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ABSTRACT A novel scheme for disturbance observer is designed for an extended class of strict-feedback
nonlinear systems with possibly unbounded, non-smooth, and state-independent compounded disturbance.
To overcome these problems in disturbance observer design, the typical slide mode differentiators are
improved by introducing hyperbolic tangent function tomake the signals smooth, and then the improved slide
mode differentiators are constructively used to estimate the errors of variables in the presence of disturbances.
The unbounded, non-smooth or state-independent disturbances are therefore able to be eliminated by using
the estimated variable errors. Thus, the bounded or differentiable conditions for disturbance observer design
are removed. Furthermore, the convergence of the new disturbance observer is rigorously proved based on
Lyapunov stability theorem, and the tracking error can be arbitrarily small. Finally, the simulation results are
given to validate the feasibility and superiority of the proposed approach.

INDEX TERMS Disturbance observer, dynamic surface control, sliding mode differentiator.

I. INTRODUCTION
As is well known, external disturbances, unmodeled dynam-
ics and system uncertainties exist in a wide range of real con-
trol processes, which may cause the performance degradation
and even the instability of the closed-loop control system.
Thus, it is challenging to investigate disturbance estimation
and rejection techniques in control systems societies [1]–[4].
Among numerous advanced disturbance estimations and
attenuation techniques, disturbance observer-based con-
trol schemes have been extensively studied over the past
years [5]–[8]. Since the promising properties of improving
the control performance, disturbance observers have been
widely used to estimate various disturbances and parametric
uncertainties for many practical control systems, such as
mechanical systems [9], optical disk drive systems [10], air
vehicle systems [11], and so on [12], [13]. More precisely,
under the assumption that the bounds of the disturbance
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were unknown positive constants, a robust adaptive control
scheme was presented by introducing a Nussbaum func-
tion in [14]. A disturbance observer–based dynamic sur-
face control (DSC) approach was studied for the mobile
wheeled inverted pendulum system with bounded lumped
disturbance vector in [15]. To achieve output tracking for
the saturated nonlinear systems with bounded external distur-
bance, a terminal sliding-mode-based disturbance observer
is investigated in [16]. In [17], a disturbance observer com-
bined with terminal sliding mode technique was proposed
for the uncertain structural systems, the convergence of dis-
turbance estimate error was guaranteed in finite time with
differentiable disturbance. In [18], a disturbance observer-
based robust backstepping control approach was developed
for spacecraft attitude control systems in the presence of
measurement uncertainties, while the time derivatives of the
measurement uncertainties were assumed to be bounded.
Furthermore, an output-feedback controller was designed
based on the composite state observer and disturbance
observer for nonlinear time-delay systems with input
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saturation, since the derivatives of the disturbances were
required to be bounded for the disturbance estimators in the
error dynamics [19]. The aforementioned control schemes
have shown prominent disturbance rejection capability by
introducing the designed disturbance observers. However,
it has to be mentioned that for all the aforementioned strate-
gies to work, the unknown disturbance is always assumed
to be bounded and differentiable [20]–[23], which is very
restrictive due to the fact that the compounded disturbances
are usually unbounded or differentiable. This is because
unmodeled dynamics, as same as some non-smooth nonlin-
earities such as dead zone and backlash, often occur in many
physical systems. To the best of the authors’ knowledge,
no such disturbance observer designs that can handle both
unbounded and non-differentiable compounded disturbances
have been reported, which require new techniques go beyond
the existing methods. This open issue is of great significance
both in applicability and theory research.

On the other hand, adaptive control with disturbance
observer has become an active area and attracted considerable
attention. Different adaptive design approaches of distur-
bance observers have been developed by introducing fuzzy
systems or neural networks (NNs) approximators [24]–[26].
In [27], a fuzzy nonlinear disturbance observer was designed
based on the fuzzy approximation system in which the distur-
bance is observable. Similarly, combined with fuzzy approx-
imator, a disturbance observer-based adaptive fuzzy control
approach was investigated for a class of uncertain MIMO
mechanical systems subject to unknown input nonlinearities
in [28]. For nonlinear system with the states information
being unavailable for the controller design, a novel fuzzy con-
troller was presented by employing fuzzy logic systems (FLS)
to construct the composite updating law in [29], [30], thus the
adaptive compensation was given to minimize the effects of
dynamic uncertainties to the control system.Moreover, neural
networks as the universal approximator have been widely
employed in control design. For instance, by using the pow-
erful approximation ability of NNs, Chen et al. [31] studied
an adaptive neural control method based on a disturbance
observer for a class of MIMO nonlinear systems with control
input saturation. In [32], a constrained adaptive neural con-
troller was designed for the nonstrict-feedback system with
the disturbance observer. In view of the unknown function
term, the radial basis function neural networks (RBFNNs)
were utilized to approximate the compounded disturbances
in [33] and a nonlinear disturbance observer was proposed
for control law design in the backstepping process. However,
the performance of disturbance suppression is related to
the approximation accuracy of neural networks, and the
prior knowledge of the disturbance is required. For example,
a common disturbance observer design approach using FLSs
or NNs techniques is investigated under the condition that
the input variable information of the disturbance term is
known a priori. When the input variable information is
insufficient, the methods based on NNs and FLSs would
not work. It should be noted that this condition can be

commonly seen since the unmodeled dynamics included in
the compounded disturbancemay contain unknown variables.
Moreover, the effect of disturbance rejection will heavily
depend on the capability of the FLSs or NNs, which are not
always robust when faced with strong disturbance. Therefore,
it is urgent to propose a new method for disturbance estima-
tion and attenuation.

Motivated by the above discussion, this paper first pro-
poses a novel disturbance observer which, to the best of
the authors’ knowledge, successfully deals with the typical
unbounded and non-smooth compounded disturbances.
Combined with the designed disturbance observers, an adap-
tive tracking control scheme is presented for a class of nonlin-
ear strict-feedback systems for the first time. The innovations
are summarized as follows.

