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ABSTRACT Nowadays, motor imagery (MI) electroencephalogram (EEG) signal classification has become
a hotspot in the research field of brain computer interface (BCI). More recently, deep learning has emerged
as a promising technique to automatically extract features of raw MI EEG signals and then classify them.
However, deep learning-based methods still face two challenging problems in practical MI EEG signal
classification applications: (1) Generally, training a deep learning model successfully needs a large amount
of labeled data. However, most of the EEG signal data is unlabeled and it is quite difficult or even impossible
for human experts to label all the signal samples manually. (2) It is extremely time-consuming and compu-
tationally expensive to train a deep learning model from scratch. To cope with these two challenges, a deep
transfer convolutional neural network (CNN) framework based on VGG-16 is proposed for EEG signal
classification. The proposed framework consists of a VGG-16 CNN model pre-trained on the ImageNet and
a target CNN model which shares the same structure with VGG-16 except for the softmax output layer.
The parameters of the pre-trained VGG-16 CNN model are directly transferred to the target CNN model
used for MI EEG signal classification. Then, front-layers parameters in the target model are frozen, while
later-layers parameters are fine-tuned by the target MI dataset. The target dataset is composed of time-
frequency spectrum images of EEG signals. The performance of the proposed framework is verified on the
public benchmark dataset 2b from the BCI competition IV. The experimental results show that the proposed
framework improves the accuracy and efficiency performance of EEG signal classification compared
with traditional methods, including support vector machine (SVM), artificial neural network (ANN), and
standard CNN.

INDEX TERMS Motor imagery (MI), electroencephalogram (EEG), signal classification, short time Fourier
transform (STFT), VGG-16, transfer learning.

I. INTRODUCTION
Brain computer interface (BCI), also known as brain-machine
interface (BMI), enables human brains to directly com-
municate with external computers or machines. Generally,
researches on human BCIs mainly include four aspects: inva-
sive BCIs, partially invasive BCIs, non-invasive BCIs and
synthetic telepathy [1]–[3]. Despite there being so many BCI
systems and techniques, non-invasive BCI through electroen-
cephalography (EEG) has been the most extensively studied,
because it is relatively cheap and simple to carry and use,
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but provides fine temporal resolution. Motor imagery (MI),
as one of the most popular EEG-based BCI applications, can
help the disabled and elderly people to perform a specific task
through the imagination without physically performing any
limb movements [4]. More specifically, in a MI BCI system,
MI EEG signals indicating the people’s intention or imagina-
tion are collected by electrodes placed on the scalp, then the
BCI system processes and translates the collected signals into
the commands to control external devices [5], [6].

The design of a typical EEG-based MI BCI system is
shown in Fig. 1 [1]. Traditionally, the procedure of the MI
BCI system mainly consists of five phases, i.e., signal data
acquisition, data preprocessing, feature extraction, feature
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FIGURE 1. The design of a typical EEG-based MI BCI system.

classification and device control interface [7]. The data acqui-
sition phase includes MI EEG signal collection, signal dig-
italization and data storage. The data preprocessing phase
involves data filtering, data cleaning, data transformation
and etc. The feature extraction phase extracts discriminative
features containing useful information from EEG signal data.
The feature classification phase utilizes the extracted features
as input to train machine learning models. The trained models
can classify different signals and MI tasks. Finally, in the
device control interface phase, the categorized signals are
translated into commands to control devices, such as robots,
home appliances, wheelchairs [8]–[13].

During the past few years, many studies have focused on
the feature extraction and classification phases since they can
greatly impact the MI BCI system performance [14]–[16].
Common spatial patterns (CSP) algorithm is a classical and
powerful method to extract discriminative features of raw
EEG signals. A number of variants of the CSP algorithm
have been developed and applied in many MI BCI prob-
lems [17], [18]. For instance, Aghaei et al. [18] designed
a separable common spatio-spectral patterns algorithm
for MI BCI and the designed algorithm required much
lower computing resources. Ashok et al. [19] proposed
two weighted CSP methods for MI task classification
and achieved more accurate classification. Ang et al. [20]
proposed a filter bank CSP algorithm and it obtained better
MI signal classification results. In addition, many time-
frequency signal processing methods, such as short time
Fourier transform (STFT), empirical mode decomposition
(EMD), continuous wavelet transform (CWT) [21]–[23],
are also applied in the feature extraction phase. Tabar and
Halici [21] used STFT to extract time, frequency and location
information from raw EEG signals and convert signals to
images at the same time. Lee and Choi [23] converted EEG
signals to time-frequency spectrums with CWT. Sometimes,
a feature selection process is added to get rid of redundant
information in the extracted features in order to improve
the computational efficiency. Linear discriminant analysis
(LDA), artificial neural network (ANN), support vector
machine (SVM) and other machine learning classifiers are
frequently used in the feature classification phase [24]–[26].

