
Received July 7, 2019, accepted July 18, 2019, date of publication July 25, 2019, date of current version August 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931058

NGraph: Parallel Graph Processing in Hybrid
Memory Systems
WEI LIU, HAIKUN LIU , (Member, IEEE), XIAOFEI LIAO , (Member, IEEE),
HAI JIN , (Fellow, IEEE), AND YU ZHANG, (Member, IEEE)
National Engineering Research Center for Big Data Technology, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
System Services Computing Technology and System Laboratory, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China

Corresponding author: Haikun Liu (hkliu@hust.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1001603, and in
part by the National Natural Science Foundation of China (NSFC) under Grant 61672251, Grant 61732010, and Grant 61825202.

ABSTRACT Big data applications like graph processing are highly imposed on memory capacity.
Byte-addressable non-volatile memory (NVM) technologies can offer much larger memory capacity, lower
cost per bit relative to traditional DRAM. They are expected to play a crucial role in mitigating I/O operations
for big data processing. However, since the NVMs show higher access latency and lower bandwidth
compared with DRAM, it is still challenging to fully exploit the advantages of both the DRAM and NVM for
graph processing. In this paper, we propose NGraph, a new parallel graph processing framework specially
designed for hybrid memory systems. According to different access patterns of graph data, NGraph exploits
memory heterogeneity-aware data placement strategies to avoid random accesses and frequent updates
to NVM. NGraph partitions graph by destination vertices and exploits a task decomposition scheme to
avoid data contention between multicores. Meanwhile, the NGraph balances the execution time of parallel
graph data processing on multicores through a work-stealing strategy. Moreover, the NGraph also proposes
software-based data pre-fetching to improve cache hit rate, and supports huge page to reduce address
translation overhead. We evaluate NGraph using a hybrid memory emulator. The experimental results show
that NGraph can achieve up to 48.28% performance improvement for several typical benchmarks compared
with the state-of-the-art systems Ligra and Polymer.

INDEX TERMS Graph processing, data placement, graph partitioning, DRAM/NVM hybrid memory.

I. INTRODUCTION
Social network, road network and biological network contain
a lot of valuable information, and mining this information
from massive data plays an important role in enterprises’
decision making. Most of these data can be abstracted into
graph, which attracts increasing research interest of industry
and academia on the graph processing framework.

It is essential to process the graph-structure data with low
cost and high efficiency. Because traditional DRAM tech-
nologies generally feature low memory density, high cost
and power consumption, they cannot satisfy the increas-
ing requirement of main memory for high-performance
large graph processing. Although many distributed graph

The associate editor coordinating the review of this manuscript and
approving it for publication was Walter Didimo.

systems [1]–[4] or out-of-core [5]–[8] graph systems have
been developed to use limited memory resource for large
graph processing, these systems often suffer high memory
cost (using multiple machines) or extremely low performance
(high I/O cost due to disks).

Recently, emerging Non-Volatile Memory (NVM) [9]
technologies such as PCM [10] and ReRAM [11] have the
potential to radically change the landscape of memory sys-
tems. They generally show higher memory density, lower
energy consumption and lower cost per GB than DRAM.
The cost of NVM is about five times lower than that of
DRAM [12], and will be lower with the development of tech-
nology. Although NVM shows lower bandwidth and higher
access latency than that of DRAM, we find that a hybrid
memory system has a potential to improve the performance of
graph processing by up to 6 times compared to an out-of-core

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 103517

https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0002-3934-7605

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

system under the same constraint of memory cost. The hybrid
memory system with a small size of DRAM and a relatively
large amount of NVM can significantly reduce the total cost
of graph processing system, and lead to higher performance
per dollar (see Section II).

There are only a few preliminary studies [13]–[15] on
graph processing in hybrid memory systems. Most work only
represents an early example to showcase the benefit of using
hybrid memories for graph processing [13], [14]. To use
the hybrid memories effectively and efficiently, the primary
challenging is to place different kinds of data on DRAM
and NVM properly. The application performance may slow
down if data is randomly placed on DRAM and NVM with-
out considering the data access patterns. For example, when
frequently-accessed (hot) data is stored in NVM, the accesses
to high-latency NVM would slow down the execution of
applications.

In this paper, we proposeNGraph, a parallel graph process-
ing framework specially designed for hybrid memory sys-
tems. NGraph exploits a memory heterogeneity-aware data
placement strategy to avoid random accesses and frequent
updates to NVM. We analyze the access patterns of different
data structures in graph dataset, and place read-only and
sequentially accessed graph data in NVM, while frequently
accessed graph property and state data are placed in DRAM
to mitigate performance degradation.

On the other hand, parallel graph processing in multi-
core systems usually leads to data contention, i.e., multi-
ple threads may update the same data block concurrently.
In order to guarantee data consistency and reduce the CPU
stall time of concurrency control, it’s necessary to mitigate
the data contention between different processors. A general
approach is to update a data block with an atomic operation,
and other processors must wait for the data-exclusive thread
to complete the operation. The atomic operation locks the
entire cache line, and will cause CPU stalling for a major-
ity of application execution time. In contrast, we partition
graph by destination vertices and exploit a task decomposi-
tion scheme to avoid data contention among multiple cores,
and thus avoiding the performance overhead of atomic data
updates.

Moreover, NGraph also provides two optimization
techniques to further improve the performance of graph
processing in hybrid memory systems. We propose software-
based data pre-fetching [16] by exploiting data locality to
improve cache hit rate. Also, to mitigate the virtual-to-
physical address translations for graph data with large mem-
ory footprint, NGraph supports hugepage [17] for memory
allocation.

The main contributions of this paper are as follows:
• We study the opportunities and challenges of graph
processing to exploit the NVM characteristics in hybrid
memory systems.

• We propose NGraph, a parallel graph processing frame-
work specifically designed for hybrid memories sys-
tems. It adopts a nvm-aware data placement strategy

to mitigate the impact of relatively high NVM access
latency on application performance. NGraph partitions
graph by destination vertices and exploits a task decom-
position scheme to avoid data contention between dif-
ferent processors. Moreover, NGraph leverages a work
stealing strategy to minimize the time of parallel graph
data processing on multicore systems.

• We also exploit data structure-aware software pre-
fetching to improve cache hit ratio, and hugepage sup-
porting to reduce address translation overhead. These
two optimization techniques can further improve the
performance of graph processing in hybrid memory
systems.

• We implement NGraph and evaluate it with several
typical graph applications. Experimental results show
that NGraph can improve application performance by
10.79% to 48.28% compared to other state-of-the-art
graph processing framework running in a hybrid mem-
ory system.

The rest of this paper is organized as follows. Section II
introduces the NVM technology, and analyzes its opportuni-
ties and challenges in graph processing. Section III presents
the design and implementation of NGraph. Section IV intro-
duces two other optimization strategies in NGraph. The
experimental results are described in Section V. Section VI
presents the related work and we conclude this paper
in Section VII.