1) Unlikemost of the existing control schemes, the restric-
tive assumptions that the compounded disturbance
must be bounded, differentiable or slow time-varying
have been removed and replaced by a possibly
unbounded, non-differentiable and fast time-varying
disturbances. To the best of our knowledge, this is the
first work to design a disturbance observer relaxing all
above restrictions simultaneously.

2) By combining first order sliding mode differentiator
with improved DSC technique, the derivatives of the
non-disturbance term are constructed. In what follows,
a novel disturbance observer is designed, and the corre-
sponding robust compensator is considered in adaptive
control law in the meantime.

3) Considering that the prior knowledge of the com-
pounded disturbance cannot be obtained precisely
during the control design process, the stability and
robustness of the closed loop system can be enhanced
without involving FLSs or NNs approximators.
Furthermore, it is analytically proved that the tracking
error can be regulated to arbitrarily small in the absence
of a compact set definition.

The organization of this paper is as follows. The problem
description of the uncertain SISO strict-feedback nonlinear
system is addressed in Section II. The disturbance observers
and the corresponding adaptive controllers are designed by
employing sliding mode differentiators and improved DSC
techniques in Section III. In Section IV, the convergence
of the new disturbance observer is rigorously proved based
on Lyapunov stability theorem. Simulation examples are
performed to demonstrate the effectiveness of the designed
scheme in Section V. The concluding work is stated in
Section VI.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
Consider a class of nonlinear strict-feedback systems given
by 

ẋi = fi(x i)+ gi(x i)xi+1 + δi(t)
ẋn = fn(x)+ gn(x)u+ δn(t)
y = x1

(1)

102456 VOLUME 7, 2019



W. Zhang et al.: Novel Disturbance Observer Design for a Larger Class of Nonlinear Strict-Feedback Systems

where x i = [x1, x2, . . . , xi]T ∈ Ri and x = [x1, x2, . . . ,
xn]T ∈ Rn denote the state variables of the system, u ∈ R
is system control input, y ∈ R is system output. fi(x i) are
known differentiable system functions, gi(x i) represent the
known differentiable control-gain functions. Particularly,
the term δi(t) = 1fi(x i) + 1gi(x i)xi+1 + di(t)are the com-
pounded disturbance and continuous function, di(t), i =
1, 2 . . . , n are the external disturbance and system uncer-
tainties, 1fi(x i(t)) are the uncertain parts of system func-
tions fi(x i), and1gi(x i) are the uncertain parts of control-gain
functionsgi(x i).

The control objective is to design an adaptive tracking
controller such that the system output y follows the desired
trajectory yd and the resulting tracking error can converge to
a small neighborhood of the origin by appropriately choosing
design parameters.
Assumption 1 [34]: The desired trajectory yd is a suffi-

ciently smooth function of t , and yd , ẏd and ÿd are bounded,
that is, there exists a positive constant B0 such that 50 :={
(yd , ẏd , ÿd ) : (yd )2 + (ẏd )2 + (ÿd )2 ≤ B0

}
.

Assumption 2: For the known virtual control-gain functions
gi(x i), i = 1, 2, · · · , n − 1, there exist unknown positive
constants gm and gM such that 0 < gm ≤ gi(x i) ≤ gM .
Remark 1: It is worth noting that, in most of the existing

control schemes, the disturbance term δi(t), i = 1, 2, · · · , n
are assumed to satisfy |δi(t)| ≤ δ∗0 or

∣∣δ̇i(t)∣∣ ≤ δ∗1 with
δ∗0 and δ∗1 being unknown positive constants. However, the
disturbance may be possibly unbounded due to unmodeled
dynamic and system uncertainties, and it may also be difficult
to acquire prior knowledge of δi(t) in practice. If taking no
account of these factors, the system performance will be
seriously degraded and even be unstable. Thus, the proposed
scheme aims to remove these restrictive assumptions and to
enlarge the application range of disturbance observer.
Lemma 1 [35]: Hyperbolic tangent function tanh(·) will

be used in this paper, and it is well known that tanh(·) is
continuous and differentiable, and it fulfills that for any q ∈ R
and ∀υ > 00 ≤ |q| − q tanh

( q
υ

)
≤ 0.2785υ

0 ≤ q tanh
( q
υ

) (2)

Lemma 2: The first order sliding mode differentiator [36]
is designed as

ρ̇0 = ζ0 = −τ0 |ρ0 − f (t)|
1
2 sign(ρ0 − f (t))+ ρ1

ρ̇1 = −τ1sign(ρ1 − ζ0) (3)

where ρ0, ρ1 and ζ0 are the states of the system, τ0 and τ1
are the designed parameters of the first order sliding mode
differentiator, and f (t) is a known function. Then, ζ0 can
approximate the differential term ḟ (t) to any arbitrary accu-
racy if the initial deviations ρ0 − f (t0) and ζ0 − ḟ (t0) are
bounded.

Lemma 3: For any x ∈ R, the following inequality holds∣∣∣∣∣|x| 12 sign(x)−
(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣ ≤ γ (4)

where µ is the designed parameter and γ is a unknown
positive constant.

Proof: See the Appendix.
Remark 2: It has to be noticed that if a discontinuous

tracking differentiator is constructed through the first order
sliding mode differentiator in Lemma 2, as a consequence,
the resulted dynamic system is discontinuous owing to the
sign functions that are employed and certain issues on the
uniqueness and existence of the solution of the closed loop
system will raise. Such issues are very significant since they
affect the closed loop performance severely, thus Lemma 3 is
introduced by employing hyperbolic tangent function to
ensure the feasibility in backstepping process.
Lemma 4: Let τ β̇ + β = α, y = β − α, where

α and β are the input and output of low pass filter respectively,
y denotes the filtering error. Then, the filtering error y can be
bounded and β can approximate α to any arbitrary accuracy if
1
2τ =

ˆ̇α2 + ε0, where ε0 is a positive constant and ˆ̇α is the
estimate of the differential term α̇.

Proof: See the Appendix.