Naseer and Hong [24] applied the LDA classifier to MI tasks
based on two distinct features. Siuly and Li [25] designed a
least square SVM method to classify two-class MI signals.
However, these traditional methods rely heavily on the prior
knowledge and expertise of EEG signal processing.

With the advent of deep learning, it has replaced the
traditional methods due to its automatic feature extraction
ability [27]. Recently, many deep learning models-based
EEG signal classification methods have demonstrated supe-
rior performance compared to traditional methods [21], [28].
CNN, as one of the most widely-used deep learning models,
is always combined with the extracted features of EEG sig-
nal data to provide an improved classification result. Tabar
and Halici [21] applied the CNN model to classify MI
EEG signals and obtained 9% accuracy improvement com-
pared to traditional methods. Yang et al. [28] proposed a
multi-class MI EEG signal classification method based on
augmented CSP features and CNN, the accuracy is high up
to 69.27%. Although CNN has made considerable progress in
the research field of EEG signal classification, there are still
two limitations with these CNN-based methods. First, it has
been proven that very deep CNN architectures with smaller
convolution filters is beneficial for the classification accuracy
in many research areas, including image recognition, natural
language processing, biology, and etc., [29]. However, few
studies have investigated the applications of very deep CNN
architectures in EEG signal classification. This is because
training a very deep CNN from scratch for EEG signal
classification requires a large number of labeled EEG data.
However, most of the collected signal data is unlabeled in
practical applications. Labeling these data manually is very
difficult or even impossible. Additionally, a small amount
of data is very likely to cause over-fitting problem. Next,
training a very deep CNN model from scratch successfully
is very time-consuming and computationally expensive.

Transfer learning has emerged as an effective approach to
overcome the above-mentioned limitations, and it is often
expressed through the use of pre-trained models. A pre-
trained CNN model can leverage the knowledge gained from
a large dataset to solve a different but similar task with
a small dataset more effectively and efficiently. Because
the CNN model pre-trained on the benchmark dataset like
ImageNet can extract universal low-level features, which
are useful for most of image classification problems [30].
Instead of training the CNN model from scratch, fine-
tuning the pre-trained CNN model on the target dataset can
significantly reduce the training time and save the com-
puting resources. A number of famous pre-trained CNN
models including VGGNet, GoogleNet, ResNet and so
on have been designed and applied to various domains.
For example, Shao et al. [31] developed a deep trans-
fer CNN for fault diagnosis, a pre-trained CNN model is
used to accelerate the training process. Rahhal et al. [32]
presented a pre-trained CNN-based transfer learning
approach for electrocardiogram classification, the experi-
ments conducted on three benchmark datasets proved the
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effectiveness of the presented method. Shi et al. [33]
proposed a deep CNN-based transfer learning method for
false positive reduction, all the pre-trained layers are trans-
ferred to target network and only the last fully connected layer
is fine-tuned for the pulmonary nodule classification task.

In this paper, a transfer CNN framework based on
VGG-16 is proposed for MI EEG signal classification. It con-
sists of a pre-trained CNN model and a target CNN model
used for MI classification. First, raw EEG signals from C3,
C4 and Cz electrodes are converted to time-frequency spec-
trum images using STFT. Then, aVGG-16CNNmodel is pre-
trained on the ImageNet. Next, the structure and parameters
of the pre-trained VGG-16 CNN model are transferred to
the target CNN model. Finally, the target CNN model is
fine-tuned on the target dataset for MI classification. In this
paper, the target dataset is composed of the converted time-
frequency spectrum images of EEG signals. Since the target
dataset used for fine-tuning is not similar to the ImageNet
dataset used for pre-training, only the front-layers are frozen
and the later-layers of the target CNN are fine-tuned.