II. BACKGROUND AND MOTIVATION
A. NVM TECHNOLOGIES
Non-Volatile Memories(NVM) such as MRAM [18],
F-RAM [19], STT-MRAM [20], PCM [10], [21], [22] and
RRAM [11] are characterized with byte-addressable, near-
zero static energy consumption and high memory density.
They have the potential to significantly expand the capacity
of main memory and to reduce memory energy consumption.
Despite the advantages of NVMs, they cannot substitute
for DRAM currently because the relatively high read and
write latency of NVMs may lead to significant performance
degradation. Moreover, NVM’s limited write endurance is
also a constraint for long-term usage. As a result, a typical
use of NVM is to combine it with a small size of DRAM
to build a hybrid memory system. In this way, the main
memory system can exploit the advantages of both NVM and
DRAM and avoid their disadvantages [23]. It can both satisfy
the requirement of large memory capacity for applications
and guarantee the service level agreement (SLA). This paper
aims to design a graph processing system on such hybrid
memory system consisting of a small size of DRAM (GB)
and a relatively large amount of NVM (TB). We compare the
features of NVMwith DRAM in Table 1. Here, the NVM rep-
resents Intel’s newly released Optane DC Persistent Memory
DIMMs [24].

Since we still have not got the commercial NVM device
during this work, our performance studies on NVM are

103518 VOLUME 7, 2019

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

TABLE 1. The features of NVM compared to DRAM.

primarily conducted on a hybrid memory emulator. There are
mainly two ways to simulate NVM devices. One approach
is to simulate the hybrid memory system by software
(e.g. ZSim [25], Gem5 [26], NVMain [27], DRAM-
Sim2 [28]). These simulators exhibit extremely low speed
for simulating the execution of applications, and they are
generally unfeasible to run applications with very large mem-
ory footprint. Another approach is to use hardware emula-
tors (e.g. HMPE [29], QUARTZ [30], HME [31]). These
hardware emulators use DRAM to emulate the performance
characteristics of NVM. Applications run on these emulators
are much close to the execution on a real hardware. They also
support running applications with large memory footprint.
As both HMPE [29] and QUARTZ [30] do not support the
emulation of NVM write latency, we evaluate the perfor-
mance of graph processing in hybrid memory systems using
HME, which can accurately emulate all performance features
of NVM with trivial software overhead.

FIGURE 1. Average data read/write latency for different access patterns
under various NVM latency settings.

Modern computer systems often leverage several tech-
niques to hide memory access latency, such as hardware-
based data pre-fetching, memory level parallelism (MLP)
and cache. Program’s performance degradation is not exactly
proportional to the increased latency of NVM. We measure
the read andwrite latency of different memory access patterns
under various NVM latency configurations. As shown in
Figure 1(a), we find that NVM random read latency can be
up to 6.9 times higher than that of NVM sequential read.
In Figure 1(b), NVM random write latency can be up to
20.7 times higher than that of NVM sequential write latency,
while the performance gap between sequential write and
random write for DRAM is much narrow. These observations
indicate that the data access patterns should be particularly
considered to optimize the data placement in hybrid memory
systems.

B. OPPORTUNITIES AND CHALLENGES OF GRAPH
PROCESSING IN HYBRID MEMORY SYSTEMS
Graph processing follows a scatter-gather programming
model, and is often implemented through vertex-centric or
edge-centric approach:

• Vertex-centric: it performs iterative computing over ver-
tices (e.g., Ligra [32]). For each vertex, the value of
local vertex is propagated to neighbor vertices in the
scatter phase, and the gather phase obtains the values of
neighbor vertices to update the local vertex value.

• Edge-centric: it performs iterative computing over edges
to avoid random access to edges (e.g., X-stream [6]). For
each edge, the scatter phase appends updates to a list
named Uout. After the shuffle phase, these re-arranged
updates are applied to vertices in the gather phase.

To demonstrate the benefit of graph processing in hybrid
memory systems, the performance improvement of hybrid
memory system over out-of-core systems(i.e. traditional
DRAM memory + disk) is evaluated under a constraint of
the same cost. The work [12] revealed that the cost of DRAM
per GB is about five times of NVM. Accordingly, we assume
that the cost of 16G DRAM is equal to 10G DRAM plus
30G NVM. We measure the performance of various graph
algorithms under these two different memory configurations.
The X-stream system and the twitter dataset [33] are used in
our experimental studies.

FIGURE 2. Performance gap between hybrid memory system and
‘‘DRAM+Disk’’.

Figure 2 shows the execution time of various graph algo-
rithms in the two memory systems. We can find that hybrid
memory system can achieve higher performance at the same
cost. The performance of BFS, PageRank, CC and SPMV is
improved by 2.47, 5.96, 3.52, and 4.06 times, respectively.
For the system with 16G DRAM, graph data cannot be fully
loaded into memory, leading to frequently data swapping
between memory and disk. In contrast, the hybrid memory
system provides a much larger memory space, and all graph
data can be processed in memory without suffering the high
latency of I/O operations.

VOLUME 7, 2019 103519

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

FIGURE 3. Performance gap between hybrid memory system and
DRAM-only system.

As mentioned above, previous graph processing systems
have not considered the memory heterogeneity, and data is
randomly placed in two kinds of memories. Applications
usually cannot achieve optimal performance without opti-
mizing data placement. We further measure the performance
gap between a full-DRAM memory system and a hybrid
memory system when running different graph applications.
In this experiment, we run Ligra and X-stream using the
twitter dataset. Assume NVM read/write latencies are two
and eight times as high as that of DRAM, respectively, and
NVM bandwidth is only half of DRAM. Figure 3 shows
that the performance of graph applications degrades by 39%
to 73% in hybrid memory system. The experimental results
suggest that there is vast room to optimize the performance of
graph processing by redesigning the data placement strategy
for hybrid memory systems.

III. DESIGN AND IMPLEMENTATION
NGraph is a NVM-aware parallel graph processing frame-
work in hybrid memory systems that inherits Ligra’s pro-
gramming model. NGraph optimizes data placement based
on access patterns of graph data structures and NVM charac-
teristics, and thus reduces frequent random access to NVM.
Moreover, by graph partitioning and task decomposition,
NGraph eliminates data competition among multiple threads
and balances load among processors.

A. GRAPH DATA STRUCTURE AND NVM-AWARE
DATA PLACEMENT
1) IN-MEMORY GRAPH DATA STRUCTURE
The graph data mainly consists of graph structure data, ver-
tex property data, and runtime state data. The in-memory
data structure of graph is shown in the left dashed box of
Figure 4. Graph structure data includes edge and vertex
structures, which are usually stored in two edge arrays and
a vertex array, respectively. The in-edge array and out-edge
array store the source and destination vertices, respectively.
The vertex array stores vertex’s metadata, including vertex
ID, in-degree and out-degree, the addresses of in- and out-
edges. Vertex property data (such as the parent of a vertex in

FIGURE 4. In-memory data structure and the execution flow of graph.

BFS, the rank value in PR) is stored in two arrays. Datacurr
maintains the property value from previous iteration,Datanext
stores the property value in current iteration. The run state
data (a vertex is active or inactive) is also stores in two
arrays, i.e., Frontier array and Next array. In traditional graph
processing frameworks, these data are randomly allocated in
hybrid memory system, which may cause some data to access
NVM frequently, affecting the performance of program and
reducing the service life of NVM.