III. ADAPTIVE TRACKING CONTROLLER DESIGN
In this section, backstepping technique is used to construct
an adaptive controller for nonlinear system (1). To facilitate
the readers’ comprehension, the general block diagram of the
proposed control scheme is given in Fig. 1.

FIGURE 1. Block diagram of the proposed control scheme.

The design of adaptive control laws is based on the follow-
ing change of coordinates:{

e1 = x1 − yd
ei = xi − αi−1

, i = 2, 3, . . . , n (5)

where e1 is the tracking error and αi−1 is the virtual control
input that will be designed later.

The recursive design procedure contains n steps. First,
at each step of the backstepping design, the intermediate
control αi−1 is designed to make the corresponding sub-
system toward equilibrium position. And at the final step,
the stabilization of system (1) can be achieved with the actual
control input u being designed.
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Step 1: To start, considering the following subsystem of (1)
and noting e1 = x1 − yd ,

ė1 = f1(x1)+ g1(x1)x2 + δ1 − ẏd (6)

where x2 is regarded as a virtual control input.
Consider the following quadratic Lyapunov function

candidate:

Ve1 =
1
2
e21 (7)

The time derivative of Ve1 along (6) is

V̇e1 = e1[f1(x1)+ g1(x1)x2 + δ1 − ẏd ] (8)

Invoking (6), we obtain

δ1 = ė1 − (f1(x1)+ g1(x1)x2 − ẏd ) (9)

Since ė1 is unavailable, the following first order sliding
mode differentiator is adopted so as to produce an auxiliary
variable to estimate ė1.

ρ̇1,0= ζ1,0=−ε1,0
∣∣ρ1,0 − e1(t)∣∣ 12 sign(ρ1,0 − e1(t))+ ρ1,1

ρ̇1,1=−ε1,1sign(ρ1,1 − ζ1,0) (10)

where ρ1,0, ρ1,1 and ζ1,0 are the states of the system,
ε1,0 and ε1,1 are positive design constants.
Remark 3: In view of Eq. (6), it can be seen that there

need assumptions for the signal e1 [37], [38] and meanwhile,
derivative term ė1 involves the disturbance term δ1. We would
emphasize that if the disturbance term δ1 is unbounded,
the computation of the derivative term ė1 is therefore com-
plicated. To efficiently handle this problem, the first order
slidingmode differentiator according to Lemma 2 can be used
to approach the value of ė1 in disturbance observer design
to reduce the computational burden, and this method will
show capable of preserving the closed-loop system tracking
performance later.

According to Lemma 2, we have∣∣ζ1,0 − ė1(t)∣∣ ≤ υ1,0 (11)

where υ1,0 is a positive constant due to the approximation
property of the first order sliding mode differentiator.

Define

ζ̂1,0 = −ε1,0

((
ρ1,0 − e1(t)

)
tanh

(
ρ1,0 − e1(t)

µ1,0

)) 1
2

× tanh
(
ρ1,0 − e1(t)

µ1,0

)
+ ρ1,1 (12)

where ζ̂1,0 is the estimate of the auxiliary variable ζ1,0.
According to Lemma 3 and replace x with ρ1,0−e1(t), then

using (10) and (12), one has∣∣∣ζ1,0 − ζ̂1,0∣∣∣ ≤ γ1 (13)

where γ1 is a positive constant that can converge to arbitrarily
small by appropriately selecting design parameters.
Remark 4: It can be seen that an auxiliary variable ζ1,0

is designed to estimate ė1 by a first order sliding mode

differentiator and then, ζ̂1,0 can be regarded as the approx-
imator of ė1 similarly, which can be utilized to design the
disturbance observer with the help of (6) and the estima-
tion error can converge to arbitrarily small by appropriately
adjusting design parameters. Both variables have well esti-
mation performance for ė1 , but to avoid the discontinuity of
the sign functions, ζ̂1,0 is presented necessarily according to
Lemma 3 by employing hyperbolic tangent function to ensure
the feasibility in backstepping process.

Invoking (5), we obtain x2 = e2 + α1.
Now, we construct a virtual control law α1 and the adapta-

tion function δ̂1 as follows

α1 = g−11 (x1)
(
−k1e1 − f1(x1)+ ẏd − λ1D̂2

1e1
)

(14)

δ̂1 = ζ̂1,0 − (f1(x1)+ g1(x1)x2 − ẏd ) (15)

where τ1 ˆ̇D1 + D̂1 = δ̂1, y1 = D̂1 − δ̂1 and λ1 is a design
constant. According to Lemma 4, we know that the filtering
error y1 can be a positive constant by appropriately tuning the
design parameters τ1.

Then, substituting (14) into (8) gives

V̇e1 = g1(x1)e1e2 − k1e21 − λ1D̂
2
1e

2
1 + δ1e1 (16)

In view of (6) and (15), one has

−D̂1 + δ1 = ė1 − (f1(x1)+ g1(x1)x2 − ẏd )

−

(
ζ̂1,0 − (f1(x1)+ g1(x1)x2 − ẏd )+ y1

)
= ė1 − ζ̂1,0 − y1 (17)

With the aid of (11) and (13), it yields∣∣∣−D̂1 + δ1

∣∣∣ = ∣∣∣ė1 − ζ̂1,0 − y1∣∣∣
≤
∣∣ė1 − ζ1,0∣∣+ ∣∣∣ζ1,0 − ζ̂1,0∣∣∣+ y1

≤ υ1,0 + γ1 + y1 = γ ∗1 (18)

It further gives rise to

δ21 − D̂
2
1 ≤

∣∣∣δ21 − D̂2
1

∣∣∣ = ∣∣∣δ1 − D̂1

∣∣∣ ∣∣∣δ1 + D̂1

∣∣∣
≤ γ ∗1

(
2 |δ1| + γ ∗1

)
≤ 3γ ∗21 +

δ21

2
(19)

which implies

δ21

2
≤ 3γ ∗21 + D̂

2
1 (20)