The rest of this paper is organized as follows. Section II
briefly introduces the used dataset 2b from the BCI com-
petition IV. Section III describes the conversion process of
EEG signal data to time-frequency spectrums and presents
the proposed transfer CNN framework for EEG signal clas-
sification. Section IV conducts experiments on the dataset 2b
and analyzes results. Finally, Section V concludes the paper
and discusses our future work.

II. DATASET DESCRIPTION
In this paper, the dataset 2b from the BCI competition IV is
used to evaluate the superior performance of the proposed
framework. The dataset 2b is composed of EEG signal data
collected from nine subjects [34]. EEG signal data is collected
under the sampling frequency of 250 Hz with three electrodes
(C3, Cz and C4). A band-pass filter that only passes frequen-
cies between 0.5 Hz and 100 Hz is employed to eliminate
the signal noise. All the subjects are required to perform two
different types of MI tasks, including the imaginations of left
hand movement and right hand movement. There are five
sessions for each subject, where the EEG signal data in the
first two sessions are collected without feedback, while the
EEG signal data in the remaining three sessions are collected
with feedback. The timing scheme of each trail is shown
in Fig. 2 [34]. Taking the first two sessions for example,
the detailed timing scheme is illustrated as follows: a fixation
cross appears on the screen at the start of each trail (t = 0s).
Then, a cue in the form of arrow indicating different
MI tasks appears on the screen from t= 3s to t= 4.25s. After
that, the subjects need to perform the corresponding MI tasks
depending on the arrow direction from t = 4s to t = 7s.

III. PROPOSED DEEP TRANSFER CNN FRAMEWORK FOR
EEG SIGNAL CLASSIFICATION
In this section, firstly, a data preprocessing method based
on STFT is proposed to convert EEG signals to a set of

FIGURE 2. Timing scheme of each trail: (a) The first two sessions and
(b) the remaining three sessions.

time-frequency spectrum images. Then, a deep transfer CNN
framework is proposed for EEG signal classification, which
takes the obtained images as the input. The proposed frame-
work can achieve highly accurate and efficient EEG signal
classification with the introduction of transfer learning.

A. DATA PREPROCESSING BASED ON STFT
Short time Fourier transform (STFT) is a Fourier-based time-
frequency signal analysis and processingmethod and it is able
to calculate the complex amplitude over time and frequency
of a non-stationary signal. For STFT, the EEG signal x(t)
to be processed is multiplied by a short time window which
slides along the time axis. Then, a set of windowed signal seg-
ments is generated. Finally, the Fourier transform is applied
to each windowed signal segment respectively, generating
two-dimensional time-frequency spectrums of the raw signal.
Mathematically, STFT is defined as follows:

STFT (τ, ω) =
∫
+∞

−∞

x(t)w(t − τ )e−jωtdt (1)

where w(t) is a window with a limited number of nonzero
points, and τ is the window position on the time axis. The
advantage of STFT is that it can extract time-domain features
and frequency-domain features embedded in original signals
simultaneously.

It was examined in [21] and [35] that the EEG signals
from the C3, C4 and Cz electrodes can be obviously affected
by performing MI tasks. More specifically, during MI tasks,
there is an amplitude decrease in the mu band (8-13 Hz)
of these EEG signals, which is named event related desyn-
chronization (ERD). Oppositely, there is also an amplitude
increase in the beta band (13-30 Hz), which is named event
related synchronization (ERS). In view of this, STFT is
performed on the signal recordings from C3, C4 and Cz
electrodes and only themu and beta frequency bands informa-
tion of the obtained time-frequency spectrums is preserved.
Besides, in this paper, 4-14 Hz frequency bands are used to
represent themu band and 16-32Hz frequency bands are used
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FIGURE 3. The detailed conversion process of EEG signals to time-frequency spectrum images.

to represent the beta band, because this results in a better
performance in our verification experiments.

The detailed conversion process of EEG signals to time-
frequency spectrum images is shown in Fig. 3. Firstly, for
each trail, STFT is computed on the EEG signals from three
electrodes, respectively. Each EEG signal is a 2s long time
series with 500 signal points. Here, the window size of STFT
is set to 64 and the number of points to overlap between
segments in STFT is set to 50. This results in three spectrum
images whose size are all 257×32, where 257 is the number
of sample frequencies and 32 is the number of segment times.
Then, mu and beta frequency bands of the spectrum images
are extracted. The size of the extracted image for mu band
is 20×32 and the size of the extracted image for beta band
is 33×32. After that, in order to match the input of the pro-
posed framework, the images for beta band and mu band are
both resized to 112×224, thus generating a 224×224 spec-
trum image. Finally, three spectrum images converted from
EEG signals at C3, C4 and Cz electrodes are combined
together to form a 224×224×3 input image.

