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ABSTRACT Field-programmable gate arrays (FPGAs) can efficiently implement custom applications via
their embedded digital signal processor (DSP) slices, including binary multipliers. An increasing number
of binary multipliers belonging to a DSP slice usually demonstrate that it has the capacity to process as
many multiplication operations as possible in one clock cycle. In order to fully utilize the DSP resource,
in this paper, we propose a novel DSP slice optimization method to achieve parallel multiplication on
single DSP slice, namely PMSDS. First, the PMSDS splits multiplicators into two separate parts, i.e., valid
bits and vacant bits, using a customized polynomial algebra method. Then, the PMSDS pre-calculates the
maximum number of overflow bits combining the above-mentioned polynomial algebra method. Finally,
it computes the total multiplicators’ bit numbers and parallel the final multiplicators. We also propose
an optimization model to find the best parallel solution according to the performance and precision of a
single DSP slice. Moreover, we implement a PMSDS-based matrix multiplication algorithm supporting the
computing precision dynamically changing. The experiments based on a large-scale and real-world matrix
multiplication show that the PMSDS has better performance in latency and resource utilization than the
traditional, add-tree, and full-unroll methods and is more outstanding in frequency and dynamic power
consumption comparing with the state-of-the-art methods.

INDEX TERMS DSP slice, FPGAs, multiplication, performance optimization, compute resource.

I. INTRODUCTION
In embedded computing systems, DSP (Digital Signal Pro-
cessor) slices inside FPGAs (Field Programmable Gate
Arrays), are well-known as one of the most precious and
limited resources [1]–[3]. Designers always expect to use
the limited DSP resource to accomplish as much work as
possible in a given time [4]. For example, a DSP slice config-
ured as multiplier can do a multi-digit multiplication in one
clock cycle. In most cases, to accomplish massive multipli-
cation calculations in the given time, we have to use high-
performance FPGAs including as many DSP multipliers as
possible, which can cause dramatic increase in development
cost [5], [6]. Due to the cost of high-performance FPGAs,
these multiple DSP multipliers are usually only employed for
critical systems [7]–[10]. In the embedded computing design,
however, it is possible to build a high-performance embedded
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systemwithout paying the cost of FPGAs integratingmultiple
DSP multipliers. This is because that we can optimize the
structure of a multiplier and obtain more multipliers available
during the clock cycle without changing the hardware design.
In practice, many previous studies have presented various
optimization approaches for DSP multipliers [2], [6]–[16].
Here we discuss some of the reputed work from two
aspects, application-level optimization and structure-level
optimization, respectively.

Application-level optimization approaches assign DSP
multiplier resource to the executable program specified in
priority order. In that case, the increasing utilization rate
of DSP multiplier resource directly leads to the fast speed
of program execution. Ronak and Fahmy, [2], [11], [12]
presented an automated tool for mapping arbitrary multiply
expressions from the applications to FPGA DSP resource at
maximum throughput. Cheah et al. [6] presented a lean DSP
deployed method to minimize additional logic utilization.
Lucas et al. [13] proposed a methodology to infer arithmetic
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FIGURE 1. The basic of PMSDS method.

operations on DSP slices by supporting DSP resource reuse.
However, such application-level optimization approaches do
not take into account the configurable structure inside the
DSP slice.

These above optimization approaches are always tenden-
tious to improve the dispatching velocity and most of innate
functions in DSP resource are executed in a sequential
manner.

Structure-level optimization approaches analyze, design,
and reconfigure the architecture of DSP multipliers to
improve computational efficiency. Zhang et al. [8] pre-
sented a merged floating-point multiplier architecture.
Sano and Yamamoto [10] proposed a data-flow based fine-
grain parallelism architecture for scalable fluid simulation.
Fu et al. [14] proposed an architecture to process two mul-
tipliers concurrent on the same DSP slice. In our previous
work [17], we have done some optimization research of
the DSP slice in parallel and unroll loops. However, such
structure-level optimization approaches are absent from the
scale cost analysis of the candidate algorithms.

Being complementary to the above methods, this paper
proposes a parallel approach for the DSP slice and focuses
on the DSP slice input and output structure to extend the full
potential of a single DSP slice.

The contributions of this paper are listed as follows,
•we present a method of parallel multiplication on a single

DSP slice at the same cycle, i.e. PMSDSmethod. The parallel
method employs three separate steps to realize parallel mul-
tiplication. Firstly, this approach extends the multiplicators
into two separate parts, original valid bits and extended vacant
bits, by using a customized polynomial algebra method. Sec-
ondly, we propose a method to search the maximum number
of overflow bits combining the above polynomial algebra

method based on the enumeration method. Finally, it com-
putes the total bit numbers of the multiplicators and parallel
the final multiplier.
• we propose an optimization model to search the best

parallel solution according to the acceleration, precision,
and throughput of the DSP multiplier based on the Integer
Programming Optimization Theory.
•we implement a precision dynamically changing PMSDS

method, which is able to further extend the flexibility and
efficiency of the DSP slice on FPGA.

The rest of this paper is organized as follows. Section II
shows the preliminary of the DSP slice optimization method.
Section III describes the proposed optimization algorithm
in detail. Section IV presents the experimental results. And
Section V concludes this paper and outlines the future
work.

II. PRELIMINARY
Our parallel approach is based on the analysis of the poly-
nomial algebra multiplication [17]–[19], and we summarize
three rules for the parallel multiplier design, as shown in
Figure 1. The first rule is for the decomposition of multi-
plicator units. we propose a customized polynomial algebra
method by splitting the multiplicator units into two separate
parts, valid bits and vacant bits, respectively. The valid bits
are of the actual multiplicator bits and the vacant bits are of
the extended bits for the higher bits of the product. The sec-
ond rule is for the calculation of the maximum number of
overflow bits. We pre-calculate the maximum overflow bits’
number and reserve them in the bit number of the multipli-
cator unit to keep the parallel products no contamination.
The third rule is for the multiplier parallel segmentation.
we calculate the final bit numbers and parallel numbers of
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the multiplicators and parallel products to implement parallel
multiplier. The details of the above three rules are as follows.
Rule1 Decomposition of Multiplicator Units: The maxi-

mum valid bits’ number of the product from a multiplier,
is the sum of two input multiplicators’ valid bits’ num-
bers [18]. So, if we extend the bit number of two multiplica-
tors from a multiplier with vacant value 0, and guarantee that
the total bit number of each multiplicators equals the sum of
their original valid bit numbers, the product of these multiple
multiplicators in parallel can be separable.

In this rule, we use Formula (1) to express the multiplica-
tors units as follows,

A =
n∑
i=0

(ai12vA + ai0)2iι,

B =
k∑
j=0

(bj12vB + bj0)2jι (1)

where ai0, bi0 are the multiplicators’ original valid bits,
ai1 and bi1 are the extended bits of the multiplicators, vA and
vB are the bit numbers of ai0 and bi0, n and k are themaximum
decomposition values of A and B, ι is the counting unit of the
multiplier.

We use Na and Nb to present the numbers of multiplicators
ai and bi, and the values ofNa andNb are (n+1) and (k+1) as
defined in Formula (1). And Na and Nb are to be the parallel
numbers of the multiplicator units.

Based on Formula (1), the product of A and B can be
expressed as Formula (2),

AB =
n+k∑
τ=0

cτ2τ ι, cτ =
∑
i+j=τ

ai0bj0, (2)

where τ is the coefficient of counting unit ι, cτ is the product
sum (or product, when the solution number of i+ j = τ is 1,
i.e. i = 0, j = 0 or i = n, j = k) of multiplicators’ original
valid bits, and i is in range from 0 to n, j is in [0, k], n, k and
ι are the same as Formula (1).
As shown in Formula (2), the values of cτ are the parallel

products that we want to calculate inparallel multiplication.
We use Np to present the number of cτ , and the value of Np
is (n + k + 1), as defined in Formula (2), or calculated by
Na and Nb, as (Na + Nb − 1). And Np is to be the segmented
number of parallel products.