Thus, we can rewrite (16) as

V̇e1 ≤ g1(x1)e1e2 − k1e21 − λ1D̂
2
1e

2
1 +

λ1δ
2
1e

2
1

2
+

1
2λ1

≤ g1(x1)e1e2 −
(
k1 − 3λ1γ ∗21

)
e21 +

1
2λ1

(21)

Let k1 = 3λ1γ ∗21 + k10, where k10 > 0

V̇e1 ≤ g1(x1)e1e2 − k10e21 +
1
2λ1

(22)
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As e2 is presented in (21), therefore, the regulation of
e2 will be investigated in the next step as follows.
Step i (2 ≤ i ≤ n − 1): A similar procedure is employed

recursively for each step i (2 ≤ i ≤ n− 1).
Noting ei = xi − αi−1, the dynamics of ei-subsystem can

be described as follows

ėi = fi(x i)+ gi(x i)xi+1 + δi − α̇i−1 (23)

Consider the following quadratic Lyapunov function
candidate:

Vei =
1
2
e2i (24)

The time derivative of Vei along (23) is

V̇ei = ei[fi(x i)+ gi(x i)xi+1 + δi − α̇i−1] (25)

To estimate the differential term α̇i−1, an auxiliary vari-
able 2i,0 is designed as

ϑ̇i−1,0=2i,0

=−σi,0
∣∣ϑi−1,0−αi−1∣∣ 12 sign(ϑi−1,0−αi−1)+ϑi−1,1

ϑ̇i−1,1=−σi,1sign(ϑi−1,1 −2i,0) (26)

where ϑi−1,0, ϑi−1,1 and 2i,0 are the states of the system,
σi,0 and σi,1 are positive design constants.

By virtue of the approximation property of the first order
sliding mode differentiator, we arrive∣∣2i,0 − α̇i−1

∣∣ ≤ υi,1 (27)

where υi,1 is a positive constant.
According to (26), the estimate of the differential term α̇i−1

is defined as follows:

ˆ̇αi−1 = −σi,0

((
ϑi−1,0 − αi−1

)
tanh

(
ϑi−1,0 − αi−1

µi,1

)) 1
2

× tanh
(
ϑi−1,0 − αi−1

µi,1

)
+ ϑi−1,1 (28)

Noting (26), (28) and Lemma 3, one reaches∣∣∣ ˆ̇αi−1 −2i,0

∣∣∣ ≤ ςi (29)

where ςi is a positive constant.
Therefore, the following inequality satisfies∣∣∣ ˆ̇αi−1 − α̇i−1∣∣∣ ≤ ∣∣2i,0 − α̇i−1

∣∣+ ∣∣∣ ˆ̇αi−1 −2i,0

∣∣∣
≤ υi,1 + ςi (30)

Invoking(23), we obtain

δi = ėi − (fi(x i)+ gi(x i)xi+1 − α̇i−1) (31)

Similar to Step 1, since ėi is unavailable, the follow-
ing first order sliding mode differentiator is adopted as
follows:

ρ̇i,0 = ζi,0 = −εi,0
∣∣ρi,0 − ei(t)∣∣ 12 sign(ρi,0 − ei(t))+ ρi,1

ρ̇i,1 = −εi,1sign(ρi,1 − ζi,0) (32)

where ρi,0, ρi,1 and ζi,0 are the states of the system,
εi,0 and εi,1 are positive design constants.
According to Lemma 2, it holds that∣∣ζi,0 − ėi(t)∣∣ ≤ υi,0 (33)

where υi,0 is any positive constant due to the approximation
property of the first order sliding mode differentiator.

Similarly, define functions ζ̂i,0 as follows

ζ̂i,0 = −εi,0

((
ρi,0 − ei(t)

)
tanh

(
ρi,0 − ei(t)
µi,0

)) 1
2

× tanh
(
ρi,0 − ei(t)
µi,0

)
+ ρi,1 (34)

where ζ̂i,0 is the estimate of the auxiliary variable ζi,0.
According to (32), (34) and Lemma 3, it follows that∣∣∣ζi,0 − ζ̂i,0∣∣∣ ≤ γi (35)

where γi is a positive constant.
Then, we construct the virtual control law αi and the adap-

tation function δ̂i as follows

αi = g−1i (x i)
(
−kiei − fi(x i)+ ˆ̇αi−1 − λiD̂2

i ei
)

(36)

δ̂i = ζ̂i,0 −
(
fi(x i)+ gi(x i)xi+1 − ˆ̇αi−1

)
(37)

where τi ˆ̇Di+D̂i = δ̂i, yi = D̂i− δ̂i and λi is a design constant.
Noting that ei = xi − αi−1, one has xi+1 = ei+1 + αi.
Substituting (36) into (25) and following a similar way as

Step 1 lead to

V̇ei = gi(x i)eiei+1 − kie2i + ei
(
ˆ̇αi−1 − α̇i−1

)
+ ei(−λiD̂2

i ei + δi) (38)

In view of (23) and (37), it immediately gets

−D̂i + δi = ėi − (fi(x i)+ gi(x i)xi+1 − α̇i−1)

−

(
ζ̂i,0 −

(
fi(x i)+ gi(x i)xi+1 − ˆ̇αi−1

)
+ yi

)
= ėi − ζ̂i,0 + α̇i−1 − ˆ̇αi−1 − yi (39)

Utilizing (30), (33) and (35) gives∣∣∣−D̂i + δi∣∣∣ = ∣∣ėi − ζi,0∣∣+ ∣∣∣ζi,0 − ζ̂i,0∣∣∣+ ∣∣∣α̇i−1 − ˆ̇αi−1∣∣∣+ yi
≤ υi,0 + γi + υi,1 + ςi + yi = γ ∗i (40)

