c0 is selected. The proposed
Ftd based TD performs better in filtering capacity than Fhan
does.

B. PHASE DELAY COMPENSATION
From Fig. 1, we know that the phase delay will increase as the
filtering factor c0 increases. In this subsection, a phase delay
compensation scheme, i.e., the TD group scheme, will be
introduced to balance the trade-off between filtering quality
and phase delay for better use in practice.

For a single TD, the filtering output is a function of filtering
factor c0, quickness factor r , time t , and time delay τ . Within
a TD group, all TDs are connected in series, where the output
of the former TD is the input of the latter one. By doing
so, we improve the filtering quality compared with that of a
single TD. However, for a single TD, there exists a time delay
τ . For a TD group, the delay shall become longer. To solve
this problem, we incorporate phase compensation into the TD
group.

For a single TD, using Taylor’s expansion to expand input
signal v(t − τ ) at time t , we obtain that

v(t − τ ) = v(t)+ v̇(t)(−τ )+
v̈(t)2

2!
(−τ )2

+

...
v (t)3

3!
(−τ )3 + R(t, τ ), (9)

where R(t, τ ) is a higher-order error term.
Similarly, using Taylor’s expansion, signal v(t − iτ ) is

expanded at time t , resulting in

v(t − iτ ) = v(t)− v̇(t)(iτ )+
v̈(t)2

2!
(iτ )2

−

...
v (t)3

3!
(iτ )3 + R(t, τ ). (10)

Therefore, the relationship between input and output in the
TD group is 

v̄1(t) = v(t − τ )
v̄2(t) = v(t − 2τ )
. . .

v̄m(t) = v(t − mτ )

(11)

where m is the number of TDs within a TD group. Each
equation in (11) can be expanded using Taylor’s expansion.
Ignoring all the higher-order terms, we obtain the final fil-
tering output with phase compensation of the TD group as
follows:

v̄ =
m∑
i=1

αmiv̄i (12)

The candidates of the coefficient αmi when m varies are
presented in Table 1.

Theoretically, filtering quality improves as m increases.
However, along with the increase of m, the computational
burdens grow for the TD group. For real-world applications,

TABLE 1. The value of coefficient αmi .
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FIGURE 3. Block diagram of TD group with phase compensation when
m = 4.

FIGURE 4. Filtering outputs and their partial enlargement with phase
compensation for real data.

choosing the proper number of TDs shall balance the pro-
cessing requirements for a system with the computational
time needed. Figure 3 depicts the filtering output with phase
compensation for real data when m = 4.
From Fig. 4, it can be observed that the filtering output of

the TD group has a smaller phase delay and better filtering
quality when phase compensation is included.

V. SIMULATION AND EXPERIMENT
A. COMPARISONS BY NUMERICAL SIMULATIONS
In this subsection, simulation results are presented to compare
the Ftd algorithm based differentiator with the other four
common differentiators. Specifically, we compare the errors
of signal-tracking and differentiation acquisition among the
following four different methods.

DI. Classic tracking differentiator based on two inertia
elements [16]. ẋ1 = x2,

ẋ2 = −
1
τ1τ2

(x1 − v)+
τ1 + τ2

τ1τ2
x2

DII. Sliding-mode technique based robust exact differen-
tiator [10].{

ẋ1 = x2 − α|x1 − v|0.5sign(x1 − v),
ẋ2 = −βsign(x1 − v)

DIII. Tacking differentiator based on Fhan
algorithm [16], [17].

u(k) = Fhan(x1(k)− v(k), x2(k), r0, c0h),
x1(k + 1) = x1(k)+ hx2(k),
x2(k + 1) = x2(k)+ hu(k), |u(k)| ≤ r

DIV. The proposed tracking differentiator based on Ftd
algorithm.

u(k) = Ftd(x1(k)− v(k), c1x2(k), r0, c0h),
x1(k + 1) = x1(k)+ hx2(k),
x2(k + 1) = x2(k)+ u(k)h.