As shown in Figure 1, we define a multiplier with the
variables of unsigned 8 valid bits and unsigned 7 valid bits,
and the product’s valid bit number is 15 (8 + 7 = 15).
It is worth noting that, the valid bit here is for the variable
type, not the actual value, e.g. the valid bit number of the
short type variable is 16, the valid bit number of a char type
variable is 8, and the valid bit number of an arbitrary precision
type, (u)int< n >, is n. To show more clearly of the multi-
plicator units decomposition and parallelization, we present
two multiplicator units in parallel, i.e., 0xFE(a00)∗0x7E(b00)
and 0xF5(a10)∗0x75(b10), and the values of 0xFE and 0xF5

represent 8 valid bits multiplicators (uint<8>), and the val-
ues of 0x7E and 0x75 represent 7 valid bits multiplicators
(uint<7>). We extend the above two multiplicators’ bit num-
bers to 15 with the vacant value 0, and the valid bits of their
product can be stored within the extended part.

Forth type variables signed, there are some differences.
The vacant bit value of signed variables is the value of their
sign bit. For the highest multiplicator unit, the vacant bit
needs to be extended to the leftmost bit of final multiplicator.
In this way, the sign info of lower multiplicators can be well
preserved, and the sign info of the final multiplicator is taken
in the highest multiplicator unit. Moreover, as shown in the
sum operation in Formula (1), it needs to subtract 1 to the
multiplicator itself, if the lower multiplicator unit is negative.
Except the lowest multiplicator unit, there is no lower multi-
plicator unit for the sum operation. It is noteworthy that, when
the negative multiplicator is in the highest, the subtraction
operation of themultiplicator may lead to the final multiplica-
tor sign bit converting, if the value of the multiplicator is the
minimum negative value and the vacant part is absent when
the input port width of the multiplier is limited, that we will
see in Section III. To avoid this instance, it needs to reserve
one bit for the sign bit of the highest multiplicator, in the final
multiplicator, to keep the signed multiplication correct.
Rule 2 Calculation of Overflow Bits Number: In the par-

allel multiplication of multiplicator units decomposed in
Rule 1, the sum operations of cτ in Formula (2), may generate
overflow bits, which may lead to the contamination in final
parallel products. In this rule, we pre-calculate the number of
overflow bits and reserve them in the bit number of a mul-
tiplicator unit, to make the product of the parallel multiplier
separable.

In binary systems, the number of overflow bits can be cal-
culated with a log2 function with the partial product number
from amultiplication operation [19].Moreover, to prevent the
contamination of parallel products, the reserved bit number
of the overflow bits needs to be long enough to contain
the longest overflow bits generated by the partial products’
sum operation in Formula (2). So, we use the maximum
bit number of all the overflow bits generated by each sum
operation in Formula (2) as the final reserved bit number
of overflow bits. And the problem of finding the maximum
partial product number of each sum operation in Formula (2),
can be described as follows,

Given i ∈ [0, n], j ∈[0, k], τ ∈[0, n+k], i, j, τ , n, k ∈ N , for
each τ , find the solution number of i and j, meeting (i+j = τ ),
and obtain the maximum solution number.

We divide the problem into two parts as follows.
• When n equals k , the maximum solution number is the

number of values in [0, n(or k)], i.e. (n+ 1).
It can be proven with Set method as follows.
We analyze i first. As i is in [0, n], the value number of i is

n+ 1. As τ is in [0, n+ k],
(1) If τ is in [0, n), (τ − i) is in [-n, n). As j is in [0, k] and

k equals n, the solutions of jmeeting (i+ j = τ ), are in [0, n).
As the value number in [0, n) is less than n+ 1, the possible
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solution number of j, is to be less than n + 1. Consequently,
the solution number of i, is less than n+ 1.

(2) If τ is equal to n, (τ − i) is in [0, n]. That is to say, for
any i in [0, n], we can find the value that meets (i + j = τ )
in [0, n]. As j is in [0, k] and k equals n, the solution number
of i and j, meeting (i + j = τ ), is the value number in [0, n],
i.e. (n+ 1).

(3) If τ is in (n, n+k], (τ− i) is in (0, n+k]. As j is in [0, k]
and k is less than n+ k , the solutions of jmeeting (i+ j = τ ),
are just in (0, k]. As k equals n, the value number in (0, k] is
less than n+1, i.e., the possible solution number of j, is to be
less than n+1. Consequently, the solution number of i, is less
than n+ 1.
And the analysis for j, it is the same. So, when n is equal

to k , the maximum solution number is n+ 1.
•When n is not equal to k , the maximum solution number

is the less one of the value numbers of i and j.
It can also be proven with Set method, as follows,
Suppose n is less than k . We analyze i first. As i is in

[0, n], the value number of i is n+ 1. As τ is in [0, n+ k],
(1) If τ is in [0, n), (τ − i) is in [ −n, n). As j is in [0, k]

and n is less than k , the solutions of jmeeting (i+ j = τ ), are
just in [0, n). As the value number in [0, n) is less than n+ 1,
the possible solution number of j is to be less than n + 1.
Consequently, the solution number of i, is less than n+ 1.
(2) If τ is in [n, k], (τ − i) is in [0, k]. As j is in [0, k], for

any i in [0, n], we can find the value that meets (i + j = τ ).
So, the solution number of i meeting (i+ j = τ ), is the value
number of i, i.e. (n+ 1).
(3) If τ is in (k , n + k], (τ − i) is in (k − n, n + k]. As k

is greater than n, (k − n) is greater than 0. Meanwhile, as j is
in [0, k] and k is less than (n+ k), the solutions of j meeting
(i + j = τ ), are just in (k − n, k]. As the value number in
(k − n, k] is less than n+ 1, the possible solution number of
j is to be less than n + 1. Consequently, the solution number
of i, is less than n+ 1.

So, for i, the maximum solution number of i and j meeting
(i+ j = τ ), is the value number of i, i.e., (n+ 1).

And for j, as j is in [0, k], i is in [0, n], and n is less than k ,
the maximum value number of i is less than j. So, the possible
solution number of i and jmeeting (i+j = τ ), is no more than
the value number of i, i.e., (n+ 1).

Based on the analyses for both i and j, when n is less than k ,
the maximum solution number of i and j meeting (i+ j = τ ),
is (n+ 1).

Similarly, it can be proven that when n is greater than k ,
the maximum solution number is (k + 1).
So, when n is not equal to k , the maximum solution number

is the less value number of [0, n] and [0, k].
As the proofs of the two parts above, we obtain the conclu-

sion to the above problem, that themaximum solution number
of i and jmeeting (i+ j = τ ), is the less (including equal) one
of the value numbers of i and j.
Therefore, the maximum partial product number of sum

operations in Formula (2) is to be the less value number
of ai and bi, i.e., Na or Nb. If we use Omax to present the

maximum number of overflow bits, and use Nmax to present
the maximum partial product number, the maximum number
of overflow bits can be calculated as Formula (3).

Omax = log2(Nmax), Nmax = min(Na,Nb), (3)

where Na and Nb are the maximum parallel numbers of
multiplicators ai and bi.
As shown in Figure 1, in the parallel multiplication of

0xFE(a00)∗0x7E(b00) and 0xF5(a10)∗0x75(b10), the parallel
numbers of multiplicator A and B are both 2. And there are
four partial products, 0x7D04, 0x7896, 0x7416 and 0x6FF9.
The partial product numberswith the coefficient τ values of 0,
1, 2, are 1, 2, 1, and the maximum is 2, which is the same with
the parallel numbers of A and B. With the maximum partial
product number 2, we use the log2 function to calculate the
final bit number of overflow bits, and the result is 1. Actually,
there are only two partial products, 0x7896 and 0x7416, to be
calculated with a sum operation and will generate an extra
overflow bit of 1-bit.
Rule 3 Parallel Segmentation: Up to now, the multiplica-

tor unit consists of three parts, original valid bits, extended
vacant bits, and overflow bits. To parallel the multiplication,
we recombine the three parts as one parallel multiplicator
unit, and join multiple parallel multiplicator units head and
tail, to implement parallel multiplication.

If present the extended vacant bits as Sext , and mark the
sign info of the lower multiplicator unit as Slower , the parallel
multiplicator units can be calculated as follows.

ai = (Sext_aai0 − Slower_a)2i(Omax+νB+νA)

bj = (Sext_bbj0 − Slower_b)2j(Omax+νA+νB), (4)

where ai, bj are parallel multiplicator units, ai0, bj0 are the
original valid bits, Omax is the maximum number of overflow
bits, vA, vB are the bit numbers of ai0 and bi0, i is in [0, n], j is
in [0, k], Slower is 0 for the lowest parallel multiplicator unit,
and for unsigned variables, Sext and Slower can be ignored.
We use Lp to present the bit number of a parallel multipli-

cator unit, and the value of Lp is to be (Omax+vA+vB), which
also is the bit number of a parallel product.