It further gives rise to

δ2i − D̂
2
i ≤

∣∣∣δ2i − D̂2
i

∣∣∣ = ∣∣∣δi − D̂i∣∣∣ ∣∣∣δi + D̂i∣∣∣
≤ γ ∗i

(
2 |δi| + γ ∗i

)
≤ 3γ ∗2i +

δ2i

2
(41)

which suggests

δ2i

2
≤ 3γ ∗2i + D̂

2
i (42)
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Thus, we can rewrite (38) as

V̇ei ≤ gi(x i)eiei+1 − kie2i +
(
υi,1 + ςi

)
ei − λiD̂2

i e
2
i

+
λiδ

2
i e

2
i

2
+

1
2λi

≤ gi(x i)eiei+1 +
(
υi,1 + ςi

)
|ei| −

(
ki − 3λiγ ∗2i

)
e2i

+
1
2λi

(43)

Let ki = 3λiγ ∗2i + ki0, where ki0 > 0

V̇ei ≤ gi(x i)eiei+1 +
(
υi,1 + ςi

)
|ei| − ki0e2i +

1
2λi

(44)

Step n: Noting en = xn − αn−1, the dynamics of
en-subsystem can be written as

ėn = fn(x)+ gn(x)u+ δn − α̇n−1 (45)

Similarly, consider the following quadratic Lyapunov func-
tion candidate:

Ven =
1
2
e2n (46)

The time derivative of Ven along (45) is

V̇en = en[fn(x)+ gn(x)u+ δn − α̇n−1] (47)

Similarly, utilizing the first order sliding mode differentia-
tor to estimate α̇n−1.

ϑ̇n−1,0 = 2n,0 = −σn,0
∣∣ϑn−1,0 − αn−1∣∣ 12

× sign(ϑn−1,0 − αn−1)+ ϑn−1,1
ϑ̇n−1,1 = −σn,1sign(ϑn−1,1 −2n,0) (48)

where ϑn−1,0, ϑn−1,1 and 2n,0 are the states of the system,
σn,0 and σn,1 are positive design constants.
In view of (48) and Lemma 2, one has∣∣2n,0 − α̇n−1

∣∣ ≤ υn,1 (49)

where υn,1 is any positive constant.
Similar to Step i, the estimate of the differential term α̇n−1

is defined as:

ˆ̇αn−1 = −σn,0

((
ϑn−1,0 − αn−1

)
tanh

(
ϑn−1,0 − αn−1

µn,1

)) 1
2

× tanh
(
ϑn−1,0 − αn−1

µn,1

)
+ ϑn−1,1 (50)

Noting (48), (50) and Lemma 3, one gets∣∣∣ ˆ̇αn−1 −2n,0

∣∣∣ ≤ ςn (51)

where ςn is a positive constant.
Therefore, the following inequality satisfies∣∣∣ ˆ̇αn−1 − α̇n−1∣∣∣ = ∣∣2n,0 − α̇n−1(t)

∣∣+ ∣∣∣ ˆ̇αn−1 −2n,0

∣∣∣
≤ υn,1 + ςn (52)

Invoking (45), we can get

δn = ėn − (fn(x)+ gn(x)u− α̇n−1)

Similar to Step 1, the first order sliding mode differentiator
is adopted as follows:

ρ̇n,0= ζn,0=−εn,0
∣∣ρn,0 − en(t)∣∣ 12 sign(ρn,0 − en(t))+ ρn,1

ρ̇n,1=−εn,1sign(ρn,1 − ζn,0) (53)

where ρn,0, ρn,1 and ζn,0 are the states of the system,
εn,0 and εn,1 are positive design constants.

According to Lemma 2, one reaches∣∣ζn,0 − ėn(t)∣∣ ≤ υn,0 (54)

where υn,0 is any positive constant.
Similarly, define functions ζ̂n,0 as follows

ζ̂n,0 = −εn,0

((
ρn,0 − en(t)

)
tanh

(
ρn,0 − en(t)

µn,0

)) 1
2

× tanh
(
ρn,0 − en(t)

µn,0

)
+ ρn,1 (55)

where ζ̂n,0 is the estimate of the auxiliary variable ζn,0.
According to (53), (55) and Lemma 3, we can know that∣∣∣ζn,0 − ζ̂n,0∣∣∣ ≤ γn (56)

where γn is a positive constant.
Then, we construct the actual control law u and the

adaptation function δ̂n as follows

u = g−1n (x)
(
−knen − fn(x)+ ˆ̇αn−1 − λnD̂2

nen
)

(57)

δ̂n = ζ̂n,0 −
(
fn(x)+ gn(x)u− ˆ̇αn−1

)
(58)

where τn ˆ̇Dn + D̂n = δ̂n, yn = D̂n − δ̂n and λn is a design
constant.

Similarly, substituting (57) into (47) yields, it holds that

V̇en=−kne2n+en(−λnD̂
2
nen+δn)+ en

(
ˆ̇αn−1−α̇n−1

)
(59)

In view of (45) and (58), we arrive

−D̂n + δn = ėn − (fn(x)+ gn(x)u− α̇n−1)

−

(
ζ̂n,0 −

(
fn(x)+ gn(x)u− ˆ̇αn−1

)
+ yn

)
= ėn − ζ̂n,0 + α̇n−1 − ˆ̇αn−1 − yn (60)

Utilizing (52), (54) and (56) leads to∣∣∣−D̂n + δn∣∣∣ = ∣∣ėn − ζn,0∣∣+ ∣∣∣ζn,0 − ζ̂n,0∣∣∣
+

∣∣∣ ˆ̇αn−1 − α̇n−1∣∣∣+ yn
≤ υn,0 + γn + υn,1 + ςn + yn = γ ∗n (61)

It further gives rise to

δ2n − D̂
2
n ≤

∣∣∣δ2n − D̂2
n

∣∣∣ = ∣∣∣δn − D̂n∣∣∣ ∣∣∣δn + D̂n∣∣∣
≤ γ ∗n

(
2 |δn| + γ ∗n

)
≤ 3γ ∗2n +

δ2n

2
(62)

which indicates

δ2n

2
≤ 3γ ∗2n + D̂

2
n (63)
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Thus, we can rewrite (59) as

V̇en ≤
(
υn,1 + ςn

)
|en| −

(
kn − 3λnγ ∗2n

)
e2n +

1
2λn

(64)

Let kn = 3λnγ ∗2n + kn0, where kn0 > 0

V̇en ≤
(
υn,1 + ςn

)
|en| − kn0e2n +

1
2λn

(65)

The design process of adaptive tracking controller has been
completed.

