
Received July 16, 2019, accepted July 20, 2019, date of publication July 25, 2019, date of current version August 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930986

SCA-Resistant GCM Implementation
on 8-Bit AVR Microcontrollers
SEOG CHUNG SEO 1, (Member, IEEE), AND HEESEOK KIM 2
1Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, South Korea
2Department of Cyber Security, Korea University, Sejong 30019, South Korea

Corresponding author: HeeSeok Kim (80khs@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) through the Korea Government (MSIT) under
Grant 2019R1F1A1058494.

ABSTRACT Galois/counter mode (GCM) is one of the most widely used authenticated encryptions. To date,
even though some works have investigated the security against side channel analysis (SCA) in the process
of GCM computation, especially GHASH function, they failed to present comprehensive SCA security in
consideration of both SPA/TA and DPA/CPA aspects simultaneously. In this paper, we present a secure GCM
implementation on 8-bit AVR microcontroller environments. The proposed implementation provides com-
prehensive SCA security in consideration of not only SPA/TA but also DPA/CPA. In order to defeat SPA/TA,
we introduce the concepts of dummy XOR with garbage registers and instruction level atomicity (ILA) and
also present secure binary field (BF) multiplication method using them, which runs in a constant-time and
fixed pattern. We also propose an efficient multiplicative masking method which can prevent DPA/CPA
when computing GHASH function in the GCM process. Through actual implementation of the proposed
method on an 8-bit AVR ATmega128 microcontroller, we show that the proposed method outperforms
existing alternatives while providing comprehensive SCA security.With respect to the performance of secure
binary field multiplication, the proposed multiplication method outperforms the related work by around
51.86% when computing a 128-bit binary field multiplication. Regarding the overhead of the multiplicative
masking method, the proposed method requires only one additional BF multiplication and negligible amount
of field additions regardless of the number of input blocks, while the related work consumes around the
{log(m + n + 1) + 2} number of additional BF multiplications when there are (m + n + 1) input blocks.
Through SCA-related experiments, we prove the SCA security of the proposed methods.

INDEX TERMS Secure binary field multiplication, Galois/counter mode (GCM) mode, masking, side
channel analysis (SCA), authenticated encryption (AE), simple power analysis (SPA), timing analysis (TA),
differential power analysis (DPA), correlation power analysis (CPA).

I. INTRODUCTION
Authenticated encryptions (AEs) have been widely used in
secure communications where confidentiality and integrity
are required at the same time. Recently, AEs have gained
popularity on even resource-constrained platforms including
smart cards, sensor nodes, and RFIDs since they can provide
both confidentiality and integrity within a single scheme
rather than combining two separate encryption method and
authentication method.

AES-GCM (Galois/Counter mode of operation), proposed
by McGrew and Viega [1], [2] and standardized by NIST [3]

The associate editor coordinating the review of this manuscript and
approving it for publication was Yassine Maleh.

in 2007, is one of the most widely used AEs in practical
applications such as SSL/TLS, SSH, IPSec, IEEE 802.1 AE
(MACsec), NSA suite B, IEEE 802.11ad, and so on. It con-
sists of AES encryption in counter mode as well as authen-
tication tag generation based on GHASH function involving
multiplications in GF(2128). While AES-GCM is computa-
tionally secure against existing cryptanalyses, several works
conducting side channel analysis (SCA) [4] on GHASH
function on GCM mode (especially targeting field multi-
plication of GF(2128) in GHASH function) have recently
been presented [5]–[7]. Since its demand is increasing for
embedded devices, and since such devices are deployed in
the field which can be easily captured by adversaries, secure
countermeasures against SCA are fundamental requirements

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 103961

https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0001-8137-4810


S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

for the implementation of AES-GCM on embedded
devices.

To date, there have been a number of studies devoted
to analyzing SCA security on AES primitive itself as well
as developing efficient and secure countermeasures. On the
other hand, in recent years, researchers have realized the
importance of SCA security on GHASH function (especially
binary field multiplication in GF(2128)) and presented sev-
eral attack methods [5]–[11]. In addition to attack methods,
some countermeasures have been also proposed for secur-
ing GHASH of GCM. For example, Liu et al. proposed
the constant-time polynomial multiplication method based
on the Karatsuba technique and Masked Block-Comb (BC)
method [10], [11]. Although they achieved TA (Timing Anal-
ysis) resistance when computing binary field (BF) multipli-
cations over GF(2128) in the GHASH function, they did not
consider DPA/CPA [4], [12] security on the overall process of
GHASH function (DPA and CPA denote Differential Power
Analysis andCorrelation PowerAnalysis, respectively).Most
recently, Oshida et al. proposed a multiplicative masking
method for defeating DPA/CPA-type SCA when computing
the GHASH function [9]. Even though they achieved com-
plete DPA/CPA security through the use of their proposed
multiplicative masking method, they ignored the SPA/TA
security of the underlying BF multiplications (SPA and TA
denote Simple Power Analysis and Timing Analysis, respec-
tively). Furthermore, their scheme requires a large number of
field multiplications over GF(2128) in order to unmask the
final result before outputting it (this is called the correctness
property).

In this paper, we concentrate on developing efficient
SCA-resistant GCM implementation for 8-bit AVR micro-
controllers which are widely used for sensor nodes, smart
cards, and RFIDs. First, we review and analyze the security of
the aforementioned existing SCA countermeasures [9]–[11]
on the GHASH function of AES-GCM with respect to com-
prehensive SCA security. Secondly, we introduce concepts
of Dummy XOR with garbage registers and instruction level
atomicity (ILA) and present a new SPA/TA-resistant BF mul-
tiplication method based on these concepts for 8-bit AVR
microcontrollers. Thirdly, we propose a multiplicative mask-
ing method for defending DPA/CPA on GHASH function.
The proposed method is superior to Oshida et al’s method
in terms of computational overhead. Furthermore, we show
through experimentation that the proposed masked GHASH
function using the proposed BF multiplication method is
secure against SPA/TA and DPA/CPA.

The contributions of this work can be summarized as
follows.
• Analyzing the weakness of the related works
We revisit the SPA security of Liu et al.’s BF multipli-
cation method [10], [11] and show that their method is
vulnerable to SPA, in contrast to their assertion. Through
analyzing the SPA security of the BF multiplication
methods used in the GHASH function and the DPA
security of the process of GHASH itself, we show that

considering comprehensive security regarding SPA/TA
and DPA/CPA for secure GHASH function is necessary.

• Introducing concepts of Dummy XOR with garbage reg-
isters and instruction level atomicity (ILA) and develop-
ing an SPA/TA-resistant BF multiplication method for
8-bit AVR microcontrollers
The proposed BF multiplication method is based on the
Block-Comb (BC) method and the Karatsuba technique.
In order to make the BC method secure against TA,
we introduce instruction level atomicity (ILA), which
can supplement the timing difference incurred from
the use of conditional branch and jump instructions in
the BC method. We also propose Dummy XOR with
garbage registers in order to prevent SPA, and this makes
it difficult for attackers to determine whether the actual
multiplier bit is 0 or 1while observing a power consump-
tion trace in SPA.

• Presenting a multiplicative masked GHASH function
secure against DPA/CPA analysis
For defending DPA/CPA in the process of GHASH func-
tion, we present a masked GHASH function. In con-
trast to Oshida et al.’s method [9] requiring around the
{log(m + n + 1) + 2} number of additional BF multi-
plications for correctness property, our method requires
roughly one field addition operation per each input block
as well as only one BF multiplication, regardless of
the number of input blocks. Thus, our method can save
around the number of {log(m+ n+ 1)+ 1} BF multipli-
cations compared with Oshida et al.’s method.

• Implementing the proposed BF multiplication method
and masked GHASH function on an 8-bit ATmega128
microcontroller and analyzing their security with actual
experiments
Through actual implementation on an 8-bit AVR
ATmega128 microcontroller, we show that the pro-
posed BF multiplication method is at least 51.86%
faster than Liu et al.’s method while providing SPA/TA
security. We also show through SCA experiments that
the proposed methods are secure against SPA/TA and
DPA/CPA.

The remainder of this paper is organized as follows.
Section II briefly reviews the GCM process, binary field mul-
tiplication, and its implementation methods on the 8-bit AVR
environment. Section III describes the SCA target points of
GHASH function and criteria for secure GHASH implemen-
tation, and also describes the existing countermeasures and
their weaknesses. Section IV describes the proposed counter-
measures including a secure BF multiplication method and a
multiplicative masked GHASH function. Section V presents
the implementation results and security analysis with actual
experiments. Finally, section VI concludes this paper with
suggestions for future works.

II. RELATED WORKS
In this section, we briefly review GCM mode which is
our target implementation and identify which information

103962 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 1. Overview of GCM process (Consisting of CTR encryption mode and GHASH function) [1], [3], [8], [9].

needs to be protected against SCA. Then, we introduce 8-bit
AVR microcontroller with respect to the number of regis-
ters, memory size, and instruction set since our software
is developed on this architecture. Finally, we describe the
existing binary field multiplication methods on 8-bit AVR
platforms. There aremainly two kinds ofmultiplicationmeth-
ods: LUT (LookUp Table)-based methods and Block-Comb
(BC)-based methods.