We join these parallel multiplicator units head and tail for
both A and B, and implement multiplication on a multiplier.
Based on the analysis of Formula (2), the output product of
the multiplier, is the sum of multiple partial products and/or
partial product sums of the multiplicator original valid bits.
And we can separate these partial products (sums) without
contamination as the bit number has been reserved in the par-
allel multiplicator unit. That means, we can achieve multiple
multiplication operations or multiple groups of multiplication
and summation operations on one multiplier in one clock
cycle. We call this multiplier as parallel multiplier.

For the parallel multiplier, the parameters of parallel mul-
tiplicator include the valid bit numbers, i.e., vA and vB,
the overflow bits’ number, i.e., Omax , and the parallel num-
bers, i.e., Na and Nb. And the parameters of parallel product
are, the parallel product bit number, which is the length of a
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parallel multiplicator unit, i.e., Lp, and the parallel number,
i.e., Np. The parameters of the parallel product can be calcu-
lated with the parameters of parallel multiplicators, as (Lp =
Omax + vA + vB) and (Np = Na + Nb − 1). With the parallel
parameters above, we can implement a parallel multiplier
made up of multiplicator paralleling, parallel multiplying and
product splitting three steps. And the parallel parameters
are employed by the multiplicator paralleling and product
splitting steps, to parallel the input multiplicators and split
out the parallel products.

As shown in Figure 1, after the parallel segmentation,
the bit number of the parallel multiplicator unit is 16, 16 of
(1 + 7 + 8) for 8 valid bits multiplicators (0xFE and 0xF5),
and 16 of (1 + 8 + 7) for 7 valid bits multiplicators (0x7E
and 0x75). And the parallel numbers of parallel multiplicator
units A and B are both 2. After the parallel multiplication,
the parallel products’ number is 3. As shown in Figure 1,
product 1 is the product of (0xFE∗0x7E), and product 3 is
the product of (0xF5∗0x75). For product 2, it is the result of
(0xFE∗0x75+0xF5∗0x7E). And we can choose these results
according to the application requirements. In the parallel
multiplication above, we achieve 2 multiplication operations
and a group of 2 multiplication operations and 1 summation
operations on one parallel multiplier in one clock cycle. The
values of parallel parameters in the example parallel multi-
plier are, vA and vB, are 8 and 7, Omax , is 1, Na and Nb are
both2. And the values of the parallel product parameters are,
Lp is 16, and Np is 3.

In particular, for the signed format variable, in the product
splitting step, if the lower parallel product is negative, it needs
to add 1 to the result of the parallel product split. It is because
of the sign bit extension of negative values, and the value of
the higher split product actually is the sum with 2Lp− 1 [20],
not 2Lp.
Hence, if we implement parallel multiplier on one DSP

slice, the single DSP slice is able to achieve the parallelism
of multiple multiplication operations or multiple groups of
multiplication and summation operations in one clock cycle.
And if we make the parameters of the parallel multiplicators
configurable, the precision of DSP slice may support being
configured dynamically during run-time. However, as the
bit numbers of DSP slice input ports are limited, it is not
possible to implement any parallel multiplier on one DSP
slice. Moreover, for the limited bit numbers of the DSP slice
input ports, there will be multiple groups of the parallel
parameters available, and in some of them, the numbers of
the multiplicator valid bits are very small, that will make the
DSP slice inefficient. So, in next section, we will discuss the
implementation approach for the optimal parallel multiplier
on a single DSP slice.

III. PARALLEL MULTIPLIER ON A SINGLE DSP SLICE
A typical function of DSP slice in FPGA, is the multiplication
function (multiplier), and the function is mainly improved
by the precision extending, e.g. DSP48A in Xilinx 6 Series
FPGAs contains an 18 × 18-bit multiplier, and in 7 Series

FPGAs, DSP48E is extended to 25 × 18-bit. Generally,
one FPGA architecture only has one type of the DSP slice
resource, once we know the target FPGA, we can get the
DSP slice specifications (precision) from the supplier. Usu-
ally in the acceleration design of a function or algorithm on
embedded FPGAs, the DSP slice resource is employed for
the acceleration of massive multiplication operations, and
the accelerated function or algorithm is implemented as a
functionally independent IP core, through detailed parallel
analyses and resource optimization. In the integrated applica-
tion systems, once the IP core is loaded on FPGA, it is hard
to be reconfigured during run-time.

Algorithm 1: PMPSA f (x1, x2)
Input: valid bit numbers of the two multiplicators xi
Output: optimal results (xi, Ni, O)
Begin
Init: O = 0, Ni = 1;
Labels = signed ? 1: 0;
Search:
# step 1: Decomposition of multiplicators units
Compute multiplicator unit bit number Lu = x1 + x2;
for all Ki meet Lu ∗ Ki < Pi do

Compute higher remainder bits number
highbitsi = Pi − L∗uKi;
if highbitsi >= xi then

Mark Ni with a label Labeli = 1;
Set Ni = Ki + 1;

else Set Ni = Ki;
# step 2: Calculation of overflow bits number
Set Nmax =Min(Ni);
Compute overflow bits number O = log2(Nmax) and
Ceil to an integer
# step 3: Parallel Segmentation
Compute total parallel multiplicator units bit
number
Set Lp = Lu + O;
Ti = L∗p (Ni − Labeli)+ Label∗i bxi + Labels;
# step 4: Results validation and optimization
if Ti ≤ Pi then

Optimize: Output (xi, Ni, O) to PMPOM

Output: Output the optimal (xi, Ni, O) from PMPOM
end

In this section, we propose a searching algorithm for opti-
mizing parallel multiplier parameters, i.e. PMPSA, shown
as Algorithm 1, to search the optimal parallel method for
a given type DSP slice, based on three rules proposed in
Section II, to improve the performance of DSP slice. Further-
more, the proposed parallel method for DSPmultiplier can be
reconfigured during run-time. If the PMPSA is run on general
CPUs, the searching results of PMPSA are to be hardened
as predefined parameters over a DSP multiplier for the par-
allelization of massive multiplication operations on FPGA.
And formultiple searching results of one ormore applications
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with the same function, it is able to integrate multiple these
parallel parameters over the same DSP multiplier as tuning
logic. For the tuning work, it is possible to provide a select
parameter to choose corresponding parallel parameters when
call the DSP multiplier. We call this configuration method as
the partially dynamical configuration method (PD-PMSDS).
One advantage of PD-PMSDS is that, there is no time
consumption of the PMPSA algorithm in the running system.

The PMPSA can also be implemented on embedded sys-
tems independently, serving as a configuring module, to gen-
erate parallel parameters dynamically and configure the
parallel DSP multiplier in other IP cores. In this case, the par-
allel parameters in the tuning logic over the DSP multiplier
need to be set as variables. With an adjustable bound con-
trol of the parallel parameters and an appropriate interface
design in the target IP core, the precision of parallel DSP
multiplier can also be reconfigured during run-time. We call
this configuration method as a totally dynamic configuration
method (TD-PMSDS).

For the details of PMPSA, there are two main stages in
PMPSA, one is parallel parameters searching, which is made
up of three steps based on the three rules defined in section II,
the other is parameters optimizing. Besides, the algorithm ini-
tialization and output, are in the start and end of the algorithm.
And we discuss PMPSA in two separate subsections referring
to the main stages as follows.

Themajor variables used in PMPSA are denoted in Table 1.

TABLE 1. Notations in the PMSDS approach.