2) GRAPH DATA ACCESS PATTERN AND
NVM-AWARE DATA PLACEMENT
We design a data placement strategy based on the access
patterns of different data structures. The basic principle is
to place randomly accessed and frequently updated data in
DRAM, and sequentially accessed and read-only data in
NVM. Because the sequential access speed of NVM is about
6 times faster than its random access. In this way, we can
make full use of the advantages of NVM and avoid the
disadvantages of NVM’s high write latency and limited write
endurance.

In a static graph, the graph structure remains unchanged
during the execution of programs, so the graph structure
data is read-only. For a natural graph, the graph structure
data is much larger than vertex property data and state data,
usually accounting for about 71% to 83% of the total data size
[34], [35]. The execution flow and access pattern of graph
processing are shown in the right dashed box of Figure 4.
Since graph structure data is sequentially stored in edge
array and vertex array, its memory accesses are sequential,
program has good special locality when accessing these data.
Therefore, it is reasonable to place the sequentially accessed
and read-only graph structure data in large-capacity NVM.
During graph processing, vertex property data is usually
updated along with edges. Due to the irregularity of graph,
these updates often spread throughout the whole graph,
resulting in random accessing to these data. Therefore, vertex
property data is suitable for locating in DRAM. In addition,
since runtime state data (such as the vertex state array) is
small and frequently accessed and updated, and its memory
is reallocated in each iteration, it should be also placed in
DRAM.

103520 VOLUME 7, 2019

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

We first obtain the size of available DRAM in the hybrid
memory system. According to the data type of vertex property
data and the size of input graph, we calculate the memory
size used by vertex property data and then determine where
it is placed. If it is smaller than available DRAM size, all
property data is placed in DRAM. Otherwise, the vertices of
the graph are sorted according to the degree of each vertex.
The property data of vertices with large degrees is placed in
DRAM, and the remaining data is placed in NVM.

3) ANALYSIS OF MEMORY ACCESS COSTS
We analyzed the proportion of accesses to the two kinds
of memories in conventional graph processing frameworks
and NGraph. To simplify the complexity of the analysis,
we ignore the effect of cache on memory accesses, and
assume that there are no isolated vertices in the graph, and
DRAMaccounts for a%of total capacity of hybrid memories.
Previous frameworks do not distinguish the type of data and
randomly place data in hybrid memory systems, so there
would be approximate a% of DRAM access. In hybrid mem-
ory systems, the value of a is usually small.
NGraph places graph property data and state data in

DRAM, which is usually applicable due to their small mem-
ory footprints. In the following, we discuss the memory
accesses of active and inactive vertices in each iteration,
respectively. As shown in Figure 4, for a active vertex v with
degree d , the processing thread first scans the state array
frontier (one time of DRAM access), and accesses the vertex
structure array to get the address of the edge array (one time of
NVMaccess), and then visits the edge structure array (d times
of NVM accesses) to get neighbor vertices’ ID. Meanwhile,
the processing thread obtains the property data of vertex v
from the data arrayDatacurr (one time of DRAM access), and
then updates the property data Datanext of neighbor vertices
(d times of DRAM accesses). Finally, it updates the status
array next (d times of DRAM accesses). We can find that
two-thirds of data accesses are located in DRAM for the
active vertex. For inactive vertices, the processing thread only
needs to visit the state array frontier once (one time of DRAM
access).

From above analysis, we can find that our data placement
strategy can guarantee more than 66.7% of memory refer-
ences are located in relatively small DRAM. Thememory ref-
erences distributed on DRAM are much greater than previous
graph processing frameworks in hybrid memory systems.

B. PARALLEL GRAPH PROCESSING
1) ANALYSIS OF PARALLEL GRAPH PROCESSING
Graph partitioning is widely used in distributed graph pro-
cessing systems andmulti-core systems. An intuitive partition
scheme is to evenly distribute vertices to each core. For exam-
ple, Ligra system uses CilkPlus to implement lightweight
multi-core parallel processing. In essential, each core pro-
cesses the same number of vertices. Because the degree of
every vertex is not uniform, the number of edges processed

by each core are usually not equal. As the computation com-
plexity of graph processing is usually linear to the number
of edges, this partition scheme usually causes load imbalance
among multiple processors.

In contrast, the vertex-cut scheme [2] in distributed graph
processing systems evenly partitions the edges, and processes
the partitioned sub-graph by each processor. This scheme
can achieve better CPU load balance. However, we find
that multiple cores often need to update the property data
of a vertex simultaneously during parallel graph processing.
Atomic update is a general approach to guarantee the concur-
rency control and to avoid data competition, which in turn
leads to a new load imbalance problem. On the one hand,
when a thread is updating a vertex property data, other threads
can’t update the same vertex property data until the thread
completes the processing of the data, causing idle waiting
of other processors. On the other hand, atomic update is
often very costly, because it locks the entire cache line in
which the property data is stored.When other processors need
to update other property data in the same cache line, they
also need to wait for the completing of the previous update
operation.

FIGURE 5. Graph partitioning and processing.

As shown in Figure 5, the edges of the graph in Figure 4 are
evenly partitioned into two sub-graphs (i.e., two partitions)
according to the source vertices. Thread 0 starts to process
the vertices in sub-graph 0 from vertex 0, and thread 1 starts
to process the vertices in sub-graph 1 from vertex 3. Each
thread is bound to a processor and all threads compute in
parallel. Thread 0 starts processing vertex 0, accesses the out-
edge list of vertex 0, and updates the property data of vertex 1,
2 and 4 according to the property data of vertex 0. At the
same time, thread 1 starts processing vertex 3, accesses the
out-edge list of vertex 3, and updates the property data of
vertex 1 and 4 according to the property data of vertex 3.
As shown in Figure 6, for atomic updating of property data of
vertex 1 concurrently by thread 0 and thread 1, the two threads
can only process the same vertex alternately, and vertex 4 is
updated in the same way by the two threads. In addition,
if multiple threads update the same or adjacent vertices simul-
taneously, the duplicated data in other cores’ private caches
should be invalidated to guarantee cache consistency. For
example, if vertex property data a and b are located in the
same cache line, updating the data a in a core would lead to
invalidating the same cache line in another core that would
update the data b. As a result, frequent cache invalidation also
causes serious performance degradation.

VOLUME 7, 2019 103521

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

FIGURE 6. Parallel processing flows of two threads.

Algorithm 1 Graph Partitioning by Target Vertices

procedure Partition(G,numOfCore)
average = m/numOfCore;
for each v ∈ V do

if |Ei| > average and i < numOfCore then
i++;

end if
Ei = Ei ∪ inedge(v);

end for
return Gi = (V ,Ei);

end procedure

FIGURE 7. Graph partitioned by target vertices.

2) GRAPH PARTITIONING
In order to avoid CPU stalling caused by data competition,
we partition the edges into different sub-graphs according to
their target vertices, as described in Algorithm 1. As shown
in Figure 7, the graph in Figure 4 is partitioned into two
partitions. 6 edges with target vertices {0, 1, 2} (for example,
V0 → V1, V0 → V2) are assigned to partition 0, and other
6 edges with target vertices {3, 4, 5} (for example, V0→ V4,
V1 → V5) are assigned to partition 1. Each thread sequen-
tially processes the vertices in a partition, and only updates
the neighbor vertices’ property data according to the edges
whose target vertices are in the same partition. This scheme
avoids updating the same vertex’s property data by multiple
threads, and can avoid the potential atomic updates due to
data contention.

