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ABSTRACT Synthesizing sketches from facial photos is of great significance to digital entertainment. Along
with higher demands on sketch quality in a complex environment, however, it has been an urgent issue on
how to synthesize realistic sketches with the limited training data. The existing face sketch methods pay
less attention to the insufficient problem of the training data, leading to the synthesized sketches with some
noise or without some identity-specific information in real-world applications. Target on providing sufficient
photo-sketch pairs to meet the demand of users in digital entertainment, we present a cross-domain face
sketch synthesis framework in this paper. In the photo-sketch mixed domain, we leverage the generative
adversarial network to construct a cross-domain mapping function and generate identity-preserving face
sketches as the hidden training data. Combined it with the insufficient original training data, we provide suf-
ficient training data to recover the underlying structures and learn the cross-domain transfer of the high-level
qualitative knowledge from the photo domain to the sketch domain by the latent low-rank representation.
The qualitative and quantitative evaluations on the public facial photo-sketch database demonstrate that the
proposed cross-domain face sketch synthesis method can solve the insufficient problem of the training data
successfully. And it outperforms other state-of-the-art works and generates more vivid and cleaner facial
sketches.

INDEX TERMS Face sketch synthesis, cross-domain, latent low-rank representation.

I. INTRODUCTION
Face sketch synthesis technique has drawn considerable inter-
est in entertainment [1]. For instance, in many public are-
nas such as parks, artists draw face sketches for tourists.
It takes a lot of time and money. A photo app with a
face sketch synthesis technique can give its users the power
to synthesize their sketches and show them on the social

The associate editor coordinating the review of this manuscript and
approving it for publication was Peter Peer.

media network or face sketch wall freely after taking photos
immediately (Fig.1). Since there exist various users, the face
photos taken by them are different. For instance, some
facial photos with the identity-specific information in mul-
tiple views are taken under the abnormal lightings. But the
dataset for training synthesis model is limited. In most cases,
it includes only facial photos and sketches in the frontal view
under the normal lighting environment. With the insufficient
training pairs, it is hard to recover the underlying structure
or construct the mapping model by the existing face sketch
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FIGURE 1. Example of face sketch synthesis application.

synthesis methods. The synthesized sketches may lose some
identity-specific information or appear noisy and distorted.
Only if we get prepared with the sufficient training photos
and sketches can we generate realistic sketches to meet the
demands of users in entertainment.

The state-of-art methods pay less attention on solving the
insufficient problem of the training data. Only two simple
strategies are proposed in the conventional works. On the
one hand, some face sketch synthesis methods leverage the
manipulation of linear combination to produce a new patch
[2]–[4], [6]. But some characteristics are not included in the
generated patches resulting from the simple linear manipu-
lation. Only by a nonlinear cross-domain mapping can we
synthesize a satisfying new patch. On the other hand, some
existing methods [5] utilize an expansion of the searching
area from the local to the global for finding more similar and
sufficient patches. But the lack of local constraint results in
the loss of some structures, such as the bridge of the nose.
In summary, the existing synthesis frameworks cannot deal
with insufficient problem very well.

Target to synthesize face sketches when training data are
insufficient, we present a cross-domain synthesis framework.
To build sufficient training data, we learn a nonlinear cross-
domain mapping relationship in the photo-sketch mixed
domain by the generative adversarial networks (GAN). Then
the cross-domain mapping function is transferred from the
training data to the test data and the hidden sketches pre-
serving the characteristics of the test photos are generated.
Thus, the original insufficient training data and the generated
hidden data are concatenated to the sufficient training data.
To recover an underly structure and learn a cross-domain
transfer of high-level quality knowledge from the photo
domain to the sketch domain, we introduce the hidden data
to a low-rank representation (LRR) to obtain a latent low-
rank representation (LLRR). The proposed cross-domain
approach is superior to the current face sketch synthesis
methods in two aspects. 1) It is capable of synthesizing more
lifelike face sketches when the training data is insufficient

FIGURE 2. Flowchart of the proposed cross-domain synthesis method.
In the photo-sketch mixed domain, we leverage the generator network to
construct a cross-domain mapping function and generate hidden face
sketches which preserve the identity-specific information. Then we select
candidates PO and SH for the photo and the hidden sketch, respectively.
The cross-domain transfer of the high-level qualitative knowledge is
learned by LLRR.

in reality. 2) Compared to the existing methods, it pro-
duces more satisfactory results in visual effects and objective
indices. The flowchart of the proposed cross-domain face
sketch synthesis is as shown in Fig.2.