A. PARALLEL PARAMETERS SEARCHING
As discussed in Section II, to implement a parallel multiplier,
we need to obtain the parameters of multiplicators’ valid
bit numbers, parallel numbers, and the maximum overflow
bits’ number. And the parallel products’ parameters can be
calculated with the above three parameters. Generally, in the
acceleration of an algorithm on FPGA, the variable types
are pre-defined in the algorithm, therefore the multiplicators’
valid bit numbers are known. So, to implement a parallel
multiplier on a single DSP slice for an accelerated algorithm,
we just need to obtain the parameters of the parallel numbers
and the maximum number of overflow bits. And in PMPSA,
we define the parameters of multiplicators’ valid bit numbers
as input variables (xi). Moreover, we define the bit numbers
of the DSP slice input ports (Pi) as known values, as the
target FPGA is usually clearly specified in the algorithm

accelerating design. For a pair of inputs xi, the searching
results may be multi-groups, and we provide a parallel mul-
tiplier parameters optimizing model, i.e., PMPOM, that we
will discuss in next section, as a part of PMPSA to find
the optimal combination of the parallel parameters, on one of
the specified DSPmultiplier. And the output of PMPSA is the
optimal combination of multiplicators valid bit numbers (xi),
parallel numbers (Ni), and the overflow bits’ number (O),
i.e., PMSDS parameters, which are all essential information
for the multiplicator paralleling and product splitting of the
parallel DSP multiplier [21].

In the beginning, PMPSA needs to initialize some vari-
ables, including O and Ni. And the multiplicator variable
format, signed or unsigned, also need be specified. We define
a variable (Labels) to save the multiplicator variable format,
and set Labels =1 for the signed format variable, as shown
in Algorithm 1, which is to reserve one bit for the highest
multiplicator’s sign bit.

The core part of PMPSA is a double-loop for the parame-
ters searching of the DSP multiplier two input ports. Before
searching work, we use Rule 1 in Section II, to calculate the
multiplicator unit’s bit number (Lu), i.e., Lu = x1 + x2. And
we define K1 and K2 as the loop variables of the double-
loop, and the values of K1 and K2 are the rough values of the
parallel numbers. With the values of K1 and K2, we parallel
Lu for each input ports of the DSP multiplier, and the total
multiplicator units’ bit number of each port can be calculated
as L∗uKi. The total multiplicator units’ bit numbers here, are
the searching bound equations of the double-loop, for each
loop, the upper bound is Pi, and the lower bound is the value
when Ki is 1.
With the rough values of K1 and K2, in the loop body,

we begin to calculate the exact values of the parallel numbers.
In some cases, after the parallelization of a multiplicator unit
with Ki, there may be some remainder bits left in the higher
bits of eachDSP input port, and those bits are not long enough
to contain all the multiplicator unit bits, yet, are possible to
be stuffed into a valid bits’ part. As this happens just in the
highest bits of the final multiplicator, i.e. there is no valid bit
contamination ahead, it is still ok for another valid bits’ part
to be stuffed into the final multiplicator without the vacant
bits. To avoid losing these possible parallel multiplicators,
we calculate the numbers of the leftmost remaining bits with
Lu, Ki and Pi, as shown in Algorithm 1, and mark these
particular situations with a pair of labels, i.e., Labeli=1,2.
If an extra valid bits’ part of xi is able to be stuffed into
the head of the final multiplicator, we set Labeli as true, and
set Ni as Ki + 1, that will increase one multiplicator in the
parallel multiplication. And in other cases, we set Ni as Ki.
These are the first step of PMPSA, and we have obtained a
parameters group of the valid bit numbers (xi), and the parallel
numbers (Ni).
In Step 2, we go on to calculate the maximum over-

flow bits’ number (O) with the parameters got in step 1.
As discussed in Rule 2 of Section II, the maximum partial
product number is the less one of the two multiplicators’ par-
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allel numbers. As N1 and N2 are the parallel numbers of the
two multiplicators, the less (or equal) one of N1 and N2 is to
be the maximum partial product number (Nmax). With Nmax ,
we use the log2 function to calculate the value ofO, as shown
in Algorithm 1. In particular, the result of O may not be an
integer value, and it needs to be ceiled to the infinity to avoid
the parallel products in the final product overflowing. These
are Step 2, and we have obtained the maximum number of
overflow bits (O).

With the multiplicator unit bit number (Lu), and the maxi-
mum overflow bits’ number (O) obtained above, in the step 3,
we add them together as the parallel multiplicator unit bit
number (Lp, here we just obtain the bit number, and the
implementation step of Formula (4) in Section II, we will
discuss in Section IV), then calculate the total bit number
of the parallel multiplicator units (Ti). Ti is the sum of three
parts, as shown in Algorithm 1. The first part, is the total bit
number of parallel multiplicator units, which is the product
of Lp and its parallel number, here, the additional valid xi,
is not included in the parallel number, as it is absent with
the vacant bits. We subtract 1 to the parallel number of Li,
if the value of Labeli is 1, and deal with the additional xi in
the following part. The parallel multiplicator unit part is an
essential part of Ti, which means the parallel multiplicator
unit parallelization. The following two parts are complements
for special situations. The second part is the additional xi, and
it is the product of Labeli and xi, that maybe is not existing
in the final multiplicator, referring to Labeli. The third part is
the reserved one sign bit for signed format variables, and it is
0 for unsigned variables.

After the parallelization of parallel multiplicator units in
the step 3, Ti may be larger than Pi, as the inserted bit
number, O. And in step 4, we first verify Ti with Pi. If Ti
is less than or equal to Pi, for both i = 1, 2, the parameters
combination of xi, Ni, andO, is a feasible PMSDS solution of
the given type DSP slice, and we output the feasible parame-
ters combination of (xi, Ni, O) to PMPOM for optimization.
Then, go on searching with Ni + 1.

B. PMSDS PARAMETERS OPTIMIZING
In last section, we have got the PMSDS solutions of the given
type DSP slice. However, the solutions are multi-groups. And
PMPOM is to find the optimal solution, according to the
acceleration (ψ), valid bits throughput (θ ), and precision (ω)
of the given DSP multiplier, based on the Integer Program-
ming Optimization Theory [22] as follows.

Maximize Z = ψ∗θ∗ω
ψ = 1.5∗

2∏
i=1

Ni − 0.5∗(
2∑
i=1

Ni − 1)

θ =

2∑
i=1

(x∗i Ni)/(P1 + P2)+ 1

ω =

2∏
i=1

(Lp/Pi)

Subject to

xi/Lp ≥ Ci, i = 1, 2;

x1 = 1, 2, . . . , P1;

x2 = 1, 2, . . . , P2., (5)

where the objective function value Z presents the final trade-
off value of the parallel DSP multiplier, and we want to make
the value of Z to the maximum. Z is the product of three
subitems, the acceleration of parallel DSP multiplier (ψ),
the valid bits throughput of parallel DSP multiplier (θ ), and
the precision of parallel DSP multiplier (ω). In details, for ψ ,
we define the acceleration of a parallel multiplier with the
parallel numbers of multiplication and addition operations.
One multiplication operation contributes the multiplier accel-
eration of 1, and one addition operation contributes 0.5. These
are because for a pipelined DSP slice, one multiplication
operation may need one clock cycle, and a followed addition
operation may need half clock cycle totally [22]. The number
of multiplication operations can be computed as N ∗1N2, and
the number of the addition operations can be computed with
the numbers of parallel multiplicators, as N ∗1N2 − (N1 +

N2)+1, just excluding the partial product numbers of the last
one in each row and the last row of the partial product array,
where there is no another available addend. Then Add these
two operation numbers together, and merge similar items, the
result is the expression of ψ . For θ , it is got from the quotient
of the total valid bit number of all parallel multiplicators and
the total bit number of the two input ports of DSP multiplier,
in one parallel multiplication operation. To avoid the value
of θ disappearing, we define the base rate of θ as 1. For ω,
it is the product of a pair of ratios, i.e., the bit number of the
parallel multiplicator unit to the bit number of each port of
the DSP multiplier.

Moreover, Ci is predefined searching coefficient, which is
the minimum valid bit rate to the parallel multiplicator unit,
to throw out the parameter combinations, of which the multi-
plicators’ valid bit numbers are too small. And for different i,
the value of Ci can be different. For x1 and x2, one of them
can be specified as a predefined value, e.g. 8-bit for Byte, for
special application requirements. The bit numbers of the DSP
slice two input ports, P1 and P2, can be different, according
to the actual DSP slice type in target FPGA.

PMPOM acts as a part of PMPSA, and it is employed
by PMPSA to optimize output PMSDS parameters. For
each PMSDS parameter combination output from PMPSA,
it needs to be sent to PMPOM for comparison, and PMPOM
saves the optimal PMSDS parameters combination. Finally,
PMPSA outputs the optimal PMSDS parameters combina-
tion, as the final searching result.