When the edges of a vertex are partitioned into different
sub-graphs, each sub-graph contains replications of all ver-
tex’s structure data. Graph traversal must visit all vertices in
each sub-graph, increasing memory consumption and many
control messages. Fortunately, when graph is partitioned by
destination vertices, each sub-graph has many vertices with a
degree of zero [36]. We do not need to store these vertices
with a degree of zero in a sub-graph. Figure 8 shows the
percentage of vertices with zero degree when graphs are
partitioned into different number of sub-graphs. Inspired by
this observation, we only store the structure data of vertices
that have edges in each sub-graph. In this way, each core only
performs a portion of computations for partial vertices that

have edges in each sub-graph, and thus reduces the memory
consumption of vertices’ structure data and the number of
control messages.

FIGURE 8. The percentage of vertices with zero degree when partitioned
into different number of sub-graphs.

3) LOAD BALANCE
Since only the edges of active vertices should be processed,
it often cannot achieve good load balance by partitioning
edges evenly. We employ a work stealing scheme to further
improve the load balance among multiple cores.

We partition the data in each sub-graph into sub-blocks,
and each thread processes these sub-blocks for a sub-graph
from the beginning to the end. When a thread finishes pro-
cessing corresponding sub-graph, it checks whether there are
any other sub-graphs that have not been completely processed
yet. If so, the thread whose job has been finished will assist
to process the unfinished sub-graph from its last data block.
When all sub-graphs have been processed, the program can
begin the next iteration.

C. PROGRAMMING MODEL
Assume a static graph G = (V, E) is processed in NGraph,
where V and E represent the vertex set and the edge set,
respectively. The numbers of vertices and edges are |V | = n
and |E| = m, respectively. NGraph inherits Ligra’s pro-
gramming interfaces: edg-map() and ver-map(). Like Ligra,
NGraph uses Frontier to represent the subset of vertices.
• edg-map (G, Frontier, F, C): subvertex
For all edges whose source vertices are in the Frontier
and target vertices satisfy the condition C, edg-map
executes the user-defined function F, and returns a set
of vertices when the return value is true, i.e.,
Out = {u ∈ V | F(u, v) = true ∧ (u, v) ∈ E}.

• ver-map (G, Frontier, F): subvertex
For vertices in Frontier, ver-map executes the user-
defined function F, and returns a set of vertices when the
return value is true, i.e., Out = {u ∈ V | F(u) = true}.

Algorithm 2 describes the pseudo-code of PageRank algo-
rithm in NGraph. Let G represent the graph to be processed,
Datacurr and Datanext represent the graph property data,
and Frontier represent the active vertex set. The procedure
PR-edg-F updates the target vertices’ property values based
on the ranks of their source vertices. The procedure PR-ver-
F normalizes the rank value of vertex v, and judges whether

103522 VOLUME 7, 2019

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

the absolute difference between the new rank and the old rank
is greater than a given threshold. If so, v will be alive in next
round. The procedure PageRank repeatedly executes PR-edg-
F function and PR-ver-F function till the number of iterations
exceeds a given value or the convergence condition is met.

Algorithm 2 PageRank in NGraph
Datacurr = {1/n, . . . , 1/n};
Datanext = {0, . . . , 0};

procedure PR-edg-F(s,d)
writeAdd(&Datanext [d],Datacurr [s]/OutDegree(s));

end procedure

procedure PR-ver-F(v)
Datanext [v] = 0.85× Datanext [v]+ 0.15/n;
if Datanext [v]− Datacurr [v] > ε then

v is alive;
end if
Datacurr [v] = 0;

end procedure

procedure PageRank(G,maxite)
Frontier ← V ;
i = 0;
while i < maxite and Frontier 6= φ do

Frontier = edg-map(G,Frontier,PR-edg-
F, true) ;

Frontier = ver-map(G,Frontier,PR-ver-F);
Swap(Datacurr ,Datanext);
i++;

end while
end procedure

IV. OPTIMIZATIONS ON NGRAPH
We leverage two optimization techniques to further reduce
NVM access latency and improve the performance of
NGraph.

A. HUGEPAGE SUPPORTING
With the rapid growth of graph dataset and the correspond-
ingly large capacity of main memory provided by NVM,
the virtual-to-physical address translation has became a new
performance bottleneck of graph processing systems. When
more memory pages are used, there is a potential to cause
more TLB misses. In general, a TLB miss leads to three
additional memory accesses for page table walking, which
requires hundreds of CPU cycles to get the physical address
of a page. A high TLB miss rate often implies significant
performance degradation.

To mitigate the address translation overhead, an effective
approach is to use a larger size of memory page, such as huge
pages or super pages. The Linux OS has already supported
Direct Huge Pages (DHP) management with pre-allocation

and transparent hugepage (THP) management using dynamic
allocation. The former requires users to manually pre-
allocate huge pages, and allocate memory using mmap()
in program. This approach needs to change user’s program
codes. To simplify the programming and support legacy
applications, NGraph uses THP to support huge pages with-
out the modification of applications.

B. DATA PRE-FETCHING
Data pre-fetching is an effective way to reduce memory
access latency. A recent work [37] has shown that data pre-
fetching according to data structure, access patterns and reuse
distance can bring about 19%-102% performance improve-
ment for graph processing. We design a data pre-fetching
scheme that combines OS-supported hardware pre-fetching
with software-based pre-fetching to reduce memory access
latency in NGraph.

FIGURE 9. Graph data-aware software pre-fetching.

For the graph structure data in NVM, because it is often
read-only and sequentially accessed, the existing hardware
pre-fetcher is effective and efficient. However, for randomly
accessed graph property data, the proposed graph partition-
ing strategy transforms the data access pattern from inter-
core accesses to intra-core accesses. This avoids the cache
interference due to concurrency control and does not affect
the data pre-fetching, facilitating us to use software pre-
fetching to improve cache hit rate. First, in order to support
dynamic computation, we use a bitmap to record active ver-
tices. Note that pre-fetching the property data of neighbor
vertices for adjacent vertex may be useless, because it may
be not active. For example, in Figure 9, when the work thread
processes vertex 0, it is useless to pre-fetch the property
data of vertex 1’s neighbor vertices. Second, to pre-fetch the
property data directly for next active vertex, we need to get
next active vertex first and then pre-fetch the property data
of its neighbor vertices. Simple software pre-fetching usually
leads to high software overhead. To make a tradeoff between
the cost and benefit of data pre-fetching, we only pre-fetch the
vertex property data when a vertex’s degree is greater than
a given threshold d . As shown in Figure 9, when vertex 3
is processed, we pre-fetch the property data of its neighbor
vertices since its degree is larger than d . We study the impact
of different thresholds on application performance, and find
that the application performance is significantly improved
when d increases from 1 to 20, and becomes roughly stable

VOLUME 7, 2019 103523

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

TABLE 2. System configuration.

when d ranges from 21 to 100, and gradually decreases when
d becomes larger than 100. In our experiment, we empirically
set d as 20.