II. RELATED WORK
In this section, we make a discussion on some conventional
face sketch synthesis approaches. The state-of-the-arts can
be divided into two classes: the shallow learning-based face
sketch synthesis methods and the deep learning-based face
sketch synthesis methods.

A. SHALLOW LEARNING-BASED METHODS
The shallow learning-basedmethods transfer amanifold from
a photo domain to a sketch domain. It has three subclasses as
follows.

The subspace learning-based methods recover the struc-
tures of face photos in a lower dimensional space. For
instance, the principal component analysis (PCA) is utilized
to generate face sketch [7]–[9]. The hair region of the synthe-
sized sketches appears unclear. Since they make an assump-
tion on the whole images that the sketch domain share the
same coefficients with the photo domain. Liu et al. [2], [11]
propose a local linear embedding (LLE)-based [11] method
in the patch level. They divide images into patches, given
that the linear combination coefficients of photo patches and
sketch patches are the same. Furthermore, Song et al. [12]
shrink the image patch to pixel and present a spatial sketch
denoising (SSD)-based method. Even though it is easier
to find candidates for the test photo pixel or patch than
the whole image when training data are insufficient, these
improvements cannot solve the insufficient problem essen-
tially. Moreover, the sparse-based methods pay more atten-
tion on recovering the structure in the photo domain and
focus less on the transformation between the photo and sketch
domain.
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The Bayesian inference-based methods construct a syn-
thesized sketch based on the probabilistic graphical model
solved by a heuristic algorithm. The heuristic algorithm refers
to the expectation maximization algorithm or the alternating
minimization algorithm. Gao and Xiao et al. [13]–[15] lever-
age the embedded hidden Markov model (E-HMM) with the
Baum-Welch algorithm, Viterbi algorithm and maximum a
posteriori criterion to synthesize face sketches. Consider the
neighbor relationships of adjacent patches, Wang et al. [16]
propose a face sketch synthesis method based on a Markov
random field (MRF). Due to the superior of the MRF-based
model, a range of MRF extended methods are spawning,
such as multiple filter and feature-based method [17] and
superpixel-based method [18]. Since only one candidate
selected from training data is fed into the MRF-based model,
this candidate should contain every possible feature. In other
words, the training set should have sufficient photos and
sketches for candidate selection. Zhou et al. [3] apply a
weighted MRF method to produce the novel patches by a
linear combination. Then it is extended to a Bayesian-based
method by Wang et al. [19]. These approaches take on the
image-to-image translation task as a non-convex optimization
issue with the solution of the heuristic algorithm. Once the
algorithm gets stuck at local minima, they may not produce
enough sufficient training data and undermine the perfor-
mance of the synthesized sketches.

In the sparse representation-based method, a face photo
is often decomposed into a sparse coefficient matrix and a
dictionary for the reconstruction of the sketch [21]. Gao and
Wang et al. [22]–[24], [24] assume that the sparse coefficient
matrices in the photo and sketch modalities are the same.
And the photo and sketch domains share a similar sparse
coding. Although the number of candidates can be fixed
adaptively, some satisfying candidates cannot be found in
the local searching area when the training data is limited in
reality. To overcome these defects, Zhang et al. [5], [26], [26]
propose another type of sparse representation-based method.
It is developed for the convenience of selecting candidates in
the global area. To be specific, it utilizes the sparse coefficient
of patches, instead of pixel intensity, to select candidates to
reduce the computation cost of candidate selection on the
whole image. But without the local constraint, the synthe-
sized sketches lose some structures.

