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ABSTRACT Recommender systems provide an important tool for users to find interested items from
the massive amount of user-generated contents. As user interests often change over time and contents
become available in a streaming fashion, it is highly desirable to support real-time recommendation that
can adapt to changes in user interests and contents. If we represent both user interests and items by
high-dimensional points in the same vector space, we can recommend to the user the k items that are
the nearest neighbors (kNN) of the user. The problem of real-time recommendation, thus, translates to
computing the kNNs based on the most recent items when the user interests change. As such, the main
issue we tackle in this paper is to efficiently process high-dimensional kNN queries over a sliding window
on data streams. In particular, we are interested in developing a scalable distributed solution to be able to
handle the ever-increasing number of users and volume of data. We propose a new index structure called
the dynamic bounded rings index (DBRI) to index the data points in data streams. The basic idea is to first
find a set of pivots and assign all points to their nearest pivot to form subsets and then partition each subset
into finer-grained bounded rings that can be dynamically adjusted as points change. The design of DBRI
lends itself to easy adoption in a distributed setting. We further present the distributed high-dimensional
kNN query algorithm (DHDKNN) based on DBRI, aiming at reducing both the communication and the
computational cost of query processing. The experiments demonstrate that our algorithm scales well and
significantly outperforms the existing methods.

INDEX TERMS Real-time recommendation, data streams, k nearest neighbor, distributed processing.

I. INTRODUCTION
As user-generated contents are experiencing an explosive
rate of growth, recommender systems offer users a great
way to access information of their particular interest out
of the vast volume of data. For social applications where
user interests change rapidly over time and contents become
available as continuous streams, traditional recommender
systems no longer suffice, because most traditional recom-
mender systems assume that the user interests are stable and
operate in an offline fashion. It is thus highly desirable to
develop real-time recommendation methods that are capable
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of updating the recommendations online accounting for the
most recent changes in user interests and data items.

To provide effective real-time recommendation, we focus
on a popular approach to recommender systems –
content-based filtering, which is based on a characterizing
description/representation of the item and a profile of the
user interests [1], [2]. In particular, items (such as tweets
and images) are represented by high-dimensional points in
vector space (a.k.a. feature vectors) obtained using one of
the many methods available, such as tf-idf computation or
item embeddings [3], [4]. Users’ interests (as reflected by
what the users have posted or read recently, for example) are
also transformed into points in the same space. With a given
distance metric, we recommend to the user those items whose
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corresponding points are the k nearest neighbors (kNN) of the
point representing that user.

The main technical challenge in supporting such a
real-time recommendation scheme lies in the efficient com-
putation of the new kNNs when the user profiles are updated
and/or when new data items become available. When a user’s
interest changes (e.g., the user posts a new tweet, or the user
comments on an images), its point representation is updated
correspondingly and its kNNs may have to be recomputed
as well. Since items are generated rapidly in a streaming
fashion (with new items becoming available and old items
expire), the problem of updating the recommendation can be
cast as one of efficiently processing the kNNqueries over data
streams.

In the presence of large volume of items and users, the com-
putational power required often exceeds the capacity of a
single server. We therefore aim to find a scalable solution in a
distributed setting. We assume that the solution would run on
a cluster that has a master-slave configuration consisting of a
master andmultiple slaves, which is a general model followed
by many existing systems. To ensure fast processing, we also
assume that all data of interest are stored in main memory,
which is a reasonable assumption in distributed clusters.

While there exist a few notable works on distributed
high-dimensional kNN processing [5]–[17], they cannot be
trivially adapted to our setting. Some [6], [10] directly dis-
tribute all the points to different nodes and construct a local
index at each node to accelerate the query processing. How-
ever, as the queries have to be sent to all nodes for kNN
search, the communication cost is large, especially when the
queries are consecutively submitted at all snapshots. Other
works try to build a global index (usually a tree-based-
structure [11], [12]) in the master node to avoid the kNN
search on all partitions. These methods either incur an unpre-
dictable number of iterations to find a final search region,
or suffer from the bottleneck in the master node due to high
maintenance cost, especially on data streams. Besides, there
are some approximate high-dimensional kNN query methods
such as locality sensitive hashing (LSH) [15], [17] which can
be implemented in a distributed environment. However, they
are mostly designed for batch processing on a disk-resident
dataset, and it is non-trivial for them to deal with real-time
applications. In this paper, we only focus on providing exact
kNN results.

To address the challenges, we propose a new distributed
index called the Dynamic Bounded Rings Index (DBRI).
DBRI partitions the data points into bounded rings surround-
ing some selected pivots, and each data point can only fall
in one bounded ring determined based on its distances to
the pivots. We fix the maximum and minimum capacity of
each ring, and use two dynamic boundaries (i.e., the upper
bound and the lower bound) to control the number of points
in each ring. DBRI suits the distributed environment well as
individual rings can be allocated to different nodes, and the
allocation can be adjusted over time in response to changing
data distributions. As the number of points in each ring is

always within a threshold, load balancing is achieved over
the distributed cluster.