IV. STABILITY ANALYSIS
In this section, the main results will be stated and the conver-
gence of the disturbance observer will be proven.
Theorem 1: Consider the nonlinear system (1) under

Assumptions 1-2. The virtual control laws are constructed as
(14) and (36). The sliding mode disturbance observers with-
out any bounded conditions are designed according to (15),
(37) and (58). Based on the designed disturbance observers,
the actual control law is proposed as (57). The tracking error
e1 = x1− yd converges to a small neighborhood of the origin
by appropriately choosing designed parameters.

Proof:To analyze the stability of the closed-loop system,
we consider the following Lyapunov function candidate:

V =
n∑
i=1

Vei (66)

It follows from (22), (44) and (65) that the time derivative
of V is:

V̇ ≤ −
n∑
i=1

ki0e2i +
n∑
i=2

(
υi,1 + ςi

)
|ei|

+

n−1∑
i=1

gi(xi)eiei+1 +
n∑
i=1

1
2λi

≤ −

n∑
i=1

ki0e2i +
n∑
i=2

υi,2 |ei|

+

n−1∑
i=1

gi(xi)eiei+1 +
n∑
i=1

1
2λi

(67)

where υi,2 = υi,1 + ςi.
In combination with Assumption 2 and the following

inequalities:

υi,2 |ei| ≤
1
2

(
υ2i,2e

2
i

c1
+ c1

)
(68)

gi(xi)eiei+1 ≤
1
2
gM (e2i + e

2
i+1) (69)

Then, we can rewrite (67) as

V̇ ≤ −
n∑
i=1

ki0e2i +
n∑
i=2

1
2

(
υ2i,2e

2
i

c1
+ c1

)
+

n∑
i=1

1
2λi

+

n−1∑
i=1

1
2
gM (e2i + e

2
i+1) (70)

Noting that
n−1∑
i=1

1
2gM (e2i + e

2
i+1) ≤

n∑
i=1

gMe2i , one further

has

V̇ ≤ −
n∑
i=1

ki0e2i +
n∑
i=1

1
2

υ2i,2

c1
e2i +

n∑
i=1

gMe2i

+
1
2
nc1 +

n∑
i=1

1
2λi

(71)

where c1, υi,2 and gM are positive constants.

Setting ki0 = 1
2
υ2i,2
c1
+ gM + ki1, with ki1 being a positive

constant, then (71) can be expressed by

V̇ ≤ −
n∑
i=1

ki1e2i +
1
2
nc1 +

n∑
i=1

1
2λi

≤ −C1V + C2 (72)

where C1 = 2ki1 and C2 =
1
2nc1 +

n∑
i=1

1
2λi

.

Using (72), we can obtain

V (t) ≤ (V (0)− C3) e−C1t + C3

≤ V (0)+ C3 (73)

According to (66) and (73), the following inequality holds:

lim
t→∞
|e1| ≤

√
2C3 (74)

It can be observed from the definition that C3 = C2/C1
can be adjusted to arbitrarily small by increasing λi.
Therefore, by appropriately online-tuning the design param-
eters, the tracking error e1 converges to an arbitrarily small
neighborhood of the origin.
Remark 5: Specifically, two cases on the compounded

disturbance δi(x, t) (i.e. δi(x, t) is bounded and unbounded)
are considered: 1) As for the case of δi(x, t) being bounded,
one sees that V and the tracking error ei, i = 1, 2, . . . , n are
bounded from (73). So for e1 = x1−yd and yd being bounded,
x1 is certainly bounded. Taking (18) into account, the estimate
of the compounded disturbance D̂1 is bounded under this
case. Since α1 is a function of bounded signals x1, e1, ẏd
and D̂1, the virtual control law α1 is also bounded. Noting
xi = ei + αi−1, it can be seen that αi−1 and state variables
xi,i = 2, 3, . . . , n are bounded, and similarly, the actual
control law u is bounded. Therefore, all the signals of the
closed-loop system are bounded; 2) As for the case of δi(x, t)
being unbounded, the estimates of δi(x, t), namely D̂i, are
unbounded according to (40), which results in that the virtual
control laws αi and the control input u are unbounded since D̂i
are included in them as seen in (36) and (57). This means that
an unbounded control effort is required so as to circumvent
the influence brought by unbounded disturbances. However,
it should be pointed out that the boundedness of the tracking
error e1 and the tracking performance can be still guaranteed
in this case.

This completes the proof. �
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V. SIMULATION RESULTS
In this section, two simulation examples are given to demon-
strate the effectiveness of designed method.
Example 1: To illustrate the validity of the proposed con-

trol scheme, consider the following second-order nonlinear
system with disturbance and its derivative being unbounded
as follows:
ẋ1 = x1e−0.5x1 + (1+ e−0.1x

2
1 )x2

ẋ2 = −p1x1 − p2x2 − x31 + q cos(ωt)+ u+ δ(x, t)
y = x1

(75)

where the compounded disturbance is given by δ(x, t) = x21+
x1 + t sin(t). For the purpose of simulation, we suppose that
p1 = 0.3 + 0.2 sin(10t), p2 = 0.2 + 0.2 cos(5t), q0 = 5 +
0.1 cos(t) and ω = 0.5+ 0.1 sin(t). Let the desired trajectory
be yd = sin(0.5t).
Remark 6: Differently from the state-of-the-art, it can be

seen that the compounded disturbance δ(x, t) grows with
time t , so it can be easily verified that the compounded
disturbance δ(x, t) is not bounded by upper and lower bounds,
and moreover, its derivative is also unbounded. This spe-
cific example breaks the conventional bound assumptions
and makes the control design extremely challenging, so in
authors’ opinion, the existing works cannot be applied. To
overcome this difficulty, we firstly propose a disturbance
observer designmethodwithout bounded assumptions, which
basically distinguishes our work from all available methods.