B. DEEP LEARNING-BASED METHODS
The deep learning-based methods learn a direct mapping
function between the photo modality and the sketch modality.
And the knowledge is transferred from the source domain to
the target domain. Gatys et al. [27] present an artistic style
generator. Since the higher layers of the content network
overlook the preserving of the detailed pixel information,
the delicate sketch style cannot be preserved during trans-
fer. Zhang et al. [26] utilize a generative loss to transfer
the sketch style from training samples to test samples in
mixed photo-sketch domain based on a fully convolutional

network (FCN). Even though GAN [28] leverages the gen-
erator and discriminator to stylize images, the results still
have some noises. Only convolutional layers are stacked in
the neural network, resulting in blurred contour and noise.
Zhang et al. [29] utilize the GAN to map the nonlinear rela-
tionship between the high-frequencies of the photos and
sketches and propose a dual-transfer method. Some identity-
specific information can be transferred from test photos to the
target sketches. But some noises appear on the synthesized
sketches. Zhang et al. [30] improve the GAN-based method
by adding a probabilistic graphic model and propose a coarse-
to-fine method. Although it can add the delicate details on the
coarse sketches, some noises cannot be erased from the coarse
sketches. Since the low-rank constraint can remove the noises
and uncover the data structure, it will be demonstrated that
the proposed method can synthesize the clean sketches with
an improved low-rank constraint. Zhang et al. [31] present a
Markov neural random field (MRNF) face sketch synthesis
method. It induces a neural network to the probabilistic
graphical model. Clearly, the deep learning-based methods
can transfer the knowledge of the test photos under the limited
training data, but the final results illustrate that some noises
are produced during synthesis.

III. CROSS-DOMAIN FACE SKETCH SYNTHESIS
In the proposed cross-domain synthesis work, the source task
is to construct the structure of faces in the photo domain,
while the target task is to recover the structure in the sketch
domain. But in reality, the training data is not sufficient to
learn the model. In other words, the target task has differ-
ent variables than the source task. The manifold cannot be
directly transferred from the source task because the under-
lying structures of the sketch and photo are different. Thus,
the hidden training data should first be generated.

We learn cross-domain transfer function and exploit the
characteristics of the test faces by a convolutional neural
network. Since the conditional GAN [28] including a gen-
erator and a discriminator demonstrates the promising per-
formance for synthesizing images with the characteristics
of the test samples, we select it to generate the hidden
training data.

For one thing, the generator targets to synthesize face
sketches similar to the sketches drawn by artists. The gen-
erator network connects 2 strided convolutional layers for
downsampling, 5 residual blocks, and 2 fractionally strided
convolutional layers for upsampling. For another, the dis-
criminator attempts to discriminate the synthesized sketch
and the sketch drawn by an artist. The discriminator archi-
tecture is 4 Convolution-BatchNorm-ReLU [44] layers with
64 filters, 128 filters, 256 filters and 512 filters, respectively.
The negative example of the discriminator is the pair of the
synthesized sketch and the photo. And the positive one is the
pair of the sketch drawn by the artists and the photo. Hence,
the objective function of the hidden training data generation
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optimized alternatively can be written as

min
G

max
D

V (G,D)

= Ep∼pdata(p),z∼pz(z)[log(1− D(p,G(p, z)))]

+Ep,s∼pdata(p,s)[logD(p, s)]

+αEp,s∼pdata(p,s),z∼pz(z)(‖s− G(p, z)‖1) (1)

where G and D represent the generator and discriminator,
respectively. p and s are the training photo and sketch. z is
a noise term and the distribution pz is over the noise z. The
distribution pdata is over the training face photo-sketch pairs
(p, s). α is a balance parameter between the adversarial loss
and the L1 loss.

The hidden sketches ŝ generated by the GAN is
expressed as:

ŝ = G(p′, z) (2)

where p′ is a test photo.
Then the hidden sketch ŝ is divided intoM patches Ŝ as:

Ŝ = [ŝ1, · · · , ŝM ]

We select K candidates for each patch ŝi from training pho-
tos, denoted by PH and their corresponding candidates from
training sketches, denoted by SH .

SH = [s1H , · · · , s
K
H ]

PH = [p1H , · · · ,p
K
H ]

And we divide a test photo p′ intoM patches P′ and select K
candidates for each patch from training photos as PO. Their
corresponding sketch candidates are SO.