Furthermore, we propose the distributed high-dimensional
kNN query processing algorithm (DHDKNN) based on
DBRI. DHDKNN first searches for several candidate
bounded rings to set the primary distance to its k-th nearest
neighbor. Then, it uses this distance to determine the search
region and to calculate the exact kNN results by only search-
ing the intersected bounded rings. In this way, DHDKNN
involves two iterations in the kNN processing, which leads to
less communication cost and predictable performance com-
pared with existing methods.

We implement DBRI and DHDKNN on top of Apache
Storm, an open source distributed platform for stream pro-
cessing. Extensive experiments are conducted to evaluate
the performance of our methods. In summary, we make the
following contributions.

1) We propose a framework of content-based real-time
recommendation based on kNN query processing on
data streams.We propose a new distributed index called
the Dynamic Bounded Rings Index (DBRI) to support
query processing.

2) We propose an efficient distributed kNN query algo-
rithm (DHDKNN) based on DBRI for the process-
ing. DHDKNN processes the kNN query in only two
iterations and thus has less communication cost and
predictable performance in a distributed setting.

3) We implement DBRI and DHDKNN on top of Apache
Storm and conduct extensive experiments on real
datasets to demonstrate the superiority of our methods
over baseline methods.

Roadmap: The remainder of the paper is organized as
follows. In Section II we present the related work. Section III
presents the overview, and Section IV describes the DBRI
index. Section V presents the DHDKNN algorithm for kNN
query processing. In Section VI we present the experimental
results, and Section VII concludes the paper.

II. RELATED WORK
A. RECOMMENDER SYSTEMS
Recommender systems have been widely studied in the
literature. Content-based filtering and collaborative filter-
ing (CF) are the two leading recommendation paradigms.
As social websites become popular, real-time recommender
systems [18]–[20] attract much attention, with recommenda-
tions updated more frequently to match users’ instant need.
However, most of these methods use CF to produce recom-
mendation which often suffer severely from the ‘‘cold start’’
and data sparsity problem. Yang et al. [21] propose to use
continuous kNN join processing for real-time recommenda-
tion. They propose two tree-based structures to support fast
updates. However, their work cannot capture changes in user
interests and lacks the scalability to handle massive data.
Huang et al. [22] build a general framework for recommender
system on Storm named TencentRec for real-time recommen-
dation over streams, but focus mainly on CF. In contrast,
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we propose solutions for real-time recommendation using
content-based filtering, which in general suffers less from
the ‘‘cold start’’ problem as the user interests can be readily
derived in the situations we consider.

B. HIGH-DIMENSIONAL kNN QUERY PROCESSING
Many techniques have been proposed for high-dimensional
kNN query processing, such as data approximation
(e.g., VA-File [23]), one-dimensional transformation
(e.g., iDistance [24]), and dimensionality reduction (e.g.,
1-tree [25]). For approximate similarity queries, locality-
sensitive hashing (LSH) [15] is an efficient method which
can be considered as performing probabilistic dimensionality
reduction. Distributed high-dimensional kNN processing has
also been studied in the literature. Ali et al. [11] develop
the PN-tree as an efficient data structure for parallel and
distributed multidimensional indexing, which can be used for
the computation of kNN queries for certain distance metrics.
Zhang et al. [26] propose the Voronoi diagram-based parti-
tioning method for efficient kNN joins using MapReduce.
Choi and Lee [12] propose to build a tree on the master
node to manage the VA-files of local clusters for approxi-
mate high-dimensional kNN processing. Haghani et al. [17]
propose an method using LSH for distributed approximate
kNN search. However, these works either use complex hier-
archical structures or use batch-processing schemes on static
datasets which is very expensive to handle in the presence of
consecutive updates and queries on data streams.

KNN query processing algorithms on data streams are
mostly studied in a low-dimensional setting. Bohm et al. [27]
aim at efficient processing of exact kNN queries. They use
a grid structure to index queries and use skyline techniques
to monitor query results. Tao and Papadias [28] propose a
repetitive query processing approach with a TPR-tree for
answering kNN queries. Yu et al. [16] propose a dynamic
strip index for efficient distributed processing of kNN on
two-dimensional moving objects. However, these structures
can be outperformed by a simple sequential scan when the
dimensionality of data increases due to ‘‘the curse of dimen-
sionality", and thus cannot work well in our problem.

III. OVERVIEW
Most types of data in social applications (e.g., text, image,
video) can be represented by points in a vector space. For
example, images can be transformed to a 128-dimensional
point using the scale-invariant feature transform (SIFT)
algorithm [29]. Texts like tweets can also be represented
by fixed-length vectors using distributed representation
methods [3], [30]. Besides, a variety of approaches using a
user’s historical interested items to represent his/her inter-
est by high-dimensional points as well have been proposed
in the literature [31], [32]. Hence, an effective approach to
content-based filtering is to recommend to the user his/her
k nearest neighbors (kNN) items, given a distance metric.
Without loss of generality, we use the Euclidean distance to

measure the similarity between the user interest and the item,
but other distance metrics can also apply to our methods.