V. EVALUATION
Based on the graph processing framework Ligra, NGraph is
implemented in C++ codes using pthreads library. We use
the hardware simulator HME to build up a hybrid memory
system based on DRAM. Our experiments are conducted on
the emulated hybrid memory system. The detailed configura-
tion of the testbed is shown in Table 2. We set the available
DRAM on node 0 to be 10G at the booting time. For the
characteristics of NVM, we have referred to the previous
work [13].

A. WORKLOADS AND DATASETS
Four typical graph workloads are used to test the performance
of NGraph on different datasets:

PageRank: it is an iterative algorithm to rank web pages
in Google’s search engine. The web pages and the links are
modeled as graph’s vertices and edges. PageRank calculates
the ranks of vertices by each vertex updates the ranks of their
neighbor vertices along with the out-edge according to their
own ranks iteratively, till the specified number of iterations is
reached or the convergence condition is met.

SPMV: it is a general-purpose algorithm in scientific com-
puting, such as solving sparse linear equations and eigenval-
ues. SPMV multiplies a sparse matrix with a dense vector.
The sparse matrix can be stored in weighted graph format,
the values of the vectors can be stored in each vertex.

BFS: it is a graph traversal algorithm and a building blocks
for many graph algorithms. BFS starts from a root vertex,
it visits all the neighbor vertices of the root vertex first,
and then accesses its neighbor vertices iteratively till all the
vertices are accessed.

CC: it is an iterative algorithm that finds all connected sub-
graphs and the maximum connected sub-graph in a graph.
If vertex i and j are in different connected sub-graphs, and

TABLE 3. Synthetic and real-world graphs.

there is no path from i to j in the graph, the two vertices i and j
in each sub-graph are not reachable.

We adopt two synthetic graphs and two real-world graphs
as the input data, as shown in table 3.

• Rmat27 uses RMAT generator [38] provided by
Graph500 [39] to synthesize a graph of scale 27 with
134.2 million vertices and 2.14 billion edges.

• Random-local [32] is a synthetic random graph with
200 million vertices and 2 billion edges.

• Twitter is a graph of social network from the real world
with 14.7 million vertices and 1.47 billion edges.

• Friendster [40] is a social network re-launched as a
game website with 65.6 million vertices and 1.81 billion
edges.

B. SYSTEM PERFORMANCE
We measure the execution time of various algorithms under
different datasets in NGraph using 8 threads in hybrid mem-
ory, and compared the results with two state-of-the-art single-
machine graph computing frameworks—Ligra and Polymer.
For the fairness of comparison, the hugepage optimization
strategy and OS-supported hardware pre-fetcher are also
enabled for other frameworks.

TABLE 4. The application execution time (seconds) for different datasets
and graph processing frameworks.

FIGURE 10. The execution time of algorithms in NGraph, all relative to
Polymer (NGraph/Polymer).

103524 VOLUME 7, 2019

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

Table 4 shows the execution time of different algo-
rithms using the four dataset in different graph process-
ing framework. To make the comparison more concise,
Figure 10 shows the normalized execution time of algo-
rithms in NGraph compared with Polymer. We can find
that NGraph outperforms other two frameworks in all
cases. NGraph can improve the performance of PageRank
algorithm by up to 48.28% compared to Polymer. The
geometry mean of performance improvement for the four
algorithms are 13.34%, 22.05%, 33.03% and 45.79%, respec-
tively. The traversal algorithms such as CC andBFS show less
performance improvements, because relatively less mem-
ory accesses make them to be less sensitive to the hybrid
memories.

The significant performance improvement of NGraph is
mainly attributed to our nvm-aware data placement and
graph parallel optimization schemes. Compared with Ligra,
NGraph partitions a graph by destination vertices and exploits
a task decomposition scheme to balance the load among
multiple cores, and thus avoid data contention and CPU idle
waiting. Because Polymer partitions edges evenly without
considering the potential data contention and load balance
within a node, it shows the worst performance among the
three frameworks in most cases.

FIGURE 11. The impact of NGraph’s data placement and parallel
optimization techniques on performance improvement of applications.

In order to quantify the effects of NGraph’s twomajor opti-
mization techniques on performance improvement of graph
processing in hybrid memory systems, wemeasure the execu-
tion time of NGraph with only NVM-aware data placement,
and both with NVM-aware data placement and parallel opti-
mization strategies (including graph partitioning and work
stealing schemes). The baseline is Ligra without any opti-
mization. All experiments use the twitter dataset. Figure 11
shows the normalized execution time. Our NVM-aware data
placement scheme can improve the performance of four
applications by 6.9% to 14.5%, and our parallel optimization
strategies can further improve applications performance by
4.1% to 15.8%. For memory-intensive applications such as
PageRank, our optimization techniques are more effective for
performance improvement because it introduces much more
memory accesses during the relatively longer execution time.

To verify whether NGraph can mitigate the side effect of
high NVM access latency on the application performance,

FIGURE 12. The execution time of applications running in a hybrid
memory system and a DRAM-only memory.

we compare the execution time of NGraph running on a
hybrid memory system and a DRAM-only system. Figure 12
shows the normalized experimental results, all relative to
the DRAM-only system. We can find that NGraph results
in 23.8%, 23.2%, 16.3% and 20.4% more execution time
on average for BFS, CC, PageRank and SPMV, respectively.
However, compared with Ligra running in the same hybrid
memory system, NGraph can still improve application per-
formance by 11.67%, 17.95%, 32.78% and 22.66%, respec-
tively, as shown in Table 4. Thus, NGraph can significantly
reduce the capacity of DRAM for large graph processing,
while achieving DRAM-like performance (within 84%) by
efficiently using a small size of DRAM.

C. BENEFIT OF USING HUGEPAGES
To demonstrate the benefit of using huge pages for large
graph processing, we evaluate the execution time of NGraph
with and without hugepage (2 MB) support for the twitter
dataset, and also measure the impact of huge pages on TLB
miss rate.

FIGURE 13. The normalized execution time using 2 MB and 4 KB memory
pages.

As shown in Figure 13, NGraph can reduce application
execution time by up to 44.8% using 2MB hugepage com-
pared with 4KB pages. Also, huge pages can significantly
reduce TLBmisses. Table 5 shows that the TLBmiss rate can
be reduced by up to 63.38%. These results verify that hybrid
memory systems using huge pages can significantly improve

VOLUME 7, 2019 103525

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

FIGURE 14. The performance speedup with and without data pre-fetching
schemes.

TABLE 5. TLB miss rate of applications using 2 MB pages and 4 KB pages
for the twitter dataset.

the performance of processing graphs with large memory
footprints.

D. BENEFIT OF DATA PRE-FETCHING
To demonstrate the effectiveness of data pre-fetching,
we compare the execution time of NGraph without pre-
fetching, with only hardware pre-fetching, and with both
hardware pre-fetching and software pre-fetching. To further
explain the benefit of data pre-fetching, we also measure LLC
miss rates in different scenarios.