P′ = [p′1, · · · ,p′M ]

PO = [p1O, · · · ,p
K
O]

SO = [s1O, · · · , s
K
O]

Hence, the sufficient candidates [PO,PH ] for test photo
patches P′ are achieved.
Target to uncover the underlying structure of the test photo

patches P′, we induce a low-rank constraint to guide the face
sketch synthesis as:

min
W
‖W‖∗, s.t.P′ = [PO,PH ]W (3)

where W is a weight matrix. With manipulation of the
skinny singular value decomposition for the test photo patch
matrix P′, the original photo patch matrix PO and the hidden
photo patch matrix PH , the above problem can be rewritten
as:

min
W
‖W‖∗, s.t.U6VT

P′ = [U6VPO;U6VPH ]
TW (4)

where U is a complex unitary matrix. 6 is a rectangular
diagonal matrix. VP′ , VPO and VPH are the complex unitary
matrix of the test photo patch matrix P′, the original photo
patch matrix PO and the hidden photo patch matrix PH ,
respectively. Due to the orthogonality of the unitary matrix

FIGURE 3. Comparison of different components in the cross-domain
synthesis approach. (a) Input photos. (b) Results of the GAN. (c) Results
of the LRR. (d) Results of the cross-domain synthesis approach.

U and the rectangular diagonal matrix 6, we can reformulate
Eq. (4) as follow.

min
W
‖W‖∗, s.t.VT

P′ = [VPO;VPH ]
TW (5)

According to the theoretical results of [35], [36], Eq. (5) has
a closed-form solution. And its unique minimizer is:

W∗ = [VPO;VPH ]V
T
P′ (6)

Then we obtain the photo patches P′ in line with Eq. (3).

P′ = [PO,PH ]W∗

= [PO,PH ][VPO;VPH ]V
T
P′ (7)

We can transfer the weight matrix W from photo to sketch
modalities and generate the sketch patches S′, resulting from
the satisfying locality aware reconstruction. It is guaranteed
by the low-rank constraint in the proposed cross-domain
synthesis approach. The target sketch patches can be recon-
structed by the source sketch patches corresponded to the test
photo patches with the same weight matrixW∗.

S′ = [SO,SH ]W∗

= [SO,SH ][VSO;VSH ]V
T
S′ (8)

Finally, the generated sketch patches S′ are fused to a clean
and vivid target sketch s′ with the characteristics of the test
photo.
We compare the different components of the proposed

method in Fig.3. The GAN can generate the identity-
preserving face sketches, resulting in sufficient training data.
But some noises appear on the generated sketches. The LRR
has the property of a smoothing image but it loses some
characteristics. When we induce the GAN into the LLRR,
the synthesized sketches are clean and delicate. It demon-
strates that the proposed cross-domain synthesis method can
solve the insufficient problem of the training photo-sketch
pairs successfully.
As shown in Algorithm 1, the proposed cross-domain face

sketch synthesis is summarized.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We conduct the experiments on the CUHK student database,
the AR database [37], and the XM2VTS database [38],
as shown in Fig.4, and compare the cross-domain synthesis
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Algorithm 1 Cross-Domain Sketch Synthesis From a Face
Photo

Input: patches of the training sketch-photo pairs P and S,
a test photo p′, K , α;
Steps:
1. Synthesize a hidden sketch ŝ from p′ according to

Eq. (2);
2. Divide p′ and ŝ into patches p′j and s′j, j = 1, · · · ,M ,

respectively;
3. For each p′j and each ŝj, do:
3.1. Find K photo candidates for p′j from P denoted

by PO. Their corresponding sketch patches selected from
S denoted by SO;

3.2. Find K sketch candidates for ŝj from S denoted
by SH . Their corresponding photo patches from P denoted
by PH ;

3.3. Calculate the parametersW∗ according to Eq. (6);
3.4. Synthesize sketch patches S′ from the observed

sketch patches SO, the hidden sketch patches SH , and the
parametersW∗ according to (8);
4. Reconstruct the target sketch s′ from S′;

Output: a final sketch s′.

FIGURE 4. Examples of pairs in experiment. (a)-(c) The pairs from CUHK
student database [16], AR database [37], and XM2VTS database [38],
respectively.

approach with the current approaches including the shallow
and deep learning-based approaches.

A. EXPERIMENTAL SETTINGS
The parameters of the cross-domain synthesis approach are
set as: the candidates K is set to 15, the image patch is in the
size of 19, the overlap size is 14, the size of search region
is 5, and the balance parameter α is 100. The momentum
parameter β1, momentum parameter β2 and learning rate l are
set to 0.5, 0.999 and 0.0002.We randomly choose 88, 100 and
100 sketch-photo pairs from the CUHK student database,
the AR database, and the XM2VTS database for training the
GAN. And the remaining 100, 23 and 195 pairs are for test.
For the discriminator, we divide generated and artist-drawn
sketches into patches in the size of 70 × 70. We train the
GAN on Ubuntu 14.04 system with 12G NVIDIA Titan X
GPU with Torch.