Above all, we have proposed the algorithm of PMPSA
and the optimization model of PMPOM. An analysis of the
operations in both PMPSA and PMPOM shows that the com-
putational complexity is O(N ∗1N2), where N1 and N2 are the
variables related with the predefined bit numbers of the DSP
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slice two input ports (Pi), and the input multiplicators valid
bit numbers (xi), i.e. Ni ∈ [1,Pi/(x1 + x2)], i = 1, 2.

IV. EXPERIMENTS
In this section, we present the experiments of the proposed
PMSDS method. Firstly, the effectiveness of PMPSA is eval-
uated. We choose three FPGA platforms from the product
families of Xilinx, i.e. 6 Series FPGAs, 7 Series FPGAs,
and Ultrascale FPGAs, as the target platforms, and search
PMSDS solutions for the DSP slices in target FPGA plat-
forms, under different searching configuration. And to test
the practicability of PMPSA, mainly for the practicability
analyses of PMSDS dynamic configuration methods, we
implement PMPSA on different environments, e.g., differ-
ent CPUs and FPGA, and analyze the time and resource
consumption of PMPSA. we also design a prototype of the
parallel DSP multiplier in the application of matrix mul-
tiplication. Based on the prototype above, we implement
multiple PMSDS basedmatrixmultiplication algorithmswith
different PMSDS parameters, and use the Xilinx SDSoc
design tool [23] to transform the C/C++ language based
PMSDS matrix multiplication algorithms to embedded sys-
tems, to test the performance of PMSDS method on actual
FPGAs. Further, we compare the results with the typical
methods and the state-of-the-art in FPGA resource optimiza-
tion and matrix multiplication optimization fields to demon-
strate the efficiency and performance improvements of the
proposed method. Moreover, to test the flexibility of the pro-
posed PMSDS method, we implement the PMSDS dynamic
configuration methods of both PD-PMSDS and TD-PMSDS
on embedded FPGA systems, referring to the practicability
analyses mentioned above, and we will discuss the test results
of the dynamic configuration methods in the last subsection.

TABLE 2. DSP slice types.

The precision of the DSP multipliers in all selected FPGA
platforms is listed in Table 2. The prototype of the PMSDS
based parallel DSP multiplier is designed based on Xilinx
Zynq serial FPGA platforms [24], and the prototype is shown
as Figure 2. The prototype in Figure 2, is made up of two
parts, PMSDS configuration and PMSDS implementation.
The PMSDS configuration part is the implementation of
PMPSA. The input parameters of PMPSA are the multipli-
cators valid bit numbers (xi). For the bit numbers of the DSP
multiplier input ports (Pi) and multiplicator variable format,
they can be predefined in a configuration file. PMPOM is
integrated in PMPSA to compare the searching results of
PMSDS parameters and output the optimal parameters com-
bination. The PMSDS configuration part can be implemented

FIGURE 2. The prototype and platform of PMSDS. The platform of PMSDS
is based on Xilinx Zynq FPGA platform. And Xilinx SDSoc tool is used for
the algorithm integration.

on both CPUs and FPGAs. If run on CPUs, PMPSA is to pro-
vide PMSDS parameters for parallel DSP multiplier design
on FPGAs. And if integrated on embedded FPGA systems,
PMPSA is an independent configuration module, which is
called by other applications to generate PMSDS parameters
dynamically.

The PMSDS implementation part in the bottom of Figure 2,
is to use the parallel DSP multiplier implementing the matrix
multiplication algorithm. The implementation of the PMSDS
based matrix multiplication algorithm is partitioned as six
steps, i.e., matrix data grouping, multiplicator paralleling,
PMSDS multiplication, product splitting, products accumu-
lating, and matrix recombining. The data input of the matrix
multiplication algorithm is in matrix data grouping step. And
the PMSDS parameters are predefined (PD-PMSDS) or input
from the PMSDS configuration part above (TD-PMSDS).
Moreover, the bit numbers of the DSP slice input ports (Pi)
are also predefined. The matrix data grouping step obtains
the matrix data from the input interfaces and stores them
locally as the same matrix arrays. And the three following
steps of multiplicator paralleling, PMSDS multiplication,

101000 VOLUME 7, 2019



Z. Huang et al.: Efficient Method of Parallel Multiplication on a Single DSP Slice for Embedded FPGAs

and product splitting, are the implementation steps of the
parallel DSP multiplier. The multiplicator paralleling step
employs the parallel numbers (Ni) in the PMSDS parame-
ters, to read Ni elements that to be calculated referring to
the calculation rule of matrix multiplication, from the two
candidate matrix arrays. Then recombines them as parallel
multiplicator units with the parameters of xi, and O, referring
to Formula (4) in Section II. Finally, parallel the parallel
multiplicator units to the length of Pi, and output them to the
PMSDS multiplication step. The PMSDS multiplication step
is the implementation step of the parallel multiplication on
the specified DSP multiplier. The bit number of each input
multiplicator in PMSDS multiplication step, is fixed as Pi,
and the bit number of the output product is fixed as (P1+P2).
The product in PMSDS multiplication step, is sent to the
product splitting step. The product splitting step precomputes
the parallel product bit number and parallel number with
the PMSDS parameters, based on Rule 3 in Section II, and
employs them to split out the parallel products from the
product of PMSDS multiplication step. The following step of
products accumulating, implements the accumulation of each
split parallel products referring to the matrix multiplication
rule, and the matrix recombining step stores the accumulation
results to corresponding positions of the output matrix array.
Then go on calculating with the next input data groups.

The PMSDS implementation part in Figure 2, is imple-
mented as an independent IP core on FPGA, and for
PD-PMSDS, the PMSDS configuration part is absent in the
integration system. The input and output interfaces of the
IP core are implemented with the axis protocol [25], and
connected with the DMA. The DMA is used for directly large
size data access between the DDR and the IP core, to increase
the data transferring speed.

A. BENCHMARK AND COMPETING METHODS
For clearer comparison of our PMSDS method, we collect
some typical competing methods, including the traditional
method [26], additional memory method [27], add-tree
method [28], and full unroll method [29], the details are
specified as below.
• Traditional method [26] which is implemented in the
original matrix multiplication rule of one row element
multiplies one column element.

• Additional memory method [27] which employs addi-
tional memory in FPGAs to improve the data access
speed and the matrix multiplication throughput. This
method requires larger internal memory.

• Add-tree method [28] which is to use addition, sub-
traction and bit shift operations to implement the mul-
tiplication operations of the matrix multiplication. This
method does not consume DSP slice resource in FPGA,
however, the logic resources, e.g. LUTs and REGs, may
cost more.

• Full unroll method [29] which employs the logic
resources in FPGA to fully unroll the inner loop
of the matrix multiplication, and improve the matrix

multiplication throughput. However, the resource uti-
lization and power consumption may be greatly
increased.

B. OPTIMIZATION RESULTS AND ALGORITHM COSTS
The goal of the proposed PMSDS method is to find the best
benefit between the multiplicator valid bit number and the
parallel number for a given type DSP multiplier. We cannot
implement long valid bit multiplicators with larger parallel
number on one DSPmultiplier at the same time, as the limited
bit numbers of the DSP slice input ports, i.e. if the parallel
number is larger, the multiplicators’ valid bit number will be
smaller, and vice versa.We employ PMPSA to search the best
tradeoff between the valid bit number and the parallel number
for some commonly used DSP slice types, and the searching
results are shown in Table 3.

TABLE 3. Results of PMPSA.

There are three DSP slice types in Table 3, which are
chosen from the FPGA product families of Xilinx, the same
as Table 2. And in each DSP slice types, there are three test
models, one is the optimal model, named Max. The second
is the model of one multiplicator valid bit number specified
as 8, called Byte1. The last one is the model of both two
multiplicator valid bit numbers are specified as 8, called
Byte2. And in each test model, the start letter of ‘D’, means
the default type, i.e., without the PMSDS optimization (called
non-PMSDS, below). And the following lines are the results
of PMPSA under unsigned (u) and signed (s) configuration
types. The following columns named Bits and numbers, are
the outputs of PMPSA,where x1 and x2 are themultiplicators’
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valid bit numbers, O is the overflow bits’ number, N1 and N2
are the multiplicators’ parallel numbers. The columns named
Optimization variables, are the variables of PMPOM, where
ψ is the acceleration of the parallel DSP multiplier, θ is the
valid bits throughput of the parallel DSP multiplier, ω is
the multiplier’ precision, and Z is the final tradeoff value,
the same as Section III. The coefficient values of Ci in
PMPOM are set as 1/3 for all DSP multipliers.