B. PROPOSED DEEP TRANSFER CNN FRAMEWORK
After the EEG signal data are successfully preprocessed,
a set of time-frequency spectrum images are generated. Then,
the problem of EEG signal classification is solved by clas-
sifying these images. Due to the insufficient labeled data in
practical applications and the long time used for training deep
CNN, transfer learning technology is introduced in this paper
to improve the training efficiency of CNNmodel with limited
amount of labeled data. It has been proven in several pre-
vious studies [36]–[40] that 1) network-based deep transfer
learning, which always transfer the partial structure and

parameters of a pre-trained deep neural network in source
domain to another network in target domain, is effective in
reducing the training time and the need of labeled data in
the target domain. 2) low-level features in the front-layers
of CNN are universal for different but related tasks, while
high-level features in the later-layers are specific for different
tasks. Thus the front-layers of CNN are always regarded as
a universal feature extractor. Based on those two remarks,
a transfer CNN framework is proposed to classify these spec-
trum images, and the architecture of it is shown in Fig. 4.
The proposed framework consists of a pre-trained VGG-16
CNN model and a target CNN model, where the pre-trained
VGG-16 CNN model is used to extract universal features
for common image classifications tasks, and the target CNN
model aims to classify EEG signals efficiently and accurately
with the aid of the pre-trained VGG-16 CNN. The detailed
information about the pre-trained VGG-16 CNN, the target
CNN and the training procedure of the proposed framework
is as follows.

1) PRE-TRAINED VGG-16 CNN
VGG-16 is a well-known CNN model with 16 layers pro-
posed by Oxford Visual Geometry Group in 2014 and it
has achieved remarkable performance in various image pro-
cessing tasks [29]. VGG-16 replaces large-sized convolution
filters with small-sized filters while increasing the depth of
network. This is mainly because CNN with small filters
will benefit the improvement of classification accuracy. The
detailed configurations of all layers in VGG-16 can also be
seen in Fig. 4. The VGG-16 CNN model used in this paper
is pre-trained on the ImageNet dataset and the front-layers
of the pre-trained CNNmodel can extract low-level universal
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FIGURE 4. The proposed deep transfer CNN framework based on VGG-16.

features, which are appropriate for general image processing
tasks.

2) TARGET CNN
The target CNNmodel has almost the same structure with the
pre-trained VGG-16 CNN, the only difference between these
two CNN models is the softmax output layer. The original
output layer is removed and then a new softmax output layer
is added, the number of neurons in the new output layer is
exactly the same as the number of types of MI tasks. Here,
the softmax classifier is used for EEG signal classification.
The hyper-parameters, parameters and structures of the pre-
trained CNN model are transferred to the target CNN model
to improve its performance. Then, the target CNN model
can be fine-tuned for the specific MI EEG signal classifica-
tion task without the need to train the whole network from
scratch. The loss function for fine-tuning the target CNN is
softmax cross entropy, which is defined as

H (r, p) = −
∑
i

rilog(pi) (2)

where r is 1 when the predicted output is the same as the true
label, otherwise, r is 0; p is the output probability.

3) TRAINING PROCEDURE
After the structures of the pre-trained VGG-16 CNN and
the target CNN are successfully designed, the obtained time-
frequency spectrum images are divided into training dataset
and testing dataset. The training dataset is used to fine-tune
the target CNN and the testing dataset is used to evaluate the
performance of the target CNN. Since the target dataset used
for fine-tuning is not similar to the ImageNet dataset used

for pre-training, more layers of the target CNN need to be
fine-tuned in this work. Consequently, as shown in Fig. 4,
the front-layers from Layer 1 to Layer 11 of the target CNN
are frozen; While the later-layers after Layer 11 are set to
be trainable, these layers are fine-tuned on the target dataset.
The specific training procedure of the proposed framework is
given in Algorithm 1.