We use the Matlab program and the Euler method for this
investigation. We generate the same input signal sequence
v(t) = sin(0.25π t) + n(t), initial value (x10 = 0.1, x20 = 1)
and the sampling period h = 0.001 for all simulations.
Therein the n(t) is the random noise with the expression
n(t) = 0.1 ? rand(1) in Matlab code. The all relevant param-
eters are selected by means of trial and error. Specifically,
for the classic differentiator DI, the parameters are τ1 =
0.01, τ2 = 0.02; for differentiator DII, the parameters are
α = 1.5, β = 36. For differentiator DIII and differentiator
DIV, the damping factor is c1 = 2 the quickness factor is
r0 = 100, the damping factor is c1 = 2, and the filtering
factor is c0 = 3. The results from comparing errors of
signal-tracking and differentiation acquisition among these
four differentiators are demonstrated in Fig. 5 and Fig. 6. The
average of absolute error (AAE) including tracking error (TE)
and differentiation error (DE) for the four differentiators are
presented in Table II.

According to the above results, we determine that, dif-
ferentiators of DIII and DIV produce smaller errors both
in signal tracking and differentiation acquisition, as the dis-
continuous function of DII produces a chattering problem
and classic tracking differentiator DI based on two inertia
elements would amplify the noise.What’s more, the proposed
differentiator DIV performs better in signal-tracking and dif-
ferentiation acquisition than differentiator DIII.

FIGURE 5. Comparisons of signal-tracking errors by four differentiators.

TABLE 2. The average of absolute error for the four differentiators.
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FIGURE 6. Comparisons of differentiation acquisition errors by four
differentiators.

FIGURE 7. Experimental platform for calculating execution time using
MCU (STM32F405).

TABLE 3. Comparisons of execution time among three algorithms.

B. COMPARISONS OF ALGORITHM EXECUTION TIME
We test how the proposed Ftd algorithm affects real-time
execution. For this, the chip STM32F405 is adopted to com-
pare the execution time needed for processing the same input
signal by the three algorithms respectively (Fig. 7). In these
experiments, the average execution time is calculated and
presented in Table 3.

From such comparisons, we can observe that the proposed
Ftd algorithm can help speed up real-time execution, which
is beneficial for practical engineering applications.

VI. CONCLUSION
An efficient tracking differentiator (TD) based on a time
criterion for the double integral systems is proposed. Under
any given sampling period, the time-criterion based feed-
back control is presented to construct the TD. It relaxes the
strict constraint on the sampling time for the discrete time
optimal control (Fhan) based TD. The frequency domain
analysis showed that the filtering factor is of high importance

in signal-tracking filtering performance. Using the proposed
TD group scheme can keep good balance between filtering
quality and phase delay. The simulation results show that
the proposed TD has advantages of smaller errors of signal
tracking and differentiation extraction over existing common
differentiators. Our experimental results showed that this new
TD requires shortest real-time execution for processing the
same input signals. Future work will include analyzing the
convergence of the proposed Ftd algorithm and the stability
of this TD.

APPENDIX A
In this appendix, we solve Task 1 and Task 2 in Section II in
detail.

For Task 1, when h ≤ tA, the control signal is u = −s;
otherwise, that signal value should be decreased to guarantee
that the state pointM (x10, x20) can be driven to the switching
curve Γ within the sampling time h. When the state point is
located above the Γ , s = +1 and the control signal takes on
u = −uas. ua satisfies the following equations: x1 = x10 −

1
2ua

(x22 − x
2
20)

x2 = x20 − uah
(13)

Therefore, x1 = 1
2x

2
2 exists when the initial state point is

driven back to the switch curve by the corresponding control
signal sequence. If ua is taken as being unknown, then

1
2
h2u2a + (

1
2
h2 − hx20)ua +

1
2
x220 − x20h− x10 = 0. (14)

The discriminant of (14) is

4 = (
1
2
h2 − hx20)2 − 2h2(

1
2
x220 − x20h− x10)

=
1
4
h4 + h3x20 + 2h2x10.

There are two possible cases as follows.
1) When x20 ≥ 0, the discriminant satisfies the condition

that

4 >
1
4
h4 + 2h2(x10 +

1
2
x220)

=
1
4
h4 + 2h2(x10 +

1
2
x20|x20|) >

1
4
h4 > 0;

2) When x20 < 0, x10 − 1
2x

2
20 > 0 can be derived because

x10 + 1
2x20|x20| > 0. Therefore,

4 =
1
4
h4 + h3x20 + 2h2x10

>
1
4
h4 + h3x20 + 2h2

1
2
x220 = h2(x20 +

1
2
h)2 ≥ 0.