As seen in table 3, the value of ψ in the DMax model
is 1. It is because there is only one multiplication operation
in the non-PMSDS based DSP multiplier. And the tradeoff
value in the DMax model is 2. It is because in DMax, we set
the two multiplicators’ valid bit numbers to the maximum,
i.e., Pi (as it is the Max model), and the calculated values
of θ and ω in DMax are both 1, referring to Formula (5)
in Section III. Meanwhile, as we set the base rate of θ as1,
the final value of θ is 2(1+ 1). And the final tradeoff value Z
is 2(1∗2∗1). The DMax model is the baseline for the PMSDS
based Max model. As seen in table 3, in PMSDS based
Max models, uMax and sMax, the acceleration and tradeoff
values are greater than the baseline for all the three DSP slice
types. Among them, the maximum acceleration is 7, and the
minimum is 4.5, and the tradeoff values are from 2.38 to 3.22.
E.g., in uMax model, one DSP48E1 slice via the PMSDS
method is able to implement a parallel multiplication of four
multiplicators with the valid bit numbers of 5 and 7, in one
clock cycle. And the tradeoff value of the parallel multiplier
is 2.63, based on the three optimization values, i.e., the value
of acceleration ψ , which is4.5 of 4 multiplication operations
and 1 addition operation, the value of valid bits throughput θ ,
which is 1.56, and the value ofmultipliers’ precisionω, which
is 0.38. Combining the values ofψ and Z , it can be known that
the performance and efficiency of the DSP slice are improved
in the Max model with the proposed PMSDS method.

For the Byte model, the baseline is DByte, and it is the
result of both two multiplicators’ valid bit numbers are set
as 8. And we can see in table 3, the tradeoff value of the
PMSDS based Byte1 method is obvious greater than the non-
PMSDS based method. It is because the multiplicator valid
bit-width (8-bit), is at least 10-bit less than the minimumDSP
slice port, that is even longer than the multiplicator valid bit-
width itself. Correspondingly, in the DByte model, the values
of θ and ω are small, especially for ω, whose values are less
than 0.15 for all the three DSP slice types. Subsequently,
the tradeoff value Z is smaller. Actually, for the signed multi-
plication operation of the DByte model, all the higher bits of
the DSP input ports are filled with value 0s or 1s, which carry
only 1-bit of the sign info. That may be inefficient. However,
the proposed PMSDS method is able to make up that in some
extend. E.g., the DSP48E1 slice is able to deploy a parallel
multiplication of three multiplicators with one signed 8-bit
and two signed 8-bit at the same clock cycle. In this way,
the higher bits of one input port of the DSPmultiplier are able
to achieve another 8-bit multiplication operation, and it is the
reason that the value of ψ in the PMSDS based Byte1 model,
is 2 times than the DByte model. And for unsigned variables,

the one 8-bit multiplicator is able to extend to 9-bit, and
the tradeoff value is about 0.9 greater than the non-PMSDS
based DByte model. And for the Byte2 model, the result is
similar with the Byte1 model, except for DSP48A, there is
no optimization with the PMSDS method. It is because the
bit numbers of the input ports of DSP48A are smaller than
DSP48E1 and DSP48E2, and they are not long enough to
parallel two Byte multiplicators at the same time.

And for the differences between unsigned and signed con-
figuration types, the reserved one sign bit for the highest
multiplicator lead to the DSP multiplier precision lose one
bit, that can be seen through the value of θ , and it influences
the searching results of the parameters of multiplicators’ valid
bit numbers and parallel numbers. E.g. for the PMSDS based
uMax model of DSP48E1, the searching results are 5∗7-bit
(x1∗x2) of 2∗2 (N ∗1N2). However, for sMax model, the search-
ing results are 5∗4-bit of 2∗3, and the value of θ is 0.03 less
than uMax. And for the sByte1 model of DSP48E2, the preci-
sion of the multiplier is 10∗8-bit, which is one bit less than the
uByte1 model, i.e. 11∗8-bit. Moreover, in the Byte2 model,
the value of θ under signed configuration is higher than the
unsigned. It is because the higher extended bits of the sign
bit are treated as one valid bit for the throughput, as they
influence the multiplication type of the DSP multiplier.

For the time consumption test of the PMSDS configura-
tion part in Figure 2, we implement PMPSA on Intel CPU
(i5-3230M), ARM CPU (Cortex A9), and FPGA (7 Series),
respectively. We use DSP48E1 as the tested DSP slice type,
and the run times under different test models are shown in
table 4.

TABLE 4. Time consumption of PMPSA.

As shown in table 4, the Max column is the searching time
of the global optimum solution with no multiplicator valid
bit number predefined, the column named x1 or x2 is the
searching time of one multiplicator valid bit number, x1 or x2,
predefined, and the column named x1 and x2 is the run time of
both x1 and x2 are predefined. The results in table 4 show that
the fastest running environment is Intel CPU, the run times of
which are all less than 300us. And with two known variables’
valid bit numbers of an algorithm, the run times are just 30us,
shown as x1 and x2 of Intel in table 4. As the demand for real-
time in this applied method is not very strong, the run time of
PMPSA on PC (Intel CPU), is not to be a burden.

The run times of PMPSA on both ARM CPU and FPGA,
may be a little more, if PMPSA is integrated as a real-
time configuration module on embedded systems. The run
times of Max on ARM CPU and FPGA are about 1.6ms
and 1.5ms, which are about the same with the run times
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of a 25∗25 size matrix multiplication on ARM CPU. The
run times of x1 and x2 on both ARM CPU and FPGA are
much faster, i.e., 121us and 110us, which are much more
practical. Maybe those are acceptable for some low real-time
systems. However, on FPGA, the resource consumption is
very high. It costs 42DSP slices (19%), as the float operations
in PMPOM, and more than 50% LUT resource of the Zynq
platform, that may lead to the DSP and logic resources lose
more than gain. On ARMCPU, the FPGA resources need not
be cared about.

Through the analyses above, we know that the optimization
results of PMPSA are able to improve the DSP multiplier’s
performance and efficiency. And for the running environ-
ment, PMPSA is suitable to be run on PC to search paral-
lel methods for the DSP multiplier in FPGA. Meanwhile,
PMPSA is also possible to be employed as a configuration
module on the hardcore CPU in FPGAs to provide PMSDS
parameters and configure the PMSDS based hardware IP
cores dynamically, in some low real-time systems. How-
ever, PMPSA is not economic to be integrated on FPGA
as a real-time configuration module, as the high resource
consumption.

C. MULTIPLIER THROUGHPUT AND PERFORMANCE
We have analyzed the PMPSA optimization results in last
section, however, there may be more factors that affect the
performance of an accelerated algorithm on FPGAs. In fol-
lowing sections, we will show the performance and effi-
ciency of the optimization results on actual embedded FPGA
systems.

To show the multiplier throughput and performance of
the PMSDS method, we implement the matrix multiplica-
tion algorithm with different methods on embedded FPGA.
We choose the traditional method as the baseline, and com-
pare our PMSDS based methods with other notable methods,
i.e. additional memory method, add-tree method, and full
unroll method, under the same system configuration. And we
choose three PMSDS parameters from the searching results
of PMPSA in Table 3, and implement them with Xilinx HLS
tool respectively, based on the prototype in Figure 2. It is
noteworthy that we integrate only one combination of the
PMSDS parameters over the DSPmultiplier here, and there is
no tuning cost. In the implementation of the parallel DSPmul-
tipliers, there may be some changes to the searching results
in Table 3, as the calculation rule of matrix multiplication.
The changed PMSDS parameters are shown in table 5.

The Name column in table 5, lists the methods tested in the
experiments. And the following two columns are the valid
bit numbers and operation numbers in one clock cycle of
each method. The fourth column is the valid parallel product
numbers for the matrix multiplication application. The last
column is the throughput of the multiplier, and we define the
throughput as the valid bit number sum of all multiplicators
in one multiplication operation on one multiplier.

In table 5, the Double method, is to implement the parallel
multiplication of one element of one row in the first matrix

TABLE 5. Throughput of the multipliers.