IV. EXPERIMENT
In this section, the accuracy and efficiency of the proposed
framework are verified by the experiments conducted on the
dataset 2b from the BCI competition IV. In addition, com-
parative experiments with traditional methods and standard
deep learning-based methods are also conducted to verify the
superiority of the proposed framework. All the experiments
are carried out with the PyTorch deep learning framework
on a high-performance computer, which is equipped with an
Intel 12-core 3.5-GHz CPU, a GTX1080TI GPU, 256 GB
SSD and 96 GB RAM.

A. EXPERIMENTAL DATA PREPARATION
For data preparation, only the EEG trails in the first three
sessions of the dataset 2b are used in this paper. In order
to verify the framework’s performance, two subdatasets are
generated as follows:

1) DATASET A
For each EEG trail, the duration between 0.5s and 3.5s after
the arrow indicating MI tasks is displayed is extracted [21].
Each extracted 3s EEG signal is then converted to 11 2s sig-
nals with a step of 0.1s, and the specific conversion process is
shown in Fig. 5. In this dataset, training data and testing data
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Algorithm 1 Training Procedure
Input: Given the ImageNet dataset and the target training
dataset Xt {x t , yt } composed of time-frequency images
Output: The trained deep transfer CNN framework
Step 1: Establish the deep transfer CNN framework
The framework consisting of a pre-trained CNN and a target
CNN is established, and the hyper-parameters and structures
of these two CNNs are given.
Step 2: Initialize and pre-train the VGG-16 CNN
The VGG-16 CNN is randomly initialized and pre-trained on
the ImageNet dataset, the objective is to extract common low-
level features for image classification tasks.
Step 3: Initialize the target CNN
The hyper-parameters, structures and parameters of the pre-
trained CNN are transferred to initialize the target CNN.
Step 4: Fine-tune the target CNN
Froze the front-layers of the target CNN and fine-tune the
later-layers using the training dataset Xt {x t , yt }, the objective
of the fine-tuning process is tominimize the loss function (see
equation (2)).
Step 5: Output the deep transfer CNN framework
After the target CNN is fine-tuned, the proposed framework
is output and applied to classify time-frequency spectrum
images of EEG signals.

FIGURE 5. The specific process of data preparation.

are composed of time-frequency spectrum images of these
2s signals.

2) DATASET B
In this dataset, the duration between 1s and 4s after the arrow
indicating MI tasks is displayed is extracted. Excepting this,
the dataset B is generated in the same way as the Dataset A.

There are totally 4400 samples for each subject in both two
subdatasets. Each sample is converted to a 224×224×3 time-
frequency image by the data preprocessing method. Then,
80% of all the converted images are randomly selected for
training, and the remaining 20% are randomly selected for
testing. Consequently, there are 3520 images in the train-
ing set and 880 images in the testing set of dataset A and
dataset B for each subject. The converted time-frequency
images of nine subjects in the dataset A are shown in Fig. 6.

TABLE 1. Average accuracy results of the proposed framework, CNN, SVM
and ANN.

The MI tasks can be classified by classifying the converted
images using the proposed transfer CNN framework. It can
be seen from Fig. 6 that the converted images of two MI
tasks for the same subject are different from each other, which
offers an intuitive way of classifying them. This demonstrates
the effectiveness of the data-processing method. Besides,
the converted images of the same task from different subjects
are also different from each other. Therefore, MI classifica-
tion tasks across subjects are not taken into consideration in
this paper, which is still a tough problem in the research area
of MI BCI system.

B. EXPERIMENTAL RESULTS AND ANALYSIS
This subsection presents the accuracy and efficiency results
of the proposed framework, together with the comparative
results between the proposed framework and several existing
methods.

1) ACCURACY
The target CNN model in the proposed framework is fine-
tuned on the prepared training set, and then the fine-tuned
target CNN model is used for EEG signals classifications.
The accuracy performance of the proposed framework is
evaluated on the prepared testing set. The performance of
the proposed framework is also compared with that of SVM,
ANN and standard CNN. Three points need to be pointed out:
1) SVM and ANN are two traditional machine learning-based
methods, the performance of which is easily affected by the
designed features and the configuration parameters. 2) The
standard CNN is trained from scratch and the structure of it
is shallower than the VGG-16 CNN model. 3) In this paper,
dropout technique is introduced to prevent the target model
from over-fitting during training and improve the generaliza-
tion ability of the target model.