A. BRIEF REVIEW OF GCM MODE
GCM (Galois/Counter Mode) mode is one of the most widely
used authenticated encryptionmethods which simultaneously
provides data confidentiality and authentication within a sin-
gle scheme [1]–[3]. It employs the CTR mode for encryption
and the GHASH function for authentication tag generation.
GHASH function uses binary field (BF) multiplication over
GF(2128) with an irreducible polynomial f (z) = z128 + z7 +
z2 + z + 1. Fig. 1 depicts the process of GCM mode. In the
figure, ENC and BF_MUL refer to encryption and 128-bit BF
multiplication, respectively. For each block of message, CTR
encryption mode in GCM encrypts the counter and conducts
bit-wise XORs the encrypted result with the corresponding
message block to produce ciphertext block; the counter value
is then incremented. The ciphertext is then bit-wise XORed
with an accumulator of the GHASH function part in GCM,
which is then multiplied with a hash key H , where H =
ENC(K , 0128), in GF(2128). Note that if the associated data
is provided, the concatenation of the associated data and the
generated ciphertext is the input of the GHASH function.
The concatenated input is divided into 128-bit blocks, and
each block is sequentially multiplied with H . Since the BF
multiplication over GF(2128) is the core part of the GHASH
function in GCM, it needs to be implemented both efficiently
and securely.

In the process of GCM, not only must the secret key K
for encryption to be protected, but so must the hash key H

and the subkey S.1 If either H or S is exposed, attackers can
compute valid (i.e., forged) authentication tags for any pair of
associated data and ciphertexts [9], [13]. Thus, it is necessary
to protect both H and S along with K in the process of GCM.
The aim of this paper is to develop an efficient and secure
countermeasure which can protect H and S against SCA.

B. 8-BIT AVR MICROCONTROLLERS
Presently, 8-bit AVR microprocessors are widely used for
various applications, such as smartcards, sensor nodes
in WSN, RFIDs, and so on. 8-bit AVR microcontrollers,
including ATmega128, have 32 general-purpose registers
(R31, . . . ,R1,R0), with six of them being used for memory
address pointers (Each pair of (R26, R27), (R28, R29), and
(R30, R31) are aliased as X , Y , and Z pointer registers, respec-
tively) [14]. AVR microprocessors have separate memory
areas and buses for program and data in a simple single-issue
pipeline, because they are based on the Harvard architecture.
They have a total of 133 instructions, and each instruction
typically has a fixed latency. For example, the arithmetic/
logical instructions (e.g. ADD (arithmetic add), EOR (bit-wise
XOR), LSL (logical shift left), and so on) are executed in
a single clock cycle, while the memory access instructions
(e.g. LD (load from memory to register), ST (store from reg-
ister to memory), and so on) take two clock cycles [14]. Note
that conditional branch instructions such as BREQ (branch if
equal), SBRS (skip if bit in register is set), and so on consume
different numbers of clock cycle(s) depending on whether the
condition is true or false.2 8-bit AVR microcontrollers have
limited computation and memory capabilities. For example,

1Until now, even though a huge number of studies have been conducted
for securingK during AES encryption, the SCA security of GHASH function
has not been fully investigated. Thus, we concentrate on the SCA security of
GHASH function in this paper.

2For example, in the SBRS case, if the condition is false, it consumes
1 cycle. Otherwise, it consumes 2 or 3 cycles depending on the word size
of the skipped instruction.

VOLUME 7, 2019 103963



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

TABLE 1. Existing binary field multiplication methods on 8-bit AVR processor (ECC means elliptic curve cryptosystem).

in case of 8-bit ATmega128, it has only 4 Kbytes of RAM and
128 Kbytes of ROM, and it runs at 7.3728MHz. In contrast to
the latest x86 CPUs and ARM processors supporting carry-
less multipliers, which are generic multipliers for binary field
multiplication, AVR microcontrollers still do not contain the
dedicated hardware for carryless multiplication.

C. BINARY FIELD MULTIPLICATION ON
8-BIT AVR PLATFORMS
The core operation required for the GHASH function of GCM
is the Binary Field (BF) multiplication with an input operand
as an associated data block or ciphertext block and a secret
constant element H . To date, many studies for optimizing
the BF multiplication on 8-bit AVR platforms have been
conducted [15]–[21]. They can mainly be divided into two
categories: LUT (LookUp Table)-based methods [15]–[18]
and Block-Comb (BC)-based methods [19]–[21]. The results
of the existing methods are summarized in Table 1 and the
detail will be described in Sec. II-C2 and Sec. II-C3. Since
the number of available registers is limited on 8-bit AVR
(only 26 general purpose registers, except for 6 memory
address pointer registers, are available), a number of memory
accesses occur when computing a BF multiplication. For
example, at least 64 registers are required to hold an entire
set of a multiplicand, a multiplier, and a result of the BF
multiplication over GF(2128). However, since only 26 reg-
isters are available, only certain parts of the operands can
be maintained in the registers, which results in a number of
redundant memory accesses. Thus, the main concern of stud-
ies on the BF multiplication on 8-bit AVR microcontrollers
is to minimize the number of redundant memory accesses by
optimizing the use of the available registers.

Before describing our proposed BF multiplication method,
this section briefly describes the existing BF multiplication
methods and certain notations on 8-bit AVR platforms.

1) BINARY FIELD MULTIPLICATION AND NOTATIONS
The Binary Field (BF) multiplication involves computing
A · B where A =

∑m−1
i=0 aizi, B =

∑m−1
i=0 bizi ∈ GF(2m).

A and B refer a multiplicand and a multiplier, respectively,
and the result of BF multiplication C can be expressed as
C =

∑m−1
i=0 A · bizi. The most basic BF multiplication

algorithm is the Shift-and-Add (or Shift-and-Xor) method.
Thismethod involves scanning themultiplier from the 0-th bit

to the (m− 1)-th bit. At each iteration, multiplicand A is left-
shifted such asA·z, and if the bit ofmultiplierB is set to 1, then
the left-shifted multiplicand is XORed with the accumulator
(Namely, if bi, i-th bit of the multiplier, is set 1, then, A · zi is
XORed with the accumulator). The Comb method, the basic
algorithm for LUT-based methods and Block-Comb method,
improves the performance of the BF multiplication by taking
advantage of the fact that if A ·zk has been computed for some
k ∈ [0,W − 1] (in cases of 8-bit AVR platforms, W is 8),
A · zWj+k can be easily obtained by appending j zero words
to the right of the vector representation of A · zk . Thus, it can
reduce the number of shift operations as compared with the
basic Shift-and-Add algorithm. There are two types of Comb
methods: the LtR Comb method and the RtL Comb method.
While the LtR Comb method scans a multiplier from MSB
(Most Significant Bit) to LSB (Least Significant Bit), the RtL
Comb method proceeds from LSB to MSB [15], [23].

Throughout the paper, we will use the following nota-
tions. Ri refers to the i-th general purpose register where
31 ≥ i ≥ 0. The operators ⊕, �, and � denote XOR,
logical left shifts, and logical right shifts. A[i] means the
i-th byte (or word) of A and it is composed of eight bits
like (a8i+7, . . . , a8i). Finally, A[i, . . . , j] represents the bytes
(words) from A[j] to A[i], respectively.

2) LOOK-UP TABLE METHODS
In order to improve the efficiency of the 128-bit BF mul-
tiplication of GCM, McGrew et al. described different
approaches involving tables of different sizes, allowing for
trade-off between memory requirement and computation
speed [1], [2] in their GCM specification. Their methods use
differently sized-tables of 256 Bytes, 4 Kbytes, 8 Kbytes,
and 64 Kbytes, and the performances of the methods were
measured on a 32-bit RISC Motorola G4 processor. Even
though McGrew et al.’s table-based approaches are efficient
in terms of computation speed, their memory requirements
are too large to be used on 8-bit AVR microcontrollers. Thus,
GCM implementations on resource constrained devices as
8-bit AVR and 16-bit MSP430 microcontrollers typically
have utilized López et al.’s Look-Up Table (LUT)-based
approach [11], [24] which was originally proposed for the BF
multiplication over binary elliptic curves [15], [23].

López et al.’s LUT-based BF multiplication method is an
extension of the LtR Comb method (so-called wLtR Comb

103964 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

method), and it executes the BF multiplication by w-bit unit
rather than single bit unit at the expense of a precomputation
table, which results in a reduced the number of bit opera-
tions, such as shift and XOR operations [15], [17], [23], [24].
It first builds a precomputation table involving all possi-
ble results of A · u(z) for all polynomials u(z) of degree
at most w − 1. It then scans multiplier B by w-bit unit
at a time from MSB to LSB and takes the correspond-
ing value from the precomputation table, and the value is
XORed with the intermediate result without computing it.
On 8-bit AVR platforms, it is known that 4-bit is the optimal
width w for LUT-based method, which requires 16× m-bit
of RAM memory for accommodating a table composed
of 16 polynomials from 0 · A to (z3 + z2 + z + 1) · A. The
LUT-based method has been widely implemented on 8-bit
AVR platforms [16]–[18]. For example, Seo et al. [16] imple-
mented the 163-bit polynomial multiplication with NesC
language on an 8-bit ATmega128 microcontroller, and they
improved the original LUT-based method by reducing the
number of redundant memory accesses by combining two
iterations of the main loop into one. They achieved 21.1%
of performance improvement and got 19,670 cc for a field
multiplication over GF(2163). In [17], [18], Aranha et al.
introduced a rotating register mechanismwhich could signifi-
cantly reduce the number of memory accesses required by the
LUT-based polynomial multiplication method. They imple-
mented their method in Assembly language and achieved
timings of 4,508 cc, 8,314 cc, and 11,727 cc in computing
each polynomial multiplication over GF(2163), GF(2233),
and GF(2271), respectively (cc means clock cycle). While
LUT-based methods provide good performance and are
secure against TA and SPA, they are inherently vulnera-
ble to side channel analysis (SCA) using memory-address
information [11], [25] due to the huge number of memory
accesses they involve. In [10], [11], Liu et al. [11] success-
fully attacked López et al.’s LUT-based BF method with
a kind of horizontal correlation analysis [26]. They could
find the LUT index by using the correlation between power
consumption patterns for constructing the LUT and accessing
the LUT during the actual multiplication.