B. FACE SKETCH SYNTHESIS
In Fig.5, we demonstrate visual comparisons of the cross-
domain synthesis approach with the current approaches.

The cross-domain synthesis approach preserves more char-
acteristics, such as the bangs in the fourth and fifth lines,
the glasses in the fourth line, and the ear in the first line. The
generated sketches by MRF-based method [16] are lack in
some characteristics, such as the glasses in the last line, and
the ear in the first row. Since only one candidate is leveraged
to synthesize a sketch. Once the candidate selected from the
insufficient training data excludes the characteristics of the
test photo, the synthesized sketch will lose the specific infor-
mation. The linear combination-based methods can generate
some new patches under the experimental environment, but
they do not work in complex practical application. The tex-
tures generated by the SST-based method are not satisfying,
especially in the first three lines. The GAN-based and FCN-
based approaches deliver a noisy impact on faces. Although
the sketches synthesized by the dual-transfer method preserve
the high-frequency detail information, some noises appear
on the sketches, such as mouth regions in the first three
lines of the Fig.5. The coarse-to-fine method generates subtle
details on the synthesized sketches, such as the bang in the
fourth line of the Fig.5. But it cannot erase some noises from
the coarse sketch to the fine sketch, such as the left ear in
the first line. Because the probabilistic graphic model cannot
remove the noises well with a simple smooth compatibility
function.

C. FACE SKETCH RECOGNITION
We conduct the face recognition experiments from different
aspects by the unsupervised method: Eigenface, and the
unsupervised method: Fisherface [39] and null-space linear
discriminant analysis (NLDA) [40]. Table 1, Table 2 and

TABLE 1. Comparision of recognition accuracy using eigenface(%).

TABLE 2. Comparision of recognition accuracy using fisherface(%).
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FIGURE 5. Comparison between the cross-domain synthesis approach and the current approaches. (a) Input photos.
(b)-(f) Results of the shallow-learning based approaches including the LLE-based [2], MRF-based [16], MWF-based [3],
Bayesian-based [4], and SST-based [5] approaches. (g)-(i) Results of the deep-learning based approaches including the
GAN-based [28], FCN-based [27], MRNF-based [31] dual-transfer [29] and coarse-to-fine [30] approaches. (j) Results of
the cross-domain approach.

TABLE 3. Comparision of recognition accuracy using NLDA(%).

Table 3 are concerned with the recognition accuracy rates
of the different synthesis approaches by Eigenface, Fisher-
face, and NLDA, respectively. The recognition accuracy rate
using NLDA by the proposed method achieves 100%. The
cross-domain synthesis method is the second-best performing
approach for recognizing the identity of the synthesized
sketches by Eigenface and Fisherface. The dual-transfer
method performs better than the proposed method. It lies in
the fact that it leverages a GAN to learn the high-frequency
information of the target sketch. And the high-frequency
information includes most of the identity-specific informa-
tion, leading to satisfactory recognition performance. The
cross-domain synthesis method does not specially design a
neural network for producing the identifiable facial infor-
mation. We can improve the cross-domain synthesis method
by drawing on the thought of the dual-transfer method with

the high-frequency information. The SST-based approach
tries to provide a bigger searching region for candidates,
but it ignores the local constraint and loses some com-
ponents. Thus, its accuracy rates are the lowest in three
face recognition indices. The accuracy rates of the linear
combination-based methods are lower than those of the
cross-domain synthesis approach. Since the proposed nonlin-
ear combination-based method can produce more sufficient
candidates than the linear ones. The MRNF-based method
reaches the high recognition rate using NLDA. But it gets
slight smaller recognition rates using Eigenface and Fisher-
face for its lack of some hair information.

D. IMAGE QUALITY ASSESSMENT
By following the existing face sketch synthesis approaches
for comparison, we utilize the visual information fidelity
index (VIF) [42] and the structural similarity index (SSIM)
[43] to evaluate the cross-domain synthesis approach quanti-
tatively [39], as shown in Table 4 and 5. The proposed cross-
domain approach outperforms the other approaches in the
SSIM average value (0.4719). Since the probabilistic graphic
model is worse than the latent low rank in removing the
noises. Both SSIM and VIF average values of the sketches
synthesized by the coarse-to-finemethod are lower than those
by the proposed method. The dual-transfer method adds the
high-frequency information to the final results, resulting in
the higher VIF average value. But the noises of its synthesized
sketches hamper the SSIM average value (0.4587) of the
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TABLE 4. SSIM Values of different approaches.