In accordance with Theorem 1, the adaptive tracking con-
troller is proposed as (57) and the disturbance observers are
given as (15) and (58). For the compounded disturbance
δ(x, t), the design parameters are set as: ε1,0 = 10, ε1,1 = 1,
µ1,0 = 0.1; σ2,0 = 30, σ2,1 = 1, µ2,1 = 0.5; ε2,0 = 20,
ε2,1 = 1, µ2,0 = 0.1. The other design parameters are taken
as k1 = 6, λ1 = 1 and k2 = 4, λ2 = 1. Let the initial
conditions for [x1(0), x2(0)]T = [0, 0]T , ρ1,1(0) = ρ2,1(0) =
ϑ1,1(0) = 0, ζ̂1,0(0) = ζ̂2,0(0) = α̂1(0) = 0. The simulation
results are shown as Figs. 2-6.

It can be obviously observed from Fig. 2 that the system
output y can follow the desired trajectory yd and fairly good
tracking performance is obtained. Fig. 3 shows the tracking

FIGURE 2. System output y and desired trajectory yd .

FIGURE 3. Tracking error e.

error e converges to an allowable range. The response curve
of the system state x2 is depicted in Fig. 4. And the control
input u is shown in Fig. 5 Specially, it can be seen from
Fig. 6 that the disturbance observer D̂ can approach the
growing compounded disturbance δ effectively. It should be
noted that excellent tracking performance has been achieved
even though the compounded disturbance is unbounded by
utilizing the first order sliding mode differentiator in our
paper, which enhances the robustness and reliability of the
system drastically.

FIGURE 4. System state x2.

FIGURE 5. Control input u.

Remark 7: Inmost existing traditional disturbance observer
design approaches, to the best of authors’ knowledge, the
disturbance observer is always designed using a constant.
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FIGURE 6. Compounded disturbance δ and its estimate D̂.

It is very restrictive arising from the fact that the bound for
disturbance may not exist with the system state and time
in practice, implies that the effect of disturbance cannot be
assumed to be bounded before obtaining stability. Thanks to
the slide mode differentiators and hyperbolic tangent func-
tion, the error dynamics in our paper have a clear advantage
over it in standard disturbance observer-based design, even
under the case that the disturbance is unbounded and non-
smooth. It is noticed that the proposed disturbance observer
can come across these difficulties for the reason that the
restrictive assumptions on the disturbance terms are removed.
Therefore, compared with conventional disturbance observer
designs, our scheme has more relaxed condition and a wider
range of application.
Example 2: To further verify the effectiveness of the

proposed scheme, consider the following tracking control
problem for a pole-balancing of an inverted pendulum [39].
The system is represented by

ẋ1 = x2

ẋ2 =
mlx22 sin x1 cos x1 − (M + m)g sin x1

ml cos2 x1 − 4/3l(M + m)

+
− cos x1

ml cos2 x1 − 4/3l(M + m)
u+ δ(x, t)

y = x1

(76)

where x1 represents the angle θ (in radians) of the pendulum
from the vertical,M is the mass of the cart and m is the mass
of the pole, g is gravitational constant, l is the half length of
the pole, u means force applied to the cart and δ(x, t) is the
compounded disturbance.

The parameters employed in this simulation are given as
follows: M = 1 Kg, m = 0.1 Kg, l = 0.5 m, g = 9.8 m/s2.
The disturbance term δ(x2, t) is a dead-zone model in the
presence of non-smooth nonlinearity, which can be given as
follows

δ(x, t) =


10(x2 − 0.3)+

(x2 − 0.3)2

7
, x2 ≥ 0.3

0, −0.3 < x2 < 0.3

10(x2 + 0.3)+
(x2 + 0.3)2

7
, x2 ≤ −0.3

(77)

It can be seen that the compounded disturbance δ(x2, t) is
not partial differentiable with respect to x2 as non-smooth
nonlinearity is present in it. Furthermore, we assume the
desired trajectory yd = 0.5(sin(t)+ sin(0.5t)).
In this simulation, the designed parameters are taken as

ε1,0 = 10, ε1,1 = 1, µ1,0 = 1; σ2,0 = 10, σ2,1 = 1,
µ2,1 = 0.1; ε2,0 = 10, ε2,1 = 1, µ2,0 = 0.1 and k1 = 4,
λ1 = 1; k2 = 4, λ1 = 1. Set the initial conditions
as [x1(0), x2(0)]T = [0.2, 0]T , ρ1,1(0) = ρ2,1(0) =
ϑ1,1(0) = 0 and ζ̂1,0(0) = ζ̂2,0(0) = α̂1(0) = 0. The
simulation results are shown in Figs. 7-10.

FIGURE 7. System output y and desired trajectory yd .

FIGURE 8. Tracking error e.

FIGURE 9. Control input u.

To show the good compensation effect of the disturbance
observers on the dynamic response, the output response
curves are depicted in Fig. 7 and it can be observed clearly
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FIGURE 10. System state x2.

that system output y can converge rapidly to the desired
trajectory yd . The tracking error is acceptable from Fig. 8.
And it can be seen from Fig. 9 and Fig. 10 that the control
input u and system state x2 are bounded. The simulation
results of physical system model indicate that the proposed
controller based on disturbance observer can achieve excel-
lent tracking performance even though the compounded dis-
turbance is non-differentiable. Particularly, the input variable
information of the compounded disturbance is not mentioned
in the controller design, thus the prior knowledge of the
compounded disturbance can be unknown, which has wide
application prospects in practical control systems.