3) BLOCK-COMB METHOD
As an alternative to LUT-based methods, the Block-
Comb (BC) method was first introduced in [19] for the
efficient BF multiplication of ηT pairing computation on
the 8-bit ATmega128 microcontroller. In the BC method,
a multiplier and a multiplicand are divided into equal-sized
blocks of s-bytes, and partial products of multiplicand blocks
and multiplier blocks are computed in a column-wise fash-
ion. The partial product is then computed using the Comb
method for efficiency. In other words, in the BC method,
the available registers are divided into three parts: s registers
for a block-sized multiplicand, s registers for a block-sized
multiplier, and 2s+ 1 for the result of partial products. Since
the intermediate results are maintained in 2s + 1 working

registers, the results of partial products belonging to the
same column can be directly updated to the registers without
needing to access memory, which reduces the number of
redundant memory accesses. In [19], Shirase et al. concluded
that the optimal block size s is 6 based on (4s + 1) < 26.
The original BC computes a polynomial multiplication over
GF(2239) within 9,511 clock cycles (cc).
Seo et al. [20] extended the size of the block from 6 to

7 in proposing the Unbalanced Block-Comb method (UBC)
for GF(2163) multiplication. They took advantage of the
fact that the tested bits of a multiplier are no longer nec-
essary during the process of a partial product, and recycled
this register for holding the most significant byte of the
multiplicand. As a result, the extended block size reduces
the number of partial products from 16 to 9 when com-
puting a polynomial multiplication over GF(2163) (Note
that 7-word (resp. 6-word) block size divides 163-bit poly-
nomial into three blocks (resp. four blocks)). UBC could
compute a field multiplication over GF(2163) with 4, 546.
Then, Seo et al. [21] proposed the Karatsuba Block-Comb
method (KBC), developed by combining the Karatsuba tech-
nique with Block-Comb, which reduces the number of par-
tial products further from 9 to 6 at the expense of several
cheap field additions when computing a polynomial multi-
plication over GF(2163). KBC could achieve 3,274 cc for
a field multiplication over GF(2163). They also presented a
variant of constant-time Karatsuba block combmethod. Even
though it achieved timing attack (TA) resistance, it is still
vulnerable to simple power analysis (SPA). Most recently,
Seo et al. [22] presented an enhanced Karatsuba Block-
Comb (EKBC) method by proposing novel multiplier encod-
ing technique which can significantly reduce the number
of required registers for maintaining the multiplier. They
achieved a new speed record for elliptic curve scalar multipli-
cation over NIST-compliant K-233 curve. Until now, EKBC
provides the fastest computation timing for binary field mul-
tiplication. In 2018, Seo et al. [10], Liu et al. [11] presented
a secure GCM implementation on 8-bit AVR processor. For
SPA and TA resistance, they presented amasked Block-Comb
method. However, in contrast to their assertion, their method
is still vulnerable to SPA. We will show the SPA weakness of
their method in Sec. III in detail. In summary, since BC-based
methods do not use a Look-Up Table, they are secure against
a kind of horizontal CPA used for attacking López et al.’s
LUT-based method.

III. SIDE-CHANNEL ATTACK ON GHASH OF GCM
Recently presented attacks have mainly focused on the BF
multiplication in the GHASH function [5]–[11] and their
goal has been to recover the secret hash key H in order
to forge the authentication tag. Among the aforementioned
studies, [10], [11] considered SPA/TA security of BF mul-
tiplication primitive itself and [5]–[7], [9] investigated the
DPA/CPA security of the BF multiplication in the process of
GHASH.

VOLUME 7, 2019 103965



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

A. SCA TARGET POINTS AND CRITERIA FOR
SECURE GCM IMPLEMENTATION
From the above-mentioned studies, the SCA target points to
the GHASH function can be summarized as follows.
• Target of SPA/TA
If A ·H , a BF (Binary Field) multiplication in GHASH,
is computed with an algorithm in which its execution
path depends on the multiplier, it leaks information
regarding the multiplier. For example, if the Shift-and-
Add method is used for a BF multiplication, as in [9],
the multiplicand is bit-wise XORed on the accumula-
tor when the tested bit of the multiplier is set to 1.
In other words, the timing differences and power con-
sumption pattern during the execution of the method can
be exploited by attackers.
⇒ Therefore, the BF multiplication in GHASH needs
to both execute in constant-time and generate a regular
power consumption pattern regardless of the bit value of
the multiplier.

• Target of DPA/CPA
One of the inputs to the BF multiplications in GHASH
is a known value, as associated data A or ciphertext C ,
while the other input is fixed and secret hash key H .
Therefore, attackers can apply DPA/CPA-type attacks
during the process of GHASH function in order to find
the hash key H .
⇒ Therefore, a proper masking method needs to be
applied so as to randomize the known input value in
order to prevent these kinds of attacks. Furthermore,
the intermediate result in GHASH needs to be random-
ized until the generation of the final result.

B. SECURITY OF THE EXISTING COUNTERMEASURES
Regarding the secure implementation of GCM, several works
have been conducted [9]–[11]. In this subsection, we examine
the claimed SCA security of the existing methods.

Seo et al. [10] and Liu et al. [11] proposed the constant-
time BF multiplication based on the Karatsuba technique and
the Block-Comb (BC) method. In their paper, they showed
that López et al.’s LUT-based BF multiplication method is
vulnerable to a kind of horizontal CPA [26] exploiting its
inherent consecutive memory accesses, even though it is
known to be secure against TA and SPA. The BC-based
BF multiplication methods are known to be secure against
this kind of SCA because they do not use Look-Up Tables.
However, the BC-based methods are vulnerable to Timing
Attack (TA) and Simple Power Analysis (SPA), because the
partial products in the BC-based methods are computed using
either the LtR Comb method or the RtL Comb method.
In other words, in both the LtR Comb method and the
RtL Comb method, the multiplicand is XORed with the
accumulator only when the tested bit value of the multi-
plier is set to 1. Thus, the power consumption pattern or
timing difference during the computation of the BC-based
methods can reveal the value of the multiplier. In order to
defend TA, NOP instruction or XORing with zero register

can be used.3 However, even though both approaches make
BC method run in constant-time, Liu et al. pointed out that
the routines using NOP instruction or XORing with zero
register consume relatively lower power consumption than
normal XOR operations conducted when the tested bit is set
to 1 due to the different hamming weights and instructions,
which results in being vulnerable to SPA [11]. Therefore,
in order to prevent not only SPA/TA but also SCA exploiting
correlation between memory access patterns and hamming
weights of operands, they eventually proposed a Masked
Block-Comb (MBC)method which runs in constant-time and
always executes the same execution pattern, regardless of the
value of multiplier.

Algorithm 1 Masked Block-Comb on 32-bit [10], [11]
Require: 32-bit wise operands A and B
Ensure: Result C=A · B
1: for l = 7 to 0 do
2: for m = 3 to 0 do
3: BIT ← A[m]&(1� l)
4: MASK , T0← (0− BIT )
5: for k = 3 to 0 do
6: C[k + m]← C[k + m]⊕ (B[k]&MASK )
7: end for
8: end for
9: C ← C � 1
10: end for
11: (Return C)

Alg. 1 shows the masked BC method from [10], [11].
However, this algorithm does not show a regular power con-
sumption pattern in contrast to their assertion, so it does not
guarantee SPA resistance. In the case in which the tested bit
is set (resp. clear), BIT becomes 1 (resp. 0), then 0xFF (resp.
0x00) is assigned to MASK . Consequently, (B[k]&0xFF)
(resp. (B[k]&0x00)) is bit-wise XORed with the accumu-
lator C[k + m] when the tested bit is set (resp. clear).
Since (B[k]&0x00) is the same as 0x00, this is identical
to XORing the accumulator with zero register. Therefore,
we found that the power consumption pattern of Alg. 1 pre-
sented in [10], [11] is similar to that using XORing with zero
register. Furthermore, Liu et al. did not consider DPA/CPA
security on the overall process of the GHASH function.

Recently, Oshida et al. proposed the first DPA/CPA coun-
termeasure based on multiplicative masking for the purpose
of securing the GHASH function [9] against the previously-
presented DPA scenarios [5]–[7]. Fig. 2 shows Oshida et al.’s
masked GHASH function. First, the input block (A1) is
masked with (M ⊕ S), whereM is a 128-bit random masking
value and S is the subkey. Then, the masked input value as
(A1⊕M⊕S) is multiplied with the hash keyH , and the result
of the multiplication is XORed with (S ⊕ S · H ). Note that

3When computingBF multiplication, if the tested bit is zero,NOP instruc-
tion or XORing the accumulator with zero register can be used to hide the
time difference.