All the accuracy experiments are carried out ten times, and
Table 1 presents the average accuracy results of the proposed
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FIGURE 6. The converted time-frequency images of nine subjects in the dataset A.

framework, CNN, SVM and ANN. As shown in Table 1,
the proposed framework achieves the best accuracy perfor-
mance for all nine subjects compared with all the other
methods. To be specific, the average accuracy of the pro-
posed framework for all subjects is 74.2%. It achieves 2.8%,
10.3%, 5.8% average accuracy improvement compared with
CNN, ANN, and SVM, respectively. It’s remarkable that the
standard CNN and the proposed framework both improve
the classification accuracy a lot compared with traditional
machine learning-based methods, proving the strong feature
extraction and signal classification ability of deep learning-
based methods. What’s more, although the accuracy perfor-
mance of the proposed framework is slightly superior to that
of the standard CNN, it can eliminate the complexity of
structure design and hyper-parameters tuning of the target
CNN. This is because the hyper-parameters and structure of
the pre-trained VGG-16 CNN model are directly transferred
to the target CNN model.

2) EFFICIENCY
In order to compare the efficiency performance of the pro-
posed framework with other methods, the time spent on

training all the above-mentioned methods to achieve conver-
gence are recorded. In essence, comparingwith the traditional
methods including ANN and SVM is unnecessary. Because
selecting the optimal parameters for these twomethods before
training is required, which is extremely time-consuming.
Therefore, only the efficiency comparison results between
the proposed framework and the standard CNN trained from
scratch are listed in Fig. 7.

From the results, it can be seen that training the proposed
transfer CNN framework for all nine subjects is much faster
than the standard CNN. More specifically, the time spent on
training the standard CNN is two to three times longer than
the time spent on the proposed framework. Although during
the training process, the standard CNN has less parameters
need to be updated than the proposed framework, training
the CNN model with random initialization still costs more
time. Besides, the CNN trained from scratch achieves the
desired performance only when the hyper-parameters of it
are optimized for the specific task, which is also very time-
consuming. While the target CNN in the proposed frame-
work already has the optimal hyper-parameters which are
transferred from the pre-trained CNN. Therefore, it can be
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FIGURE 7. Training time of the proposed framework and the standard
CNN trained from scratch: (a) Dataset A and (b) Dataset B.

concluded that the proposed framework can improve the
accuracy performance and speed up the training process of the
target CNN model in EEG signal classification applications.

V. CONCLUSION AND FUTURE WORK
In this paper, an EEG signal classification method based
on a deep transfer CNN framework is proposed. The main
contributions of this paper can be summarized as follows:

1) Designing a STFT-based data preprocessing method.
The data preprocessing method is able to extract time-domain
and frequency-domain features of raw signals simultane-
ously. At the same time, each EEG trail is converted to
a 224×224×3 time-frequency spectrum image after data
preprocessing.

2) Proposing a deep transfer CNN framework. It consists
of a pre-trained VGG-16 CNN and a target CNN, where
the pre-trained CNN is trained using natural images and the
target CNN is fine-tuned using the converted time-frequency
spectrum images. The pre-trained parameters, structures and
hyper-parameters of the pre-trained CNN are directly trans-
ferred to the target CNN in order to improve its classification
accuracy and accelerate its training process.

3) Applying the proposed framework to MI EEG signal
classification. The performance of the proposed framework
is verified on a MI EEG signal dataset, and the efficiency and
accuracy experiments are carried out on this dataset. From the
experimental results, it can be concluded that the proposed
framework possesses better classification accuracy and faster
training speed compared with other methods including CNN,
SVM and ANN.

Although there have been some progress in this paper, two
limitations still have to be addressed in the future. Firstly,
the transfer-ability of different layers of the pre-trained CNN
model hasn’t been studied in this paper. Secondly, training the
proposed framework is still a time-consuming process even
with the GPU-accelerated computing. Therefore, the future
works will focus on the following two aspects: firstly, an addi-
tional analysis on the effect of different transferred layers on
the classification accuracy and efficiency should be studied.
The aim of this analysis is to find the most appropriate layers
of the pre-trained CNN to be transferred to the target CNN.
Secondly, the architecture of the proposed framework should
be future optimized to speed up the training process.
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