Figure 14 shows the performance speedup of different
applications due to different pre-fetching schemes compared
to the scenario without pre-fetching. Here, all experiments
use the twitter dataset, and hugepage support and structure-
aware data placement schemes are enabled. We can find
that NGraph with hardware pre-fetching can lead to 19.67%
to 28.94% performance improvement, and software pre-
fetching for property data can further improve application
performance by 3.24% to 8.74%. PageRank and SPMV ben-
efit more from the software pre-fetching than BFS since
they have more active vertices, which implies more mem-
ory accesses and larger room for performance improvement.
Table 6 shows that hardware pre-fetching and software pre-
fetching improve cache hit rate by up to 8.95% and 4.54%,
respectively, and together they can improve cache hit rate by
8.57% to 10.98%.

E. OVERHEAD
Compared with other graph processing frameworks, NGraph
mainly introduces two kinds of overheads: the additional time
cost for graph partitioning and higher memory consumption.
First, after loading the graph data intomemory, NGraph needs
to partition the graph by destination vertices and construct

TABLE 6. The LLC miss rates in different scenarios.

FIGURE 15. The proportion of graph partitioning time in the total
execution time for different algorithms running the twitter dataset.

different sub-graphs for each core. Second, NGraph has repli-
cations of partial vertex structure data in sub-graphs, and thus
increasing the memory consumption.

In order to analyze the time cost of graph partitioning,
we break the total execution time of algorithms down into
graph partitioning time, processing time and other time.
Figure 15 shows the proportions of graph partitioning time
for twitter dataset. We can find that graph partitioning only
consumes a small proportion of total execution time for algo-
rithms with a relatively long execution time (e.g., 12.35%
for PageRank). However, for algorithms with short execu-
tion time, graph partitioning accounts for a large proportion
(e.g. 48.01% for BFS). It should also be noted that once a
graph is partitioned, the data can be used to run all algo-
rithms, and thus can significantly reduce the execution time
of these algorithms.

TABLE 7. The memory usage of NGraph (GB) and other systems.

Table 7 compares the memory usage of NGraph and other
systems when different graph datasets are partitiond into
8 sub-graphs. NGraph increases the memory consumption by
about 16.5% to 47.1%. The increased memory consumption
are mainly attributed to the replication of the vertex structure
data. However, we can put the read-only structure data in
large-capacity NVM, which is much cheaper than DRAM.
We think the extra memory consumption is acceptable and
beneficial for high-performance graph processing. In the
future, we will explore compressed graph data structures to
mitigate memory consumption of graph processing.

VI. RELATED WORK
There have been a few studies on graph processing in
hybrid memory systems recently. The work presented by

103526 VOLUME 7, 2019

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

Dulloor et al. [13] appears to be the first performance study
on graph processing in NVM-based main memory. They
use the hardware-based NVM emulator HMEP to analyze
how different NVM bandwidth and latency settings affect
the performance of different graph frameworks, and find that
NVM causes performance degradation by 1.5 to 4 times
compared to the DRAM-only system. Through a simple
placement of data in the Graphmat framework, the per-
formance approximates the DRAM-only system (only 20%
slowdown). It also demonstrates that NVM can be used as
main memory for graph processing when combining it with
a small size of DRAM to build a hybrid memory system.
Similar to [13], the work [14] evaluates the performance of
graph processing system for different types of graph datasets
in two cases: 1) NVM replaces DRAM as main memory and
2) DRAM is used as a buffer of NVM. Dulloor et al. propose
X-mem [41], a data placement strategy for hybrid mem-
ory systems. It obtains the memory access characteristics of
programs through offline analyzing, and then dynamically
places and migrates data at runtime. They evaluate X-mem
with a graph computing framework and demonstrate its effec-
tiveness and high performance. Although these studies have
presented the preliminary performance evaluation of graph
processing in hybrid memory systems composed by DRAM
and NVM, they have not yet explored the graph data access
patterns and NVM features to make better data placement on
DRAM and NVM.

HyVE [15] places vertices in DRAM and edges in NVM,
and uses an on-chip SRAM as a buffer of vertex data to
reduce the delay of random accessing to vertices. It adopts an
interval-block based data partitioning [42] to improve data
access locality. This work focuses on reducing the energy
consumption of graph computing system rather than the
performance. Our data placement strategy is inspired by
HyVE [15], however, we further partition the vertex data into
vertex property data and vertex structure data, and thus further
reduce the consumption of DRAM and fully exploit the large
capacity of NVM. Moreover, we also make some optimiza-
tions for graph processing in hybrid memory systems, such
as software data pre-fetching and hugepage supporting.

Ligra [32] is a simple single-machine parallel graph com-
puting framework in a shared-memory model. It provides two
programming interfaces named EdgeMap and VertexMap,
and a sparse and dense representation of vertex sets, as well as
both push and pull execution modes. Under this framework,
graph processing algorithms can be easily implemented. Our
work is based on Ligra, and further enables several parallel
optimizations for hybrid memory systems.

Polymer [43] is a NUMA-aware single-machine
in-memory graph computing system. According to the fact
that the bandwidth of sequential remote memory access is
higher than that of local and remote random access, they
proposed a differential data placement strategy to reduce
remote memory accesses. Moreover, by using vertex repli-
cations, the remote random access is converted into a remote
sequential access. We use a similar scheme to partition the

graph, however, our goal is to avoid processor stalling caused
by data contention and atomic operations.

Basak et al. [37] find that different types of data (such as
graph structure data and property data) have different reuse
distances. Traditional hardware pre-fetchers often ignore
the types of graph data. Therefore, they design a graph
data-aware hardware pre-fetcher called DROPLET, which
physically decouples the pre-fetching of the graph property
data and the structure data according to the reuse distance.
Another work [44] finds that graph data structure and access
patterns can be predicted in advance, and proposes a data-
aware hardware pre-fetcher for graph processing. To avoid
hardware modifications, we propose a data pre-fetching
scheme combining the existing OS-supported hardware pre-
fetching and data-aware software pre-fetching to reduce the
memory access latency.

In distributed graph computing systems and multi-core
based parallel graph processing systems, graphs should be
partitioned into multiple sub-graphs. GraphGrind [36] ana-
lyzes the impact of graph partitioning on graph processing
performance, and finds that graph partitioning causes extra
graph traversal cost and load imbalance. By exploiting the
compressed representation of graph data and adapting dif-
ferent graph partitioning methods to different graph appli-
cations, they can greatly improve the performance of graph
processing. Our work is orthogonal to this proposal, we only
store the vertices whose degree is not zero in sub-graphs to
reduce the number of control instructions, and achieve better
load balance through a work stealing strategy.

VII. CONCLUSION
This paper proposes NGraph, a parallel graph processing
framework for hybrid memory systems composed of DRAM
and NVM. NGraph improves the performance of graph pro-
cessing by optimized hybrid memory management and CPU
scheduling. First, NGraph reduces random data accesses and
frequent updates on NVM based on different access pat-
terns of graph data structures and NVM features. Second,
NGraph avoids data competition among multi-core and elim-
inates atomic operations through graph partitioning and task
decomposition, and thus reduce the time of CPU stalling.
In addition, a CPU load balance scheme has also been pro-
posed to minimize the time of parallel graph processing on
multi-cores. Moreover, NGraph supports huge pages and data
structure-aware software pre-fetching to further hide memory
access latency. The experimental evaluation shows NGraph
can achieve significant performance improvements over other
state-of-the-art frameworks in hybrid memory systems. In the
future, we will explore the proposed schemes in NGraph for
distributed graph processing frameworks, and study dynamic
placement and migration of graph data in a distributed shared
hybrid memory pool.