103966 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 2. Oshida et al.’s masked GHASH function.

by XORing the output of i-th BF_MUL with (S ⊕ S · H ),
the updated result always becomes masked with (M ·H i

⊕S).
Although they achieved complete DPA/CPA security, they
ignored SPA/TA security on the BF multiplication method
used in the GHASH function. Since they used the Shift-
and-Add method as described in Alg. 6 in the Appendix for
computing BF multiplications in GHASH, the timing dif-
ference or power consumption pattern during the multipli-
cations can leak the secret information. Furthermore, their
scheme requires a large number of field multiplications over
GF(2128) in order to unmask the final result before outputting
it (this is called the correctness property). In other words,
it requires the computation of (M · Hm+n+1) in order to
unmask the final result for the correctness property, which
requires (log(m + n + 1) + 2) binary field multiplications.
Oshida et al.’ mentioned that the value of Hm+n+1 can be
precomputed prior to conducting the GHASH function. How-
ever, the precomputed Hm+n+1 can be reused only when the
number of input blocks is (m + n + 1). For example, if H10

is precomputed, it can only be used without any additional
cost when the number of input blocks on the GHASH func-
tion is 10. However, since the number of input blocks in
the GHASH function is not practically fixed, precomputing
Hm+n+1 does not always provide a computational advantage,
in contrast to their assertion.

In Section V, we analyze the security of Liu et al.’s Masked
Block-Comb (MBC) method (Alg. 1) and the Shift-and-Add
method (Alg. 6) used in Oshida et al.’s masked GHASH
function in terms of SPA. Regarding Liu et al.’s method,
we show that the power consumption pattern of their MBC
method is the same as that of XORing with the zero register
method. In addition, we show that the power consumption

pattern of the Shift-and-Add method depends on the secret
information. Then, we also show that the MBC method does
not guarantee DPA/CPA security.

IV. PROPOSED SECURE GCM COMPUTATION
In this section, we describe the proposed techniques for a
secure GHASH function in terms of SPA/TA and DPA/CPA.
In Section III, we define design criteria for the secure imple-
mentation of GHASH in order to achieve comprehensive
SCA security. According to the design criteria, first, the BF
multiplication in GHASH needs to not only execute in
constant-time but also generate a regular power consumption
pattern. Secondly, the known input value such as associated
data or ciphertext needs to be randomizedwith a propermask-
ing value so as to block attackers from correctly guessing the
intermediate result of GHASH.

A. PROPOSED BINARY FIELD MULTIPLICATION
In a manner identical to the Masked Block Comb method
presented in [10], [11], we basically make use of the 32-bit
wise Block-Comb (BC) method. In order to compute a BF
multiplication over GF(2128), each operand of the multipli-
cation is divided into four blocks, and each partial product of
the divided multiplicands and multipliers is computed using
the 32-bit wise RtL Comb method. Alg. 2 computes a partial
product of a 32-bit multiplicand and a 32-bit multiplier in
an RtL Comb fashion in the BC-based BF multiplication
method. In Alg. 2, the multiplicand A is bit-wise XORed
with the intermediate result C when the tested bit of the
multiplier B is set to 1. Otherwise, no operation is performed.
Thus, it is vulnerable to TA and SPA. The first goal of this
paper is to convert Alg. 2 into a secure version, which not

VOLUME 7, 2019 103967



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

Algorithm 2Block CombMethod on 32-Bit Where (R7, . . . ,
R0), (R12, . . . ,R8), and (R16, . . . ,R13) Are Reserved for
Accumulator, Multiplicand, and Multiplier
Require: 32-bit wise operands A (a multiplicand) and B

(a multiplier)
Ensure: Result C(64-bit) = A · B
1: for l = 0 to 7 do
2: Rl ← 0
3: end for
4: for l = 0 to 3 do
5: R8+l ← A[l]
6: R13+l ← B[l]
7: end for
8: R12← 0
9: for l = 0 to 7 do
10: for m = 0 to 3 do
11: if the l-th bit of R13+m == 1 then
12: for k = 0 to 4 do
13: Rm+k ← Rm+k ⊕ R8+k
14: end for
15: end if
16: end for
17: if l 6= 7 then
18: (R12, . . . ,R8)← (R12, . . . ,R8)� 1
19: end if
20: end for
21: (Return C)

only executes in a constant time but also generates a regular
power consumption pattern. In order to defend TA and SPA,
we introduce the concepts of Dummy XOR with the garbage
registers and Instruction Level Atomicity (ILA), then apply
them to the BC method.

1) DUMMY XOR WITH GARBAGE REGISTERS FOR REGULAR
POWER CONSUMPTION PATTERN
In Section III, we show that the power consumption pattern in
Liu et al.’s MBC method depends on the value of the tested
multiplier bit even though identical operations are executed
regardless of the bit value (Section V presents the experimen-
tal results regarding the SPA security on Liu et al.’s method).
This is because zero values ((B[k]&MASK )) are XORed with
the accumulator C when the tested value is zero, which is
identical to the method of XORing with a zero register. Thus,
we introduce the concept of Dummy XOR with the garbage

registers to prevent SPA. We double the number of registers
for the accumulator C from (R7, . . . ,R0) to (R15, . . . ,R0).
Our method using the double-sized accumulator completely
makes use of the 25 registers for computing a partial prod-
uct of 32-bit operands, and this is acceptable in 8-bit AVR
microcontrollers, where 32 registers are available. Figure 3
shows the register assignment in the proposed method. The
set of (R0, . . . ,R7) plays the garbage registers and the set
of (R8, . . . ,R15) contains the real intermediate result of the
partial products. Our method executes XOR operations not
with zero values, but with the real multiplicand regardless of
the value of tested bit; however, the destination of the oper-
ations needs to be correctly configured. For example, when
the tested bit is 0, the (Rm+k ← Rm+k ⊕ R16+k ) is computed
where k = 0 to 4. Otherwise, (R8+m+k ← R8+m+k ⊕ R16+k )
is computed. Since the real multiplicand is XORed with the
accumulator in both cases, the power consumption patterns
of both cases are indistinguishable with SPA.

2) INSTRUCTION LEVEL ATOMICITY FOR
CONSTANT-TIME EXECUTION
If we implement the proposed Dummy XOR using the
garbage registers with if-then-else statements, this
leaks the timing difference. For example, the naive Dummy
XOR method can be implemented as following.

if the l-th bit of R21+m == 1 then
for k = 0 to 4 do
R8+m+k ← R8+m+k ⊕ R16+k

end for
else

for k = 0 to 4 do
Rm+k ← Rm+k ⊕ R16+k

end for
end if

Even though the above codes execute the same operations
as (R8+m+k ← R8+m+k⊕R16+k ) or (Rm+k ← Rm+k⊕R16+k )
regardless of the tested bit value, it leaks the timing differ-
ence. This is because of the if-then-else conditional
branches. On the 8-bit AVR architecture, the conditional
branch instructions inherently consume different clock cycles
based on whether or not the condition is true. For example,
if the condition is false (resp. true), they usually consume
1 clock cycle (resp. 2 clock cycles). Thus, even though the
inner operation patterns in the if and else clauses are

FIGURE 3. Register assignment in the proposed block-comb (BC) method.

103968 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 4. Example of the naive implementation of Dummy XOR method with the garbage registers when the 1-st bit of the 0-th byte in the
multiplier is tested (Left figure shows assembly codes for implementing Dummy XOR with the garbage registers and right figure shows the
clock cycle counts for two cases: When the condition is either false or true).

identical, it can incur a timing difference, which results in
vulnerability to TA. Thus, we need to address this problem to
develop a constant-time BF multiplication method which is
secure against TA.

Fig. 4 shows the assembly level implementation of the
Dummy XOR method with the garbage registers and its
execution time in clock cycles. The conditional branch in
the BC method is implemented with an SBRS (Skip if bit in
register is set) instruction [14], [19]. As shown in the figure,
the core part of the BC method using the Dummy XOR
technique is implemented with the SBRS, RJMP, and EOR
instructions. SBRS tests whether or not the 1-st bit of R21 is
set. If the tested bit is false, SBRS consumes 1 clock cycle
and the next instruction is executed. For example, when the
tested bit is clear, the program counter (PC).4 jumps to the
label of l_1_m0_Dummy with RJMP and then the multipli-
cand is XORed with the garbage registers through the five
Dummy EOR instructions. When the tested bit is set, SBRS
consumes 2 clock cycles and the next instruction is skipped.
Thus, the multiplicand is XORed with the real accumulator
registers through the five EOR instructions. Thus, the naive
implementation of the Dummy XOR technique is vulnerable
to TA. Furthermore, the timing difference makes it so that
the two conditional cases are distinguishable from each other

4PC is a register to hold/store the address of the next instruction to be
executed by the microcontroller’s microprocessor.

with SPA. Therefore, we need to ensure that the two condi-
tional cases use the same kinds of instructions at the same
time.