For these two cases, the discriminant can always satisfya
> 0. Furthermore, two unequal real roots can satisfy

x2(h) < 0. Because x2(h) = x20 − uah = h
2 ±

√a

h < 0,
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the positive root is excluded and the expression of ua is
obtained as follows:

ua = −
1
2
+

1
h
x20 +

1
2

√
1+

4
h
x20 +

8
h2
x10. (15)

Similarly, when state point M is located below Γ , s = −1
and the control input is u = uas. It can be derived that

ua = −
1
2
−

1
h
x20 +

1
2

√
1−

4
h
x20 −

8
h2
x10. (16)

To sum up, the resulting expression of ua when state point
M is located above or below Γ is

ua = −
1
2
−
s
h
x20 +

1
2

√
1+ (

4
h
x20 −

8
h2
x10)s (17)

where parameter s has the same definition as described in the
previous section.

For Task 2, when state pointM is located on the switching
curve Γ , i.e., Γ (x10, x20) = 0. Without loss of generality,
we consider the state pointM as being in the fourth quadrant,
then it satisfies x1(t) = 1

2x
2
2 (t). When h ≤ tB (tB =

|x20|), the control law is u = −sign(x20). However, when
h > tB, the control signal value should be decreased to
guarantee that state pointM can be driven back to the origin.
In order to drive the state point M back to the origin within
only one step, the control signal must satisfy the following
condition:

x1(t) = x10 + x20t +
∫ t

0

∫ τ

0
u(σ )dσdτ = 0

x2(t) = x20 +
∫ t

0
u(τ )dτ = 0.

(18)

where t = h. For simplicity, we suppose u = a + bt (t = h)
and substitute it into (18). Thus we have

x20 + ah+
1
2
bh2 = 0

x10 + x20h+
1
2
ah2 +

1
6
bh3 = 0,

(19)

which leads to
a = −

2
h2

(2x20)h+ 3x10)

b =
6
h3

(x20)h+ 2x10).
(20)

APPENDIX B
In this appendix, we present the proof of Theorem 1. We split
the proof into two steps according to the initial condition of
x2(0) when x20 ≥ 0 x20 < 0, respectively.
Step 1: When x20 ≥ 0 (note that x20 < h and x10 < h2

because tA = x20 +
√
x10 + 1

2x
2
20 < h), since

h(x20 +
2
h
x10) = hx20 + 2x10

> x220 + 2x10 = 2(
1
2
x220 + x10) > 0

and ua > 1
hx20 ≥ 0, u2a < 1 is derived by proving ua < 1.

The followings are equivalent inequalities:

ua < 1⇔

(
3
2
−

1
h
x20)2 >

1
4
(1+

4
h
x20 +

8
h2
x10)⇔

2(1−
1
h2
x10) > 0 >

4
h
x20 −

1
h
x220 −

1
h2
x220 ⇔

x10 < h2, x20 < 4h.

The above inequalities hold because x20 < h, x10 < h2.
Step 2:When x20 < 0,

x10 +
1
2
x20|x20| > 0, x10 −

1
2
x220 > 0.

Thus, we have

ua > −
1
2
+
x20
h
+ |

1
2
+
x20
h
| > −1.

The final step is to prove ua < 1 and demonstrate the
existence of equivalent inequalities. We have

ua < 1⇔

3−
2
h
x20 >

√
1+

4
h
x20 +

8
h2
x10 ⇔

2+
1
h2
x220 >

4
h
x20 +

2
h2
x10.

Because tA < h, x10 < 1
2x

2
20 + h

2
+ 2|x20|h, we have 1

2x
2
20 <

x10 < 1
2x

2
20 + h2 + 2|x20|h. Substituting the inequality into

the last equivalent inequality above, we can derive that

4
h
x20 +

2
h2
x10 <

4
h
x20 +

2
h2

(
1
2
x220 + h

2
+ 2|x20|h)

= 2+
1
h2
x220 +

4
h
(x20 + |x20|) = 2+

1
h2
x220.

Thus, 4
hx20 +

2
h2
x10 < 2 + 1

h2
x220, which always satisfies

|ua| < 1.
For a general discrete-time double-integral system, its con-

trol signal sequence is obtained by substituting the x1 and x2
with z1 and z2 respectively, where z1 =

x1
r and z2 =

x2
r .

Deriving ua easily satisfies the condition |ua| < r and the
proof is completed.
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