FIGURE 3. Placement ways of multiplicators in Quad.

and two elements in two cols of the second matrix, in one
clock cycle. The multiplication operation number is 2, so is
the parallel product number. And both the 2 parallel products
are valid, which are to be stored to the two corresponding cols
of the output matrix, after the accumulation step. The Quad
method is to implement the multiplication of two elements
of one row in the first matrix and two elements of one col in
the second matrix. In Quad, the number of valid operations
and valid parallel products are different in different placing
ways of the elements. There are four placing ways for the four
elements as shown in Figure 3, and they can be divided into
two groups, one is to place the elements in sequence order,
named Sequence, and the other is to place in cross order,
named Cross. E.g. in Figure 3, R1 and R2, are the elements
from the same row of the first matrix, and the col number
of R1 is less than R2. C1 and C2 are the elements from the
same col of the second matrix, and the row number of C1 is
less thanC2. In traditional matrix multiplication, we calculate
R1∗C1 first, then calculate R2∗C2. Therefore, we define the
calculation order numbers of R1 and C1 are the same, so are
R2 and C2, and the order numbers of R1 and C1 are less than
R2 and C2. And Sequence is to put the same order elements
in the same positions of the final multiplicators, as shown
in Figure 3 a) and b). And Cross is to put the same order
elements in the cross positions of the final multiplicators as
shown in Figure 3 c) and d). The valid parallel product num-
bers and positions for the matrix multiplication are different
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in Sequence and Cross. The valid parallel product numbers
in Sequence1 and Sequence2 are 2, and the positions of them
are VP1 and VP3, which are the same in Sequence1 and
Sequence2, as shown in Figure 3 a) and b). The parallel
products in Sequence1 and Sequence2 are partial products,
we need to add the parallel products together, before or in
the following accumulation step, for matrix multiplication.
And in Cross1 and Cross2, the valid parallel product numbers
are both 1, and the positions of the valid parallel products
are the same, i.e. VP2. In Cross1 and Cross2, the parallel
products are partial product sums, and there need not be an
addition operation for the parallel products themselves, as it is
included in the parallel multiplication. And we use Cross1 as
the implementation method of Quad, which is able to achieve
2 multiplication operations and 1 addition operation in one
clock cycle, as shown in table 5. For the parallel numbers
of 2∗3 in Table 3, we change it to 1∗3, as it is hard to find
another multiplicator whose calculation order number is the
same with the multiplicators in Quad, and it is to achieve the
parallel multiplication of one row element and three cols’
elements in one clock cycle, called as Triple. The parallel
product number in Triple is 3, and all of them are valid for the
matrix multiplication application, and to be stored to the three
corresponding cols of the output matrix, after the following
accumulation operation.

We set the base valid bit number of the matrix data is 8,
except Quad and Triple methods, which are changed to
5∗6-bit and 5∗5-bit. For the non-PMSDS based method, the
multiplier valid bits throughput is 16-bit. And for Double,
it is 24-bit, which is 8-bit more than the non-PMSDS based
method. For Quad and Triple, they are 22-bit and 20-bit,
which are 6-bit and 4-bit more than the non-PMSDS based
method. Moreover, all matrix data here are signed format.

FIGURE 4. Performance of seven tested methods on FPGA. In particular,
as the newly version HLS tool does not support DSP48A of 6 series FPGA
family, we use DSP48E1 in 7 series FPGA with 7 higher bits disable
instead. And the results are the synthesis results of HLS tool.

For the performance comparison of PMSDS based meth-
ods, we tested the matrix multiplication algorithms with mul-
tiple fixed size matrix arrays from 5∗5 to 30∗30. The latency
of all tested methods are shown as Figure 4.

As it is shown in Figure 4, the latency of our PMSDS based
methods, i.e., Double, Quad, and Triple, is obvious less than
the traditional and add-memory methods. The Triple method
is slower than Double, that is because the limitation of the
BRAM ports, which are just two, and the access of triple data
at the same BRAMmay needmore clock cycles. The add-tree
and full-unroll methods are faster than Double and Quad. It is
because they employ more calculating resources to make the
multiplication operations in the matrix multiplication algo-
rithm compute totally in parallel, which we will see in next
subsection. However, the latency of our Quad method is still
faster than the add-tree and full-unroll methods (one clock
cycle faster), that is because of the acceleration of the parallel
DSP multiplier. These are the performance improvements of
the PMSDS method.

D. RESOURCE AND POWER CONSUMPTION
Resource utilization and power consumption are very impor-
tant in embedded systems. In this subsection, we display the
resource and power consumption of our PMSDS basedmatrix
multiplication algorithms on specified FPGAs, and compare
them with other methods. The results are shown as Figure 5.

FIGURE 5. Resource utilization and power consumption of seven matrix
multiplication methods.

As shown in Figure 5, it is obvious that the add-tree and
full-unroll methods consumemore FPGA logic resources and
the power consumption is higher than the PMSDS based
methods. The resource utilization and power consumption of
the Doublemethod are about the samewith the traditional and
additional memory methods. The Triple and Quad methods
costmore logic andDSP resources thanDouble, as the limited
BRAM ports and the loop parallelism.

Combining the results in Figure 4 and Figure 5, we can say
that the PMSDS based Double method is of better tradeoff
than other methods in the computation of massive multi-
plication operations on FPGA, considering the factors of
valid bits throughput, latency, resource utilization, and power
consumption.

In particular, the resource utilization and power consump-
tion of the thee PMSDS based matrix multiplication algo-
rithms are the results for the signed type. And there will

101004 VOLUME 7, 2019



Z. Huang et al.: Efficient Method of Parallel Multiplication on a Single DSP Slice for Embedded FPGAs

be less resource utilization and power consumption for the
unsigned type, as there is no subtraction or addition operation
in multiplicator paralleling and product splitting steps. And
the total bit numbers of final multiplicators will be one bit
more than the signed type, as the reserved one sign bit in the
highest, which may increase the valid bits throughput of the
DSP multiplier, as discussed in Table 3.

E. EFFICIENCY
We also compare our work with the state-of-the-art in the
fields of resource optimization and matrix multiplication
optimization on FPGAs, to show the efficiency of the pro-
posed PMSDS method. We compare our work with the work
of Lucas et al. [13], who optimize the DSP slice assignment
approach with the configuration ports of the DSP slice in
application-level, and the work of Kumm et al. [30], who
optimize the constant matrix multiplication without using the
DSP slice resource on FPGA. The comparison results are
shown in Figure 6.

FIGURE 6. Comparison with the work of the state-of-the-art.

We change the matrix size of the PMSDS based matrix
multiplication algorithms to the same as the work of
Lucas et al. [13] andKumm et al. [30], respectively. Although
the actual algorithm and the FPGA version are different,
the results may still show the efficiency and performance of
our PMSDS method. As seen in Figure 6, the utilization of
DSP and logic slices in our PMSDS based algorithms is obvi-
ous less than the work of Lucas et al. For the performance,
the maximum frequency of our Triple and Double methods is
higher than the work of Kumm et al., i.e., our PMSDS based
algorithms can run in faster FPGA clocks. And the dynamic
power of our Quad and Triple methods is less than the work of
Kumm et al.Moreover, in Kumm et al.’s work, the elements
of one matrix are all constant values, which may lower the
complexity of the algorithm.

F. DYNAMIC-PRECISION PMSDS MATRIX
MULTIPLICATION
To further test the flexibility of the proposed PMSDS
method, we try to make the parallel DSP multiplier precision

dynamically configuring. We implement the two dynamic
configuration methods, PD-PMSDS and TD-PMSDS, based
on the prototype of Figure 2. Here, the PD-PMSDS method,
is to integrate multiple predefined PMSDS parameters,
including 1∗1 of 16∗16-bit (Single), 1∗2 of 8∗8-bit (Double),
1∗3 of 5∗5-bit (Triple), and 2∗2 of 5∗6-bit (Quad), over one
DSP multiplier in the matrix multiplication algorithm, and
provide a parameter to select corresponding parallel methods
in run-time. And the TD-PMSDS method is to integrate the
PMSDS parameters as variables over the DSP multiplier in
the matrix multiplication algorithm IP core, and implement
PMPSA as an independent module on ARM CPU of Zynq
platform, to generate the PMSDS parameters and config-
ure the DSP multiplier dynamically. In particular, as the
calculation rule of the matrix multiplication, in TD-PMSDS,
we just implement the following parallel number groups. One
group is 1∗N , which is to implement one element of one
row in the first matrix, multiplies N elements of N cols in
the second matrix, and the number of valid parallel products
is N , which are to be stored to N cols of the output matrix.
Another group is 2∗2, which is to implement two elements
of one row, multiply two elements of one col, the same as
subsection C in this section. And for other parallel number
groups, we tune the parallel numbers to 2∗2.