We define the concept of Instruction Level Atomic-
ity (ILA), which makes it so that the two execution paths
use the same kinds of instructions at the same time. In order
to design instruction level atomicity, we analyze the internal
processes of the SBRS and RJMP instructions in detail. The
SBRS (Skip if Bit in Register is Set) instruction increments
the program counter (PC) by 1 (resp. 2) when the condition
is false (resp. true). In other words, since the PC is incre-
mented by 1 when the condition is false, the next instruc-
tion is executed. On the other hand, when the condition is
true, the PC is updated as PC+2, which results in executing
the second instruction by skipping the first instruction from
SBRS. Thus, the main work of SBRS is to increment the
PC according to the result of the testing condition. When
updating the PC, the adder in ALU is used. In other words,
when the condition is false (resp. true), the adder is executed
once (resp. twice), which requires 1 clock cycle (resp. 2 clock
cycles). Therefore, it can be found that the execution of the
SBRS instruction is the same as adding 1 to the PC register
once or twice with the ADD instruction. The RJMP (Relative
Jump) instruction updates the PC by PC+k + 1 where k is
the displacement, and it takes 2 clock cycles for its execution.
RJMP also uses the adder in ALU twice for updating the PC
as PC ← PC + 1 and PC ← PC + k . Based on the above

VOLUME 7, 2019 103969



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 5. Example of the application of instruction level atomicity when l = 1 and m = 0 (left figure shows the assembly codes for
constant-time dummy XOR with the garbage registers and right figure shows the cycle counts for two cases: The condition is false or true).

analysis, we can conclude that the primary operation of the
SBRS and RJMP instructions is to update the PC with the
adder in ALU, which is identical to the execution of the ADD
instruction. Therefore, we make use of the ADD instruction
in order to make two execution cases (the case when the
condition is false and the case when the condition is true)
indistinguishable from each other. Fig. 5 shows the proposed
instruction level atomicity for making two execution cases
indistinguishable with respect to the types of instructions and
execution cycles. Since the displacement k is seven in the
proposed method, RT register holding 0x07 is added to R0
register belonging to the garbage registers (In the proposed
method, R25 can be used as RT ). We determine that two
execution cases consume the same number of clock cycles
as 10, and the type of instruction at each clock cycle is
identical. Thus, our method is secure against TA and SPA.

Alg. 3 shows the proposed BC method on 32-bit operands
by combining the proposed Dummy XOR with the garbage
registers and ILA. Alg. 3 executes a partial product of 32-bit
operands, and is secure against TA and SPA through the
application of Dummy XOR using the garbage registers and
instruction level atomicity using a dummy addition. If the
tested multiplier bit is set (that is, if the condition is true),
the multiplicand is XORed with the real accumulator consist-
ing of registers (R15, . . . ,R8) after the dummy add instruction
is executed. Otherwise (the condition is false), Dummy XOR
is executed by XORing the multiplicand with the garbage
registers (R7, . . . ,R0). The core parts in Alg. 3 as steps 10–25
and steps 26–38 are implemented in a loop unrolling manner
as codes depicted in Fig. 5.

3) APPLICATION OF KARATSUBA TECHNIQUE
Since the proposed BC method computes a partial product
of 32-bit operands, the 128-bit BF multiplication requires
16 partial products. Thus, we apply the Karatsuba technique
so as to reduce the number of partial products for efficiency.
The Karatsuba technique allows us to reduce the number
of partial products in sub-quadratic complexity with a few
additional field additions [27], [28]. Rather than directly
applying the Karatsuba technique, we apply multiple levels
of the Karatsuba technique: 1-level Karatsuba for computing
a 64-bit multiplication requiring three 32-bit partial products
and 2-level Karatsuba for computing a 128-bit multiplication
requiring three 64-bit partial products. Thus, the proposed
128-bit BF multiplication requires nine 32-bit wise partial
products, rather than sixteen in total.

Alg. 4 shows the proposed 1-level Karatsuba BC method
for 64-bit operands, and it requires three 32-bit wise partial
products (denoted as ×32−bit ) which are computed using
Alg. 3. Note that the shift operations of (H � 64) and
(M � 32) at step 5 can be efficiently computed by arranging
the byte positions rather than using the bit-shift operations.
The 2-level Karatsuba BC method for computing a 128-bit
BF multiplication can be constituted in a manner similar to
Alg. 4 with the difference being that the size of operands
increases from 64-bit to 128-bit. The 2-level Karatsuba BC
method requires three 64-bit partial products and the partial
products are computed with Alg. 4.

We have implemented the proposed BC methods on
an 8-bit AVR ATmega128 microcontroller running on
7.3728 MHz. Table 2 shows the timing costs of the proposed

103970 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

Algorithm 3 Proposed Block-Comb (BC) Method on 32-Bit
Where (R15, . . . ,R0), (R20, . . . ,R16), and (R24, . . . ,R21) Are
Reserved for Accumulator, Multiplicand, and Multiplier
Require: 32-bit multiplicand A and 32-bit multiplier B
Ensure: ResultC(64-bit)= A·B (Among sets ofR15, . . . ,R0

for holding the result C , the sets of (R7, . . . ,R0) and
(R15, . . . ,R8) are used to hold the garbage result and real
result, respectively)

1: R25 ← 0x07 // Set displacement value for dummy ADD
instruction for ILA

2: for l = 0 to 15 do
3: Rl ← 0
4: end for
5: for l = 0 to 3 do
6: R16+l ← A[l]
7: R21+l ← B[l]
8: end for
9: R20← 0
10: // Processing from 0-th bit to 6-th bit
11: for l = 0 to 6 do
12: for m = 0 to 3 do
13: if the l-th bit of R21+m == 1 then
14: R0 ← R0 + R25 // Dummy ADD instruction for

ILA
15: for k = 0 to 4 do
16: R8+m+k ← R8+m+k ⊕ R16+k
17: end for
18: else
19: // Dummy XOR with the garbage registers
20: for k = 0 to 4 do
21: Rm+k ← Rm+k ⊕ R16+k
22: end for
23: end if
24: end for
25: (R20, . . . ,R16)← (R20, . . . ,R16)� 1
26: end for
27: // Processing the final 7-th bit
28: for m = 0 to 3 do
29: if the 7-th bit of R21+m == 1 then
30: R0← R0+R25 // Dummy ADD instruction for ILA
31: for k = 0 to 4 do
32: R8+m+k ← R8+m+k ⊕ R16+k
33: end for
34: else
35: // Dummy XOR with the garbage registers
36: for k = 0 to 4 do
37: Rm+k ← Rm+k ⊕ R16+k
38: end for
39: end if
40: end for
41: (Return C = (R15, . . . ,R8))

32-bit (Alg. 3), 64-bit (Alg. 4), and the 128-bit wise BF mul-
tiplications. We have implemented the proposed 32-bit and
64-bit wise BF multiplications in AVR assembly language.

Algorithm 4 64-Bit Wise Karatsuba Block Comb
KAT_MUL64−bit
Require: 64-bit wise operands A and B.
Ensure: Result C(128-bit) = A · B.
1: L ← A[3 . . . 0]×32−bit B[3 . . . 0]
2: H ← A[7 . . . 4]×32−bit B[7 . . . 4]
3: M ← (A[7 . . . 4] ⊕ A[3 . . . 0]) ×32−bit (B[7 . . . 4] ⊕
B[3 . . . 0])

4: M ← H ⊕ L ⊕M
5: C ← (H � 64)⊕ (M � 32)⊕ L
6: (Return C)

The 64-bit BF multiplication includes codes of three 32-bit
wise BF multiplications and other operations rather than
calling the function of the 32-bit wise BF multiplication. The
128-bit BF multiplication is implemented in C language, and
it internally calls the 64-bit wise BF multiplication imple-
mented in AVR assembly language.

4) REDUCTION AND BIT REFLECTION
The GCM standard specifies that the bits of the state are
reflected [1], [2]. That is, in the GCM standard, with respect
to an element over GF(2128), the leftmost bit is regarded
as the 0-th bit and the rightmost bit is regarded as the
127-th bit, while general cryptographic algorithms usually
use the opposite notation. We utilize the table-based bit-
reflection for the inputs and the output of a BF multipli-
cation (The table for bit-reflection requires 256-byte). The
bit-reflection table converts an input byte into a bit-reflected
byte as (b0b1b2b3b4b5b6b7) ← (b7b6b5b4b3b2b1b0), and
vice versa. The bit-reflection is required for eachBF multipli-
cation of the GHASH function. In the process of the GHASH
function, the result of each BF multiplication needs to be
reduced by the irreducible polynomial f (z) = z128 + z7 +
z2 + z + 1. We have implemented a fast reduction method
similar to the fast reduction methods in [23], computing byte-
unit reduction rather than bit-unit, and using f (z) = z128 +
z7+ z2+ z+1 for 8-bit AVR microcontrollers in C language.

B. MASKED GHASH COMPUTATION
While the proposed BF multiplication method is secure
against TA and SPA, it is still vulnerable to DPA/CPA. Thus,
this section describes our approach to preventing DPA/CPA.
In order to defend DPA/CPA, the power consumption leakage
needs to be independent from the processed data (i.e. inter-
mediate results) during the crypto operations. In detail, if a
constant secret value as a subkey or a hash key is mixed
with varying inputs as blocks of associated data or blocks of
ciphertext, DPA/CPA can be launched at the GHASH func-
tion. Thus, we propose a multiplicative masking approach
with which to randomize both the inputs and the intermediate
results during the process of the GHASH function. Fig. 6
shows the process of the proposed masked GHASH func-
tion. At the first BF multiplication, the input A1 is XORed

VOLUME 7, 2019 103971



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

TABLE 2. Costs for the proposed SPA/TA-resistant 32-bit, 64-bit, and 128-bit wise BF multiplication (The cost includes the overhead for function calls
such as POP and PUSH instructions).