REFERENCES
[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA,
Jun. 2010, pp. 135–146.

VOLUME 7, 2019 103527

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘Powergraph:
Distributed graph-parallel computation on natural graphs,’’ in Proc. 10th
USENIX Symp. Operating Syst. Design Implement., Hollywood, CA, USA,
2012, pp. 17–30.

[3] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, ‘‘Distributed GraphLab: A framework for machine
learning and data mining in the cloud,’’ VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

[4] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin,
and I. Stoica, ‘‘Graphx: Unifying data-parallel and graph-parallel
analytics,’’ 2014, arXiv:1402.2394. [Online]. Available: https://
arxiv.org/abs/1402.2394

[5] A. Kyrola, G. Blelloch, and C. Guestrin, ‘‘Graphchi: Large-scale graph
computation on just a PC,’’ in Proc. 10th USENIX Symp. Operating Syst.
Design Implement., Hollywood, CA, USA, 2012, pp. 31–46.

[6] A. Roy, I. Mihailovic, andW. Zwaenepoel, ‘‘X-stream: Edge-centric graph
processing using streaming partitions,’’ in Proc. 24th ACM Symp. Operat-
ing Syst. Princ., New York, NY, USA, Nov. 2013, pp. 472–488.

[7] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and C. He, ‘‘VENUS: Vertex-
centric streamlined graph computation on a single PC,’’ in Proc. IEEE 31st
Int. Conf. Data Eng., Seoul, South Korea, Apr. 2015, pp. 1131–1142.

[8] H. Jin, P. Yao, and X. Liao, ‘‘Towards dataflow based graph processing,’’
Sci. China Inf. Sci., vol. 60, no. 12, Nov. 2017, Art. no. 126102.

[9] D. Niu, Q. He, T. Cai, B. Chen, Y. Zhan, and J. Liang, ‘‘XPMFS:
A new NVM file system for vehicle big data,’’ IEEE Access, vol. 6,
pp. 34863–34873, 2018.

[10] F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson,M.Magistretti,
T.Marangon, A. Pirovano, R. Bez, andG. Atwood, ‘‘A 90 nm phase change
memory technology for stand-alone non-volatile memory applications,’’ in
Proc. Symp. VLSI Technol., Dig. Tech. Papers., Jun. 2006, pp. 122–123.

[11] D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, and X. Zhang, ‘‘Resistive random
access memory and its applications in storage and nonvolatile logic,’’
J. Semicond., vol. 38, no. 7, Jul. 2017, Art. no. 071002.

[12] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, ‘‘Evaluating phase
change memory for enterprise storage systems: A study of caching and
tiering approaches,’’ in Proc. 12th USENIX Conf. File Storage Technol.,
Santa Clara, CA, USA, 2014, pp. 33–45.

[13] J. Malicevic, S. Dulloor, N. Sundaram, N. Satish, J. Jackson, and
W. Zwaenepoel, ‘‘Exploiting NVM in large-scale graph analytics,’’ in
Proc. 3rd Workshop Interact. NVM/FLASH Operating Syst. Workloads,
New York, NY, USA, Oct. 2015, pp. 2:1–2:9.

[14] M. Shantharam, K. Iwabuchi, P. Cicotti, L. Carrington, M. Gokhale, and
R. Pearce, ‘‘Performance evaluation of scale-free graph algorithms in low
latency non-volatile memory,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), Jun. 2017, pp. 1021–1028.

[15] T. Huang, G. Dai, Y. Wang, and H. Yang, ‘‘HyVE: Hybrid vertex-edge
memory hierarchy for energy-efficient graph processing,’’ in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 973–978.

[16] H. Guo, L. Huang, Y. Lü, J. Ma, C. Qain, S. Ma, and Z. Wang, ‘‘Accel-
erating BFS via data structure-aware prefetching on GPU,’’ IEEE Access,
vol. 6, pp. 60234–60248, 2018.

[17] X. Wang, T. Luo, J. Hu, Z. Wang, and Y. Luo, ‘‘Evaluating the impacts
of hugepage on virtual machines,’’ Sci. China Inf. Sci., vol. 60, no. 1,
Nov. 2016, Art. no. 012103.

[18] B. N. Engel, J. Akerman, B. Butcher, R. W. Dave, M. DeHerrera,
M. Durlam, G. Grynkewich, J. Janesky, S. V. Pietambaram, N. D. Rizzo,
and J. M. Slaughter, ‘‘A 4-Mb toggle MRAM based on a novel bit and
switching method,’’ IEEE Trans. Magn., vol. 41, no. 1, pp. 132–136,
Jan. 2005.

[19] D.-S. Yoon, J. S. Roha, S.-M. Lee, and H. K. Baik, ‘‘Alteration for a
diffusion barrier design concept in future high-density dynamic and ferro-
electric random access memory devices,’’ Progr. Mater. Sci., vol. 48, no. 4,
pp. 275–371, 2003.

[20] C. J. Lin, S. H. Kang,Y. J. Wang, K. Lee, X. Zhu, W. C. Chen, X. Li,
W. N. Hsu,Y. C. Kao, M. T. Liu, and Y. Lin, ‘‘45 nm low power CMOS
logic compatible embedded STT MRAM utilizing a reverse-connection
1T/1MTJ cell,’’ in IEDM Tech. Dig., Baltimore, MD, USA, Dec. 2009,
pp. 1–4. doi: 10.1109/IEDM.2009.5424368.

[21] K.-J. Lee, B. H. Cho, W. Y. Cho, S. Kang, B. G. Choi, H. R. Oh, C. S. Lee,
H. J. Kim, J. M. Park, Q. Wang, and M. H. Park, ‘‘A 90 nm 1.8 v 512 mb
diode-switch pram with 266 mb/s read throughput,’’ IEEE J. Solid-State
Circuits, vol. 28, no. 1, pp. 150–162, Jan. 2008.

[22] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, ‘‘Phase change memory
architecture and the quest for scalability,’’ Commun. ACM, vol. 53, no. 7,
pp. 99–106, Jul. 2010.

[23] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R. Guo, ‘‘Hard-
ware/software cooperative caching for hybrid dram/nvmmemory architec-
tures,’’ in Proc. Int. Conf. Supercomput., New York, NY, USA, Jun. 2017,
pp. 26:1–26:10.

[24] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor, and J. Zhao, ‘‘Basic performance
measurements of the intel optane DC persistent memory module,’’ 2019,
arXiv:1903.05714. [Online]. Available: https://arxiv.org/abs/1903.05714

[25] D. Sanchez and C. Kozyrakis, ‘‘ZSim: Fast and accurate microarchitectural
simulation of thousand-core systems,’’ in Proc. 40th Annu. Int. Symp.
Comput. Archit., New York, NY, USA, Jun. 2013, pp. 475–486.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen, ‘‘The gem5
simulator,’’ ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
May 2011.