TABLE 5. VIF Values of different approaches.

dual-transfer method. The SST-based approach performs the
poorest either on the VIF average value or on the SSIM
average value. Since they lost some textures, leading to bad
visual effect, and lost some facial structures, resulting in poor
structural information. The GAN-based [28] and FCN-based
[27] approaches produce some noises in the final results,
resulting from the lower VIF average value.

E. COMPUTATIONAL COMPLEXITY
We make a comparison in the computation cost of the cross-
domain synthesis method with two representative methods.
They are the FCN-basedmethodwith the fastest speed and the
dual-transfer method with the best performance in the exist-
ing face sketch synthesis methods. The FCN-based method
is in an end-to-end structure. The average time consumption
of it to synthesize one sketch is 0.04s. It is faster than the
proposed method, but the synthesis performance is worse
than the proposed method. The most time-consuming part of
the proposed method is the process of selecting candidates.
It is O(cp2 MN ). c and N represent the number of patches
in the searching region and training data, respectively. p2

denotes the area of the patch. M is the number of patches
in the test photo. The time complexity of the dual-transfer
method is O(cp2 MN + p2 Kmn), as listed in [29], where K is
the number of candidates. The size of the test photo is m× n.
It is slower than the proposed method. In the above, the cross-
domain synthesis method achieves the best performance of
the visual effects and the objective indices in a mediate
manner.

FIGURE 6. Comparison of the cross-domain synthesis approach with the
representative approaches on celebrity photos. (a) Input photos. (b)-(c)
Results of the shallow learning-based approaches including the
MRF-based [16] and Bayesian-based [4] approaches. (d)-(e) Results of the
deep learning-based approaches including the GAN-based [28],
MRNF-based [31] dual-transfer [29] and coarse-to-fine [30] approaches.
(f) Results of the cross-domain synthesis approach.

V. DIGITAL ENTERTAINMENT APPLICATION
In reality, many users take the photo with the different head
poses under the varied lighting conditions, while the data for
training are the face photos taken in the frontal view under the
normal lighting. The complex of the face photos of users is
greater than the data for training, resulting in the insufficient
training data issue during synthesizing face sketches.

We conduct the experiment on the celebrity face photos
downloaded from the internet, and compare the proposed
cross-domain approach with the representative approaches.
Due to the lack of face sketches on the extended CUHK
face sketch database, the model is trained on the CUHK
student face sketch database. A robust comparison of the
sketches generated by the representative approaches is shown
in Fig.6. The cross-domain synthesis approach is the top per-
former. Our synthesized sketches are more vivid than those
generated by the shallow learning-based and deep learning-
based approaches. Compared with the MRF-based approach
[16] and the Bayesian-based approach [4], the proposed
approach does not produce black regions in low-light situ-
ations and generates the complete facial components. They
are cleaner than those of the GAN-based approach [28] and
theMRNF-based approach [31]. The sketches synthesized by
the coarse-to-fine synthesis method have extra drop shadows
including the first and third lines in Fig.6. In real application,
the insufficient problem of training data is recurring often.
For instance, the training photos are taken under normal
lighting, respectively, while the test photo is taken under the
dark side illumination. Some noises appear on the sketches
synthesized by the dual-transfer method, such as the right
faces in the second line. It demonstrates the dual-transfer
method cannot deal with the insufficient issue as well as the
proposed method.
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VI. CONCLUSION
We propose a cross-domain synthesis approach for synthe-
sizing sketches from photos. We first leverage a GAN in the
photo-sketch mixed domain to learn a cross-domain map-
ping relationship from the insufficient training data. With
the cross-domain mapping relationship, the hidden training
data is generated as a complement to the sufficient training
data. We then utilize an LLRR to recover the underlying
structure and transfer the high-level quality knowledge from
the photo domain to the sketch domain. Experiment results
on the CUHK student face sketch database, AR database
and XM2TVS database illustrate the superiority and flexi-
bility of the cross-domain synthesis approach. In the future,
we would explore deep multi-task learning [45], [46] the
performance of more advanced IQA metrics for synthesis
evaluation [47]–[49].
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