FIGURE 6. Proposed Masked GHASH function process (M, S, and H denote a 128-bit random masking value, a subkey derived from
encrypting (IV ||CTR0) with a master key K , and a hash key derived from encrypting 0128 with the master key K . BF_MUL denotes a 128-bit BF
multiplication).

with (M ⊕ S), where M is a 128-bit random masking value
and S is a subkey derived from encrypting (IV ||CTR0) with a
master key K . Note that a random valueM needs to be newly
generated at the beginning of the GHASH function. Since
the input value is masked with a random value, the power
consumption becomes independent from the processed data
of BF_MUL, which makes it so that attackers cannot cor-
rectly guess the intermediate value. The output of BF_MUL
is XORed with (S⊕M ) · (H ⊕1). Since the output of the first
BF_MUL is ((M⊕S⊕A1)·H ), the result of ((S⊕M )·(H⊕1))⊕
((M ⊕S⊕A1) ·H ) becomes (A1 ·H ⊕M ⊕S). In the original
GHASH function without any DPA/CPA countermeasures,
the output of the firstBF multiplication is (A1 ·H ). As a result,
it can be found that the original output of BF_MUL is XORed
with (M ⊕ S). Then, the masked output of the first BF_MUL
is XORed with the input (A2) of the second BF_MUL, which
once again randomizes the input of BF_MUL. This process is
iterated until each of the (m + n + 1) blocks is computed by
BF_MUL. As shown in Fig. 6, both the input and the output
of BF_MUL are masked with random masking values, which
guarantees resistance against DPA/CPA during the process
of the GHASH function. The output of the final BF_MUL
needs to be XORed with (S ⊕ S · H ⊕ M · H ) rather than
(S ⊕M ) · (H ⊕ 1) for correctness property.
Alg. 5 shows the detailed execution process of the pro-

posed GHASH function. The input consists of m + n + 1
segments (segments mean blocks in this context):m segments
of the additional associated data, n segments of ciphertext,
and a segment of (m||n). Whenever this GHASH function is
invoked, a new 128-bit random value needs to be generated
at step 1, which is then XORed with the subkey S at step 2.

Algorithm 5 Proposed Masked GHASH Function
Require: m + n + 1 input data segments D1, . . . ,Dm+n

(First m segments are additional associated data such as
(D1 = A1, . . . ,Dm = Am) and the next n segments are
ciphertext such as (Dm+1 = C1, . . . ,Dm+n = Cn. The
final segment is (m||n)). A subkey S and a hash key H .

Ensure: Authentication Tag T
1: Generate a 128-bit random value M
2: Compute T ← M ⊕ S
3: Compute U ← BF_MUL(T , H )
4: Compute V ← U ⊕ T // V = (S ⊕ S ·H ⊕M ⊕
M · H )

5: ComputeU ← U⊕S // U = (S⊕S ·H⊕M ·H )
// Processing m+ n input segments

6: for i = 1 to m+ n do
7: T ← T ⊕ Di
8: T ← BF_MUL(T , H )
9: T ← T ⊕ V
10: end for

// Processing the final segment
11: T ← T ⊕ Dm+n+1
12: T ← BF_MUL(T , H )
13: T ← T ⊕ U
14: Return (T )

Steps 3–5 compute V andU where V will be XORed with the
output of each BF_MUL except for the final BF_MUL and U
will be XORed with the final output of the GHASH function.
Steps 6–10 processm+n input segments by calling BF_MUL

103972 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

TABLE 3. Comparison of additional operations for DPA/CPA
countermeasures on the GHASH function (BF_MUL and BF_ADD refer to
field multiplication and field addition operations over GF (2128),
respectively).

iteratively. By XORing the output of i-th BF_MUL where
1 ≤ i ≤ m + n with V , the output becomes dated as being
always masked with (M⊕S). The final output of the GHASH
function is XORed with U and then the authentication tag is
returned. Note that by XORing U to the final output of the
GHASH function, the random value M is removed from the
output, which preserves the correctness property.

Table 5 compares the performance of the proposed mask-
ing method with Oshida et al.’s method. As mentioned previ-
ously in Sec. III-B, Oshida et al.’s method requires {log(m+
n+1)+2} BF_MULs and (m+n+5) BF_ADDs for correctness
property. Oshida et al. mentioned that log(m + n + 1) of
BF_MULs can be saved by precomputing Hm+n+1 prior to
executing the GHASH function. However, since the number
of input blocks in the GHASH function can vary, precom-
puting Hm+n+1 does not always provide a computational
advantage, in contrast to their assertion. However, the pro-
posed masking method depicted in Alg. 5 requires additional
overhead of (m + n + 3) BF_ADDs + (1) BF_MUL, which
significantly reduces the number of the BF multiplications
compared to Oshida et al.’s. Furthermore, since the cost for
computing BF_ADD is much smaller than that for computing
BF_MUL, the additional overhead from the proposed method
is negligible compared with the original overhead for the
GHASH computation itself. In the next section, we show
the proposed countermeasure is resistant against DPA/CPA
through experiments.

V. IMPLEMENTATION RESULT AND SECURITY ANALYSIS
In this section, firstly we compare the performance of the
proposed secure BF multiplication method with those of
the existing BF multiplication methods. Next, we compare
the SCA security of the proposed GHASH function with
that of the existing implementations of the GHASH func-
tion in terms of SPA/TA and DPA/CPA, respectively. For
analyzing the performance and SCA Security, we have imple-
mented AES-GCM software using our proposed BF multipli-
cation method and DPA/CPA-resistant GHASH function on

an SCARF SCA evaluation board [29] equipped with 8-bit
ATmega128 microcontroller.

A. PERFORMANCE COMPARISON
Table 4 compares the cost and security of the proposed secure
BF multiplication method with those of the existing methods.
Oshida et al. used the Shift-and-Add method in order to com-
pute theBF multiplications in theGHASH function [9]. How-
ever, they did not present the timing cost for computing the
BF multiplications in their paper. Thus, we have implemented
the Shift-and-Add method as described in Alg. 6 on an 8-bit
ATmega128 microcontroller in C language and measured the
performance. Since the Shift-and-Add method does not pro-
vide constant-timing, we have measured the average timing
of 100 executions, and determined that it costs 31,971 cc.
Even though the Shift-and-Add method does not require bit-
reflection of the input operands and its structure is simple,
it requires a number of bit-wise SHIFT and XOR instructions
compared with the Comb-based methods, as described in
Section II-C. Liu et al. presented the timing cost of their
128-bitBF multiplicationmethod (named as KaratsubaMBC
method) on an 8-bit AVR ATxmega128a1 microcontroller
at Section 6 in their paper as 14,878 cc, including the cost
for modular reduction [11]. Even though Liu et al.’s method
provides constant-timing execution, it is vulnerable to SPA,
as will be presented in the next section.We have implemented
the proposed 128-bit BF multiplication method described in
Section 2 on an 8-bit ATmega128microcontroller. The cost of
the proposed 128-bit BF multiplication method is 7,162 cc,
which includes the overhead for bit-reflection and modular
reduction (the cost for the 128-bit BF multiplication itself is
5,675 cc, as described in Table 2). The proposed method pro-
vides substantially improved performance by about 51.86%
as compared with Liu et al.’s method while also providing
security against TA and SPA. The codes for bit-reflection
and modular reduction are implemented in C language. Thus,
we expect that further improvement can be possible if they are
implemented in AVR assembly language.

B. SIDE CHANNEL SECURITY ANALYSIS
In this section, we analyze the SCA security of the proposed
BF multiplication method and the GHASH function. We also
analyze the SCA security of the existing methods and com-
pare themwith that of our methods. For experiments, we have
implemented three AES-GCM softwares: the first one using
Liu et al.’s method, the second one using Oshida et al.’s
method, and the final one using our methods on an SCARF

TABLE 4. Performance comparison of the 128-bit BF multiplication methods for the GHASH function on an 8-bit AVR microcontroller. Timing is measured
with clock cycles (cc).

VOLUME 7, 2019 103973



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

TABLE 5. Software configuration for experiments.

FIGURE 7. Power trace comparison between the false case and the true case.

SCA evaluation board [29] using 8-bit ATmega128microcon-
troller, according to Table 5. The power consumption signal is
captured at a 250MS/s sampling rate by LeCroy HDO6104A
oscilloscope and then is low-pass filtered with 150MHz cut-
off frequency. Actually, we have gathered power traces of
overall AES-GCM execution and extracted subset of target
points from the power traces. Note that since Liu et al. did
not consider the DPA/CPA security of the GHASH function
in their work, we use the original GHASH function without
the DPA/CPA countermeasures for experimentation.

1) VALIDITY OF INSTRUCTION LEVEL ATOMICITY
As aforementioned in Section IV-A2, SBRS used in the BC
method consumes different numbers of clock cycles depend-
ing on whether or not the tested bit is true. Thus, we use a
dummy ADD instruction when the tested bit is true in order
to eliminate the timing difference as compared to the false
case. The reason why we make use of ADD rather than other
AVR instructions is to make the True case indistinguishable
from the False case with respect to SPA. Since the main goal
of SBRS and RJMP is to update the PC (Program Counter)
by adding the displacement value to the PC itself, the ADD
instruction is the most appropriate for the dummy instruction.
Fig. 7 compares the two power consumption traces between
the False case and the True case when executing Alg. 3 in
order to show the validity of the proposed ILA (Instruction
Level Atomicity) against SPA and TA. The two cases shown
in the figure consume the same number of clock cycles, and
their power consumption patterns are indistinguishable from
each other.