[27] A. Patel, F. Afram, and K. Ghose, ‘‘Marss-x86: A qemu-based micro-
architectural and systems simulator for x86multicore processors,’’ in Proc.
1st Int. Qemu Users’ Forum, Mar. 2011, pp. 29–30.

[28] M. T. Yourst, ‘‘PTLsim: A cycle accurate full system x86–64 microarchi-
tectural simulator,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
San Jose, CA, USA, Apr. 2007, pp. 23–34.

[29] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, ‘‘System software for persistent memory,’’
in Proc. 9th Eur. Conf. Comput. Syst., New York, NY, USA, Apr. 2014,
pp. 15:1–15:15.

[30] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, ‘‘Quartz: A
lightweight performance emulator for persistent memory software,’’ in
Proc. 16th Annu. Middleware Conf., New York, NY, USA, Nov. 2015,
pp. 37–49.

[31] Z. Duan, H. Liu, X. Liao, and H. Jin, ‘‘HME: A lightweight emulator for
hybrid memory,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1375–1380.

[32] J. Shun and G. E. Blelloch, ‘‘Ligra: A lightweight graph processing frame-
work for shared memory,’’ in Proc. 18th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., New York, NY, USA, Feb. 2013, pp. 135–146.

[33] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is twitter, a social network
or a news media?’’ in Proc. 19th Int. Conf. World Wide Web, New York,
NY, USA, Apr. 2010, pp. 591–600.

[34] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai, ‘‘Seraph: An efficient, low-
cost system for concurrent graph processing,’’ in Proc. 23rd Int. Symp.
High-Perform. Parallel Distrib. Comput., New York, NY, USA, Jun. 2014,
pp. 227–238.

[35] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, and H. Liu, ‘‘Cgraph:
A correlations-aware approach for efficient concurrent iterative graph
processing,’’ inProc. USENIX Annu. Tech. Conf., Boston,MA,USA, 2018,
pp. 441–452.

[36] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, ‘‘GraphGrind:
Addressing load imbalance of graph partitioning,’’ in Proc. Int. Conf.
Supercomput., New York, NY, USA, Jun. 2017, pp. 16:1–16:10.

[37] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and Y. Xie,
‘‘Analysis and optimization of the memory hierarchy for graph processing
workloads,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
Feb. 2019, pp. 373–386.

[38] D. Chakrabarti, Y. Zhan, and C. Faloutsos, ‘‘R-MAT: A recursive model for
graph mining,’’ in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 442–446.

[39] Graph500. Accessed: Nov. 2010. [Online]. Available: http://www.
graph500.org

[40] SNAP. Accessed: Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data/index.html

[41] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, ‘‘Data tiering in heterogeneous memory sys-
tems,’’ in Proc. 11th Eur. Conf. Comput. Syst., New York, NY, USA,
Apr. 2016, pp. 15:1–15:16.

[42] X. Zhu, W. Han, and W. Chen, ‘‘Gridgraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning,’’ in Proc.
USENIX Annu. Tech. Conf., Santa Clara, CA, USA, 2015, pp. 375–386.

[43] K. Zhang, R. Chen, and H. Chen, ‘‘Numa-aware graph-structured analyt-
ics,’’ SIGPLAN Not., vol. 50, no. 8, pp. 183–193, Jan. 2015.

[44] S. Ainsworth and T. M. Jones, ‘‘Graph prefetching using data structure
knowledge,’’ in Proc. Int. Conf. Supercomput., New York, NY, USA,
Jun. 2016, pp. 39:1–39:11.

103528 VOLUME 7, 2019

http://dx.doi.org/10.1109/IEDM.2009.5424368

W. Liu et al.: NGraph: Parallel Graph Processing in Hybrid Memory Systems

WEI LIU received the B.S. degree in computer sci-
ence and technology from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 2014, where he is currently pursuing the
Ph.D. degree in computer science and technology.
His research interests include in-memory comput-
ing and graph processing.

HAIKUN LIU received the Ph.D. degree from the
Huazhong University of Science and Technology
(HUST), China, where he is currently an Associate
Professor with the School of Computer Science
and Technology. His current research interests
include in-memory computing, virtualization tech-
nologies, cloud computing, and distributed sys-
tems. He was a recipient of the Outstanding
Doctoral Dissertation Award in Hubei, China.

XIAOFEI LIAO received the Ph.D. degree in com-
puter science and engineering from the Huazhong
University of Science and Technology (HUST),
China, in 2005, where he is currently a Professor
with the School of Computer Science and Technol-
ogy. His research interests include system virtual-
ization, system software, and cloud computing.

HAI JIN received the Ph.D. degree in computer
engineering from the Huazhong University of Sci-
ence and Technology (HUST), China, in 1994,
where he is currently a Cheung Kung Scholars
Chair Professor of computer science and engineer-
ing. In 1996, he received the German Academic
Exchange Service Fellowship to visit the Technical
University of Chemnitz, Germany. Hewaswith the
University of Hong Kong, from 1998 to 2000, and
a Visiting Scholar with the University of Southern

California, from 1999 to 2000. He has coauthored 15 books and published
more than 600 research papers. His research interests include computer archi-
tecture, virtualization technology, cluster computing and cloud computing,
peer-to-peer computing, network storage, and network security. He is a mem-
ber of the ACM. He received the Excellent Youth Award from the National
Science Foundation of China, in 2001. He is the Chief Scientist of ChinaGrid,
the largest grid computing project in China, and National 973 Basic Research
Program Project of Virtualization Technology of Computing System, and
Cloud Security.

YU ZHANG received the Ph.D. degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), in 2016, where
he is currently a Postdoctoral Researcher with
the School of Computer Science and Technology.
His research interests include big data processing,
cloud computing, and distributed systems. His cur-
rent topic mainly focuses on application-driven big
data processing and optimizations.

VOLUME 7, 2019 103529

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	NVM TECHNOLOGIES
	OPPORTUNITIES AND CHALLENGES OF GRAPH PROCESSING IN HYBRID MEMORY SYSTEMS

	DESIGN AND IMPLEMENTATION
	GRAPH DATA STRUCTURE AND NVM-AWARE DATA PLACEMENT
	IN-MEMORY GRAPH DATA STRUCTURE
	GRAPH DATA ACCESS PATTERN AND NVM-AWARE DATA PLACEMENT
	ANALYSIS OF MEMORY ACCESS COSTS

	PARALLEL GRAPH PROCESSING
	ANALYSIS OF PARALLEL GRAPH PROCESSING
	GRAPH PARTITIONING
	LOAD BALANCE

	PROGRAMMING MODEL

	OPTIMIZATIONS ON NGRAPH
	HUGEPAGE SUPPORTING
	DATA PRE-FETCHING

	EVALUATION
	WORKLOADS AND DATASETS
	SYSTEM PERFORMANCE
	BENEFIT OF USING HUGEPAGES
	BENEFIT OF DATA PRE-FETCHING
	OVERHEAD

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	WEI LIU
	HAIKUN LIU
	XIAOFEI LIAO
	HAI JIN
	YU ZHANG