As the DMA data transfer size is limited on Zynq-7000
FPGA platform, we set the maximum matrix size to 64 in the
integration systems, and make it downward adjustable. For
the maximum matrix size, as the DSP multiplier precision
can be configured lower with the proposed PMSDS method,
the computed matrix size is able to be extended as the bit-
width of the input port is fixed. E.g. in a 64∗64 matrix
multiplication, the maximum matrix size is 64∗64 for Single
method, and for Double method, the second matrix size is
able to be extended to 2 times, as we compute two multipli-
cators of the second matrix once. And for Quad, both the two
matrices can be extended to 2 times.

We define two reference baselines, namely ARM_C and
Xilinx_C. The first baseline is ARM_C, in which the matrix
multiplication algorithm is run on ARM CPU of Zynq plat-
form with the traditional method, and it is to show the algo-
rithm acceleration on FPGA. And the second is the Xilinx
pipeline matrix multiplication [23], in which the algorithm is
run on the FPGA part of Zynq platform, and the multiplica-
tion loop in the matrix multiplication algorithm is pipelined.
The Xilinx_C method is to compare the performance and
the extended function of the PMSDS dynamic configura-
tion methods. And we implement four dynamic configu-
ration test systems, i.e., P3, PM3, PM4, and PMD. The
P3 system supports three PMSDS parameters dynamically
configured, including Single, Double, and Triple. The PM3
system improves P3 with the function of matrix size extend-
ing. The PM4 system supports one more PMSDS parame-
ters configuration than PM3, i.e., Quad method. The above
three systems are PD-PMSDS based systems. And PMD is a
TD-PMSDS based system, with the function of matrix size
extending.
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FIGURE 7. Performance comparison of different PMSDS dynamic-precision methods.

The performance test results are shown in Figure 7.
As shown in Figure 7 a), b), and c), the run times of Single,
Double, Triple, and Quad in P3, PM3, and PM4 systems, are
much less than the ARM_C baseline. The Single methods
in P3, P4 and PM4 systems, are about the same with the
Xilinx_C baseline. These show that the extra logic of PMSDS
dynamic configuration does not bring many bad effects to
the performance of the same size matrix multiplication. Fur-
thermore, the run times of the Double, Triple and Quad
methods are all less than the Xilinx_C baseline. These show
the performance improvements of the PD-PMSDS method.
Moreover, in PM3 and PM4 systems, the faster methods
of Double, Triple and Quad, support matrix size extending.
More importantly, the run times of the extended size matrix
multiplication, are nomore than the Xilinx_C baseline. These
show that the PD-PMSDS method is more efficient and flex-
ible in the memory utilization than the Xilinx_C pipeline
method.

For the TD-PMSDS method, as shown in Figure 7 d),
the run times of Single, Double, Triple and Quad in PMD, are
all more than the ARM_C and Xilinx_C baselines. These are
because the PMSDS parameters in multiplicator paralleling
and product splitting steps, are all variables, and the variable
bounds of the inner loops, prevent the outer loop of the matrix
multiplication from being pipelined on FPGA.

In particular, the run times of PMD do not include the run
time of PMPSA. If considering them, the run time will be
about 20000 clock cycles more, under the configuration type
of x1 and x2. However, the PD-PMSDSmethod does not need
to consider those run times, as the PMSDS parameters have
been hardened in the algorithm IP core.

FIGURE 8. Resource consumption of dynamic-precision PMSDS.

The resource consumption of the matrix multiplication
algorithms and systems, are shown in Figure 8. The line chart
in Figure 8 is the percentage of the matrix multiplication
algorithm in the system. And the bar chart in Figure 8 is the
percentage of the system in total Zynq-7000 platform.

As seen in Figure 8, the resource percentages of the four
matrix multiplication algorithms i.e., Xilinx_C, P3, PM3 and
PM4, in the systems, are less than 10%, 15%, and 30% (line
charts), for the resources of FF, LUT and BRAM, respec-
tively. These show that the matrix multiplication algorithm
uses far less resources than the data transferring module in
the integration system. And if we improve the performance
or extend the function of the matrix multiplication algorithm,
the resources used in the data transferring module will gain
more benefits. And that is what PMSDS method does.

The percentages of the three PD-PMSDS based systems,
i.e., P3, PM3 and PM4, are all less than 15% of the Zynq
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platform, which are about the same with Xilinx_C. The grow-
ing of the BRAM resource between P3 andXilinx_C systems,
is 0.7%, that is because the valid bit numbers of two input
matrix arrays in P3, are 18 and 25, which are the same with
the DSP slice input ports, and in Xilinx_C, both of them are
16 for short type. And the percentages of the BRAM resource
in PM3 and PM4 are not increased than P3, as the DSP slice
type is the same. The increases of the LUT and FF resources
in P3, PM3 and PM4 than Xilinx_C, are mainly because the
dynamic configuration logic in multiplicator paralleling and
product splitting steps, and they are 0.3%, 0.7%, 0.9% for FF,
and 0.9%, 1.6%, 2.0% for LUT, respectively. We can see the
resource increase in the PD-PMSDS based method is small.

In detail, the system resources increased in P3 than
Xilinx_C, are the dynamic configuration logic consump-
tion for three configuration methods, i.e., Single, Double,
Triple, which are about 0.3% for FF, and 0.9% for LUT. The
increased resources between P3 and PM3 are the memory
extending logic costs, i.e., 0.4% for FF, and 0.7% for LUT.
The increased resources between PM3 and PM4, show the
costs of integrating one more PMSDS configuration method
(Quad) with memory size extending, i.e., 0.2% for FF, and
0.4% for LUT. It can be seen the cost of the function memory
size extending, is also very small, in the PD-PMSDS based
method.

Through the analyses above, we can say that, the
PD-PMSDSmethod is efficient in the calculation of variable-
scale based massive multiplication operations on FPGA, as it
is able to dynamically configure the DSP multiplier precision
and extend the memory size with little resource increase and
faster computing speed, especially for lower precision.

However, for the TD-PMSDS method, PMD costs far
more resources than Xilinx_C. It is because the unknown
bound loops in the multiplicator paralleling and product
splitting steps, increase the algorithm complexity and cost
more resources for the loop bound comparison. The results
of the performance and resource utilization of PMD, show
that the TD-PMSDS method is not suitable to be applied
as a multiplication accelerating method for the DSP slice
on FPGA.

In particular, all the methods tested above cost 1 DSP slice,
and we do not show that in Figure 8.

V. CONCLUSION
In this paper, we have proposed the parallel multiplication
on a single DSP slice method, i.e. PMSDS method. The pro-
posed method is able to improve the multiplier performance
and valid bits throughput of a single DSP slice obviously, and
downgrade the resource and power consumption of embed-
ded FPGA systems. Moreover, the proposed PMSDS method
supports the DSP multiplier precision dynamically changing
in real-time when running on FPGA. That increases the per-
formance and memory efficiency of massive multiplication
operations accelerated on FPGA. For future applications,
e.g. CNN algorithm, the proposed method may be able to
implement multiply CNN algorithms of lower accuracy in

parallel without extra DSP slices, like the pedestrian detec-
tion and license plate recognition, in the same vehicle smart
device on FPGA at the same time, or dynamically switch
the CNN algorithm precision for different applications, like
different precision pedestrian detection, etc. The experi-
ments of PMSDS based matrix multiplication algorithms
show that the PMSDS method has better performance and
lower resource utilization for massive multiplication opera-
tions accelerated on FPGA than other traditional methods,
e.g. add-tree method, and full-unroll method et. al, and also
has advantage in frequency and power consumption, compar-
ing with the state-of-the-art. And the PMSDS based partially
dynamic configuration method is more efficient and flexible
in variable-scale based massive multiplication operations on
the DSP slice resource, than traditional pipelined methods.
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