2) SPA SECURITY ANALYSIS
In order to analyze SPA security, we gather a power con-
sumption trace of each BF multiplication method shown

in Table 5 by using a LECROY HDO06104A oscilloscope
with 5 GS/s.

Fig. 8 shows the power consumption trace of the Shift-and-
Add method used in Oshida et al.’s GHASH function. In the
figure, each black box includes the power consumption of
each iteration of Alg. 6 in Appendix. The power consumption
in a black box is divided into five distinct areas, and it can
be found that when the multiplier bit is 1, the width of the
first area is wider than that when the multiplier bit is 0.
Thus, it can be found that the Shift-and-Add method used in
Oshida et al.’s GHASH function is vulnerable to SPA.
In order to compare the proposed BF multiplication

method with Liu et al.’s method, we make the two methods
operate on the same operands. Fig. 9 shows the power con-
sumption trace of Liu et al.’sBF multiplicationmethod. In the
figure, the power consumption of each iteration of the outer
loop (from l = 7 to 0) in Alg. 1 is plotted in four consecutive
black boxes. In other words, the power consumption in each
black box is for computing each iteration of the inner loop
(from m = 3 to 0) in Alg. 1. Note that since at the end of
each iteration of the outer loop the accumulator C is left-
shifted, the width of the fourth in successive four boxes is
wider than that of the others. The power trace in the red box
of the figure on the left side is magnified into the figure on the
right side. As shown in the figure, when the multiplier bit is 1,
there are several peaks at the right side of black box, otherwise
there is no peak. Thus, the power consumption pattern when
the multiplier bit is set can be clearly distinguishable from
that when the multiplier bit is clear, resulting in vulnerability
to SPA. This experimental result supports our security analy-
sis on Liu et al.’s method described in Section III-B.

Fig. 10 shows the power consumption trace of the proposed
BF multiplication method. From the figure, it can be found
that the power consumption when the multiplier bit is set is

103974 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 8. SPA on the shift-and-add method used in Oshida et al.’s method (The value 0 or 1 in the black box means the
tested bit value of a multiplier).

FIGURE 9. SPA on Liu et al.’s MBC method (The value 0 or 1 in each black box means the tested bit value of a multiplier. The
power trace in the red box of the figure on the left side is magnified into the figure on the right side).

indistinguishable from that when the multiplier bit is clear,
which ensures SPA-resistance. With the use of dummy regis-
ters and Instruction Level Atomicity (ILA), the proposed BF
multiplication preserves the execution uniformity.

We have additionally checked that the proposed Instruction
Level Atomicity (ILA) cannot be attacked with clustering
algorithms such as K-Means [30], Spectral clustering [31],
and so on. We have first classified the traces for assembly

VOLUME 7, 2019 103975



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 10. SPA on the proposed BF multiplication method (the value 0 or 1 in each black box means the tested bit value
of the multiplier. The power trace in the red box of the figure on the left side is magnified into the figure on the right side).

FIGURE 11. CPA on the original GHASH function using Liu et al.’s BF multiplication method (gray plots mean the
correlations of wrong keys and the black plot means the correlation of a correct key).

codes in Fig. 5 into those for True case and False case
assuming that the condition is known. With 5,000 traces for
True case and 5,000 traces for False case, we have carried out
the most widely used clustering algorithms: K-Means [30],
Mean-Shift [32], DBSCAN [33], Spectral clustering [31],
Birch [34], and Agglomerative clustering [35], [36]. In our
experiments, two clustering algorithms K-Means and Spec-
tral clustering have the highest success rates as 0.6109
and 0.6205, respectively. However, even though the prob-
ability that attackers are able to exactly guesses each bit
of hash key H is 0.6205, the entropy of 128-bit H is

log20.6205−128 = 88.128 and it is still too high for attackers
to find the hash key H in AES-GCM, which ensures the
proposed method provides our claimed SCA security. Thus,
our countermeasure can provide the practical security against
various clustering techniques.

3) DPA/CPA SECURITY ANALYSIS
In order to analyze the DPA/CPA security, we gather
100,000 power consumption traces of each GHASH function
in Table 3, the proposed GHASH function using the pro-
posed BF multiplication method and the original GHASH

103976 VOLUME 7, 2019



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

FIGURE 12. CPA on the proposed GHASH function using the proposed BF multiplication method (gray plots mean the
correlations of wrong keys and the black plot means the correlation of a correct key).

function using Liu et al.’s BF method, by using LECROY
HDO06104A oscilloscope with 500 MS/s. Since the
DPA/CPA security of Oshida et al.’s method has been
proven in their work [9], we omit conducting DPA/CPA on
Oshida et al.’s masked GHASH function.
Fig. 11 shows correlations from conducting CPA on the

original GHASH function using Liu et al.’s BF multiplica-
tion method. From the figure, it can be found that the only
correct key, denoted by black has a higher correlation than
any other correlations of wrong keys, denoted by gray. This
result is apparent because Liu et al.’s work does not consider
DPA/CPA security in the process of the GHASH function.

Fig. 12 shows the correlation result from executing CPA
on the proposed GHASH function using the proposed BF
multiplicationmethod. As shown in the figure, the correlation
of the correct key is indistinguishable from the other corre-
lations of the wrong keys, which shows the security of the
proposed method against DPA/CPA. From the experiments of
SPA and DPA/CPA, comprehensive SCA security is required
to achieve secure GCM implementation.

VI. CONCLUSION
In this paper, we propose a SCA-resistant GCM implemen-
tation for 8-bit AVR microcontroller environments. In recent
years, researchers have realized the importance of SCA secu-
rity on the GHASH function in the GCMmode and presented
several attack methods. Even though several works have
investigated developing SCA countermeasures for secure
GHASH function, they failed to provide comprehensive
SCA security against SPA/TA and DPA/CPA. In contrast
to the existing methods, the proposed implementation pro-
vides comprehensive SCA and the proposed countermea-
sures are efficient in terms of computational cost. Since
the binary field multiplications in GF(2128) are the core
operations in the GHASH function, we focus on devel-
oping a secure and efficient binary field multiplication
method. For SPA/TA resistance, we introduce concepts of
Dummy XOR with the garbage registers and instruction
level atomicity (ILA), and present a secure binary field
multiplication method using these concepts. The proposed

Algorithm 6 Shift-and-Xor Based BF Multiplication in
GF(2128)

Require: 128-bit operands A and B where A, A ∈ GF(2128)
Ensure: Result C=X · B mod R where R is an irreducible

polynomial as f (z) = z128 + z7 + z2 + z+ 1.
1: C ← 0, V ← A
2: for i = 0 to 127 do
3: if Bi == 1 then
4: C ← C ⊕ V
5: end if
6: if V127 == 0 then
7: V ← rightshift(V )
8: else
9: V ← rightshift(V )⊕ R
10: end if
11: end for
12: (Return C)

field multiplication method provides substantially improved
performance by about 51.86% as compared with the lat-
est related works while providing TA/SPA resistance. Fur-
thermore, we propose an efficient multiplicative masking
method which can defend DPA/CPA during the process of the
GHASH function. The proposed masked GHASH function
also provides much improved performance compared with
the latest related works. Through SPA/TA and DPA/CPA
experiments, we prove the comprehensive SCA security of
the proposed methods. In the future, we will extend the basic
block size in the proposed Block-Comb method from 32-bit
to 64-bit. By extending the block size, we expect that the
number of partial products for computing a 128-bit binary
field multiplication can be significantly reduced, which con-
tributes to enhancing the overall performance of the GHASH
function. Furthermore, we apply our method on 16-bit and
32-bit embeddedmicrocontrollers such asMSP430 andARM
processors.

APPENDIX
See Algorithm 6.

VOLUME 7, 2019 103977



S. C. Seo, H. Kim: SCA-Resistant GCM Implementation on 8-Bit AVR Microcontrollers

REFERENCES
[1] D. McGrew and J. Viega. (2005). The Galois/Counter Mode of

Operation (GCM). [Online]. Available: http://uca-giuzzi.unibs.it/
corsi/Support/papers-cryptography/gcm-spec.pdf

[2] D. A. McGrew and J. Viega, ‘‘The security and performance of the
galois/counter mode (GCM) of operation,’’ in Proc. Int. Conf. Cryp-
tol., Prog. Cryptol.-INDOCRYPT, in Lecture Notes in Computer Science,
vol. 3348. New Delhi, India: Springer, 2004, pp. 343–355.

[3] M. J. Dworkin, Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (Gcm) and GmAC, document NIST Special 800-
38D, 2007.

[4] P. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Proc.
Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer, 1999,
pp. 388–397.

[5] S. Belaïd, P. Fouque, and B. Gérard, ‘‘Side-channel analysis of multipli-
cations in GF(2128),’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.
Kaoshiung, Taiwan : Springer, 2014, pp. 306–325.

[6] S. Belaïd, J.-S. Coron, P.-A. Fouque, B. Gérard, J.-G. Kammerer, and
E. Prouff, ‘‘Improved side-channel analysis of finite-field multiplication,’’
in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst. Saint-Malo,
France: Springer, 2015, pp. 395–415.