VI. CONCLUSION
A novel adaptive tracking control scheme based on dis-
turbance observer has been proposed for a class of
strict-feedback nonlinear systems under loose distur-
bance constraint conditions. Compared with the existing
approaches, the restrictive assumptions that the compounded
disturbance must be bounded, differentiable or slow time-
varying are relaxed by only assuming that the disturbance
functions are continuous. Without NNs or FLSs techniques,
the sliding mode differentiator and the backstepping method
have been utilized to estimate the compounded disturbance
and design adaptive control laws in proposed control scheme.
Moreover, the influences of unknown disturbance and sys-
tem uncertainties are eliminated without knowing any prior
knowledge of the compounded disturbance.

APPENDIX
Proof of Lemma 3: To obtain the conclusion, two cases are
discussed as follows:

Case 1: For any x ∈ R, |x|
1
2 +

(
x tanh

(
x
µ

)) 1
2
≥ 1∣∣∣∣∣|x| 12 −

(
x tanh

(
x
µ

)) 1
2
∣∣∣∣∣

≤

∣∣∣∣∣|x| 12 −
(
x tanh

(
x
µ

)) 1
2
∣∣∣∣∣ ·
∣∣∣∣∣|x| 12 +

(
x tanh

(
x
µ

)) 1
2
∣∣∣∣∣

=

∣∣∣∣|x| − x tanh( xµ
)∣∣∣∣ (78)

According to Lemma 1, one has∣∣∣∣∣|x| 12 −
(
x tanh

(
x
µ

)) 1
2
∣∣∣∣∣ ≤ |x| − x tanh

(
x
µ

)
≤ 0.2785µ

(79)

Consider the property of the sign function, we know that∣∣∣∣∣|x| 12 sign(x)−
(
x tanh

(
x
µ

)) 1
2

sign(x)

∣∣∣∣∣
=

∣∣∣∣∣|x| 12 −
(
x tanh

(
x
µ

)) 1
2
∣∣∣∣∣

≤ 0.2785µ (80)∣∣∣∣∣
(
x tanh

(
x
µ

)) 1
2

sign(x)

−

(
x tanh

(
x
µ

)) 1
2

sign
(
x
µ

)∣∣∣∣∣= 0 (81)

Noting thatµ is an unknown positive constant, it holds that∣∣∣∣∣
(
x tanh

(
x
µ

)) 1
2

sign
(
x
µ

)
−

(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣
≤

(
x tanh

(
x
µ

)) 1
2
∣∣∣∣sign( xµ

)
− tanh

(
x
µ

)∣∣∣∣ (82)

When x > 0,∣∣∣∣sign( xµ
)
− tanh

(
x
µ

)∣∣∣∣
=

∣∣∣∣1− e(x/µ) − e−(x/µ)

e(x/µ) + e−(x/µ)

∣∣∣∣
=

2e−(x/µ)

e(x/µ) + e−(x/µ)
≤ e−(x/µ) (83)

When x < 0,∣∣∣∣sign( xµ
)
− tanh

(
x
µ

)∣∣∣∣
=

∣∣∣∣−1− e(x/µ) − e−(x/µ)

e(x/µ) + e−(x/µ)

∣∣∣∣
=

2e(x/µ)

e(x/µ) + e−(x/µ)
≤ e(x/µ) (84)

In view that the difference between the sign function and
the hyperbolic tangent function shows exponential growth,
one reaches∣∣∣∣∣
(
x tanh

(
x
µ

)) 1
2

sign
(
x
µ

)
−

(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣
≤

(
x tanh

(
x
µ

)) 1
2 (
e−|x/µ|

)
≤ γ ∗ (85)

where γ ∗ is a positive constant.
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Therefore, we can obtain that∣∣∣∣∣|x| 12 sign(x)−
(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣
≤

∣∣∣∣∣|x| 12 sign(x)−
(
x tanh

(
x
µ

)) 1
2

sign(x)

∣∣∣∣∣
+

∣∣∣∣∣
(
x tanh

(
x
µ

)) 1
2

sign(x)

−

(
x tanh

(
x
µ

)) 1
2

sign
(
x
µ

)∣∣∣∣∣
+

∣∣∣∣∣
(
x tanh

(
x
µ

)) 1
2

sign
(
x
µ

)
−

(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣
≤ 0.2785µ+ γ ∗ = γ (86)

Case 2: For any x ∈ R, |x|
1
2 +

(
x tanh

(
x
µ

)) 1
2
< 1

It is easy to know that|x| < 1,and then we further have∣∣∣∣∣|x| 12 sign(x)−
(
x tanh

(
x
µ

)) 1
2

tanh
(
x
µ

)∣∣∣∣∣ ≤ γ (87)

This completes the proof. �
Proof of Lemma 4: By noting that τ β̇ + β = α and

y = β − α, one has β̇ = − y
τ

Choose the following quadratic function as

VF =
1
2
y2 (88)

The time derivative of VF is

V̇F = yẏ = y(−
y
τ
− α̇) = −

y2

τ
− yα̇ (89)

Applying a first order sliding mode differentiator in
Lemma 2 yields to get ˆ̇α, it follows that∣∣∣α̇ − ˆ̇α∣∣∣ ≤ ε (90)

where ε is a positive constant.
Choose 1

2τ =
ˆ̇α2 + ε0 where ε0 > 0 being the designed

parameter, and then we can obtain

−
y2

2τ
− yα̇ = −( ˆ̇α2 + ε0)y2 − yα̇

≤
1
4
− ε0y2 −

∣∣∣ ˆ̇α∣∣∣ |y| − yα̇
≤

1
4
− ε0y2 + |εy| (91)

Substituting (91) into (89) yields, it holds that

V̇F ≤ −
y2

2τ
+

1
4
− ε0y2 + |εy|

≤ −(ε0 −
1
2
+

1
2τ

)y2 +
1
4
+

1
2
ε2

≤ −c1VF + c2 (92)

where c1 = 2ε0 − 1+ 1
τ
and c2 = 1

4 +
1
2ε

2.

Therefore, we can know that the filtering error y can be
regulated to arbitrarily small by appropriately online-tuning
the design parameters.

This completes the proof. �
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