[7] P. Pessl and S. Mangard, ‘‘Enhancing side-channel analysis of binary-field
multiplication with bit reliability,’’ in Proc. Cryptographers Track RSA
Conf. San Francisco, CA, USA: Springer, 2016, pp. 255–270.

[8] E. Käsper and P. Schwabe, ‘‘Faster and timing-attack resistant
AES-GCM,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. Lausanne, Switzerland: Springer, 2009, pp. 1–17.

[9] H. Oshida, R. Ueno, N. Homma, and T. Aoki, ‘‘On masked galois-field
multiplication for authenticated encryption resistant to side channel anal-
ysis,’’ in Proc. Int. Workshop Constructive Side Channel Anal. Secure
Design. Singapore: Springer, 2018, pp. 44–57.

[10] H. Seo, C.-N. Chen, Z. Liu, Y. Nogami, T. Park, J. Choi, and H. Kim,
‘‘Secure binary field multiplication,’’ in Proc. 16th Int. Workshop Inf.
Secur. Appl. Jeju Island, Korea: Springer, 2015, pp. 161–173.

[11] Z. Liu, H. Seo, C.-N. Chen, Y. Nogami, T. Park, J. Choi, and H. Kim,
‘‘Secure GCM implementation on AVR,’’ Discrete Appl. Math., vol. 241,
pp. 58–66, May 2018.

[12] E. Brier, C. Clavier, and F. Olivier, ‘‘Correlation power analysis with a
leakage model,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst., Cambridge, MA, USA, Springer, 2004, pp. 16–29.

[13] A. Joux, ‘‘Authentication failures in NIST version of GCM,’’
Gaithersburg, MD, USA: NIST, Tech. Rep., 2006. [Online]. Available:
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/
documents/bcm/joux_comments.pdf

[14] Atmel. AVR Instruction Set Manual. Accessed: Jul. 31, 2019.
[Online]. Available: http://ww1.microchip.com/downloads/en/devicedoc/
atmel-0856-avr-instruction-set-manual.pdf

[15] J. López and R. Dahab, ‘‘High-speed software multiplication in F2m,’’
in Proc. Int. Conf. Cryptol., in Lecture Notes in Computer Science,
vol. 1977. New Delhi, India: Springer, 2000, pp. 203–212.

[16] S. C. Seo, D.-G. Han, H. C. Kim, and S. Hong, ‘‘TinyECCK: Efficient ellip-
tic curve cryptography implementation over GF(2m) on 8-bit Micaz mote,’’
IEICE Trans. Inf. Syst., vol. E91-D, no. 5, pp. 1338–1347, May 2008.

[17] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, ‘‘Efficient imple-
mentation of elliptic curve cryptography in wireless sensors,’’ Adv. Math.
Commun., vol. 4, no. 2, pp. 169–187, May 2010.

[18] L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara,
J. López, and R. Dahab, ‘‘TinyPBC: Pairings for authenticated identity-
based non-interactive key distribution in sensor networks,’’ Comput. Com-
mun., vol. 34, no. 3, pp. 485–493, Mar. 2011.

[19] M. Shirase, Y. Miyazaki, T. Takagi, D.-G. Han, and D. Choi, ‘‘Efficient
implementation of pairing-based cryptography on a sensor node,’’ IEICE
Trans. Inf. Syst., vol. E92, no. 5, pp. 909–917, 2009.

[20] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, ‘‘Binary and prime field mul-
tiplication for public key cryptography on embedded microprocessors,’’
Secur. Commun. Netw., vol. 7, no. 4, pp. 774–787, Apr. 2014.

[21] H. Seo, Z. Liu, J. Choi, and H. Kim, ‘‘Karatsuba–block-comb technique
for elliptic curve cryptography over binary fields,’’ Secur. Commun. Netw.,
vol. 8, no. 17, pp. 3121–3130, Nov. 2015.

[22] S. C. Seo and H. Seo, ‘‘Highly efficient implementation of NIST-compliant
Koblitz curve for 8-bit AVR-based sensor nodes,’’ IEEE Access, vol. 6,
pp. 67637–67652, 2018.

[23] D. C. Hankerson, A. Menezes, and S. A. Vanstone,Guide to Elliptic Curve
Cryptography. Montreal, QC, Canada: Springer, 2006.

[24] C. P. L. Gouvêa and J. López, ‘‘High speed implementation of authen-
ticated encryption for the MSP430X microcontroller,’’ in Proc. Int.
Conf. Cryptol. Inf. Secur. Latin Amer. Santiago, Chile: Springer, 2012,
pp. 288–304.

[25] C.-N. Chen, ‘‘Memory address side-channel analysis on exponentiation,’’
in Proc. Int. Conf. Inf. Secur. Cryptol. (ICISC), in Lecture Notes in Com-
puter Science, vol. 8949. Seoul, South Korea: Springer, 2014, pp. 421–432.

[26] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, ‘‘Hor-
izontal correlation analysis on exponentiation,’’ in Proc. Int. Conf. Inf.
Commun. Secur. Barcelona, Spain: Springer, 2010, pp. 46–61.

[27] A. Karatsuba and Y. Ofman, ‘‘Multiplication of multidigit numbers on
automata,’’ Sov. Phys. Doklady, vol. 7, pp. 595–596, Jan. 1963.

[28] P. L. Montgomery, ‘‘Five, six, and seven-term Karatsuba-like formulae,’’
IEEE Trans. Comput., vol. 54, no. 3, pp. 362–369, Mar. 2005.

[29] Y. Choi, D. Cho, and J. Ryou, ‘‘Implementing side channel analysis eval-
uation boards of KLA-SCARF system,’’ J. Korea Inst. Inf. Secur. Cryptol.,
vol. 24, no. 1, pp. 229–240, 2014.

[30] J. MacQueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ inProc. 5th Berkeley Symp.Math. Statist. Probab., 1967,
pp. 281–297.

[31] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[32] Y. Cheng, ‘‘Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 17, no. 8, pp. 790–799, Aug. 1995.

[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters
in large spatial databases with noise,’’ in Proc. 2nd Int. Conf. Knowl.
Discovery Data Mining, Aug. 1996, pp. 226–231.

[34] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Jun. 1996, pp. 103–114.

[35] Y. Cheng, ‘‘Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 18, no. 7, pp. 790–799, 1995.

[36] D. Defays, ‘‘An efficient algorithm for a complete link method,’’ Comput.
J., vol. 20, no. 4, pp. 364–366, 1977.

SEOG CHUNG SEO received the B.S. degree
in information and computer engineering from
Ajou University, Suwon, South Korea, and the
M.S. degree in information and communications
from the Gwangju Institute of Science and Tech-
nology (GIST), Gwangju, South Korea, in 2005
and 2007, respectively, and the Ph.D. degree from
Korea University, Seoul, South Korea, in 2011.
He was a Research Staff Member of the Samsung
Advanced Institute of Technology (SAIT) and the

Samsung DMC Research and Development Center, from 2011 to 2014. He
was a Senior Research Member of the Affiliated Institute of ETRI, South
Korea, from 2014 to 2018. He is currently an Assistant Professor with
Kookmin University, South Korea. His research interests include public-key
cryptography and its efficient implementations on various IT devices, cryp-
tographic module validation programs, network security, and data authenti-
cation algorithms.

HEESEOK KIM received the B.S. degree in
mathematics from Yonsei University, Seoul,
South Korea, in 2006, and the M.S. and Ph.D.
degrees in engineering and information secu-
rity from Korea University, Seoul, South Korea,
in 2008 and 2011, respectively. He was a Post-
doctoral Researcher with the University of Bristol,
U.K., from 2011 to 2012. From 2013 to 2016,
he was a Senior Researcher with the Korea
Institute of Science and Technology Informa-

tion (KISTI). Since 2016, he has been with Korea University. His research
interests include side-channel attacks, cryptography, and network security.

103978 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	BRIEF REVIEW OF GCM MODE
	8-BIT AVR MICROCONTROLLERS
	BINARY FIELD MULTIPLICATION ON 8-BIT AVR PLATFORMS
	BINARY FIELD MULTIPLICATION AND NOTATIONS
	LOOK-UP TABLE METHODS
	BLOCK-COMB METHOD


	SIDE-CHANNEL ATTACK ON GHASH OF GCM
	SCA TARGET POINTS AND CRITERIA FOR SECURE GCM IMPLEMENTATION
	SECURITY OF THE EXISTING COUNTERMEASURES

	PROPOSED SECURE GCM COMPUTATION
	PROPOSED BINARY FIELD MULTIPLICATION
	DUMMY XOR WITH GARBAGE REGISTERS FOR REGULAR POWER CONSUMPTION PATTERN
	INSTRUCTION LEVEL ATOMICITY FOR CONSTANT-TIME EXECUTION
	APPLICATION OF KARATSUBA TECHNIQUE
	REDUCTION AND BIT REFLECTION

	MASKED GHASH COMPUTATION

	IMPLEMENTATION RESULT AND SECURITY ANALYSIS
	PERFORMANCE COMPARISON
	SIDE CHANNEL SECURITY ANALYSIS
	VALIDITY OF INSTRUCTION LEVEL ATOMICITY
	SPA SECURITY ANALYSIS
	DPA/CPA SECURITY ANALYSIS


	CONCLUSION
	REFERENCES
	Biographies
	SEOG CHUNG SEO
	HEESEOK KIM