As a user’s interest often changes over time, we use a
sliding window on the user’s historical interested items to
monitor the interest changes. Only recent items in the window
are considered available to reflect a user’s current interest.
When an ‘‘old item’’ expires from or a new item appears in the
sliding window, a new point representing the user’s current
interest is submitted for kNN processing to acquire ‘‘fresh’’
recommendations. Considering that there are often millions
of users online in a social application, it is a big challenge to
efficiently process these kNN queries to make quick response
to the update of users’ interests.

Besides, considering that the user generated content are
of vast volume, our real-time recommendation system shall
have the scalability to handle the massive data. We therefore
choose to process the data in distributed clusters. The gen-
eral master-slave model which has been adopted by many
existing systems (e.g., Apache Storm [33], S4 [34]) is used to
represent the distributed cluster. We aim to design an efficient
distributed index and kNN query algorithm on data streams to
support our real-time recommendation scheme. As items are
generated rapidly in a streaming fashion in social applications
and users often only care about ‘‘fresh’’ data, we use another
sliding window W on the item stream to focus only on the
most recent items. Some notations used in this paper are given
in Table 1.

TABLE 1. Summary of notations.

IV. DYNAMIC BOUNDED RINGS INDEX
In this section, we propose a new index called the Dynamic
Bounded Rings Index (DBRI), a main-memory-based index
to support high-dimensional kNN processing on data streams
in distributed settings.

A. INDEX STRUCTURE OF DBRI
DBRI adopts the data partitioning technique and indexes the
bounded rings surrounding some selected pivots as shown
in Figure 1. The construction of DBRI is in two steps:
(1) First, we select a certain number of pivots which are set to
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FIGURE 1. The DBRI index structure.

the clustering centers (using k-means method, for example)
and assign each point in the dataset into the point set �i
of their nearest pivot Pi. (2) Then, we further partition each
point set�i into bounded rings based on the distance between
the point and its nearest pivot. In this way, each point in the
dataset is in a single bounded ring.

Each bounded ringBRij takes the form 〈i, idj, lbij, ubij,�ij〉,
where i is the unique number identifier of the corresponding
pivot and idj is the identifier of the ring, so that (i, idj) is the
unique key of a bounded ring. lbij and ubij are the minimum
and maximum distance between the boundary of the ring BRij
and the pivot Pi. �ij is an unordered list of points that fall
into the ring, that is, ∀px ∈ �ij, lbij ≤ dist(px ,Pi) < ubij;
meanwhile, ∀y 6= i, dist(px ,Pi) < dist(px ,Py). Notice that
although there may be certain overlapping between a pair of
rings, there are no intersections between point sets, i.e., each
point in the dataset must fall into a single bounded ring. So we
have

⋃
� = D and ∀j 6= y, �ij ∩�xy = φ.

Notice that after the point set for each pivot is chosen,
we do not partition the point set into rings of equal width.
Rather, we determine the boundaries totally based on the data
so that each ring typically has unequal width. The intuition is
to make each ring contain a similar number of points. Each
ring must contain at least λ and at most 3 points, that is,
λ ≤ |�| ≤ 3(λ� 3). We call λ and3 the minimum capac-
ity and maximum capacity. The rings are split and merged
to meet this condition when there are updates (insertion or
expiration). Typically, we have |�i| � λ. In the rare case that
there are less than λ points assigned to a pivot, we handle it as
a special case in query processing. For simplicity of analysis,
we assume without loss of generality that at any time for the
data stream we have |�i| � λ.

We use a table to store the index. Each row of the table
is a tuple 〈i,Listi(BR)〉, where Listi(BR) is an array list of
bounded rings for pivot Pi. Each list is sorted in an ascending
order according to the distance between the boundaries of the
elements and the pivot.

B. INDEX MAINTENANCE
When a new point p′ is inserted into the sliding window,
we first search for its nearest pivot Pi by computing the
distances to all pivots. Then, we add p′ to the bounded ring

BRij in Listi(BR) where p′ falls into its boundaries. Specially,
when the distance between p′ and Pi is larger than the max-
imum upper bound of Listi(BR), we add p′ to the outermost
bounded ring and update its upper bound to dist(p′,Pi). The
split operation is triggered if the number of points in the
bounded ring exceeds the maximum capacity after insertion.
To adapt to the data distribution, we follow the strategy to
split the bounded ring and generate two new bounded rings
that contain a similar number of points.

When a data point expires from the sliding window, mean-
ing that it is not ‘‘fresh’’ any more, we delete it from the index
and make it no longer searchable. The deletion on DBRI is
done after searching for the bounded ring that contains the
point p′. After the deletion on bounded ring BRij, we will
merge BRij with its adjacent ring in the same pivot bounded
ring list Listi(BR) if BRij contains less than λ points. If BRij
has an adjacent ring on both sides, it will be merged to the
one with less points.

C. COST ANALYSIS
LetND be the total number of points in the sliding windowW .
We use NP and Nr to denote the number of pivots and the
average number of points in each bounded ring. Clearly,
we have ND

3
≤ Nr ≤

ND
λ
. We have the following theorem

on the time complexity of the maintenance of DBRI.
Theorem 1: Let Costinsert , Costdelete, Costsplit , Costmerge

be the time cost of the insert, delete, split, and merge oper-
ations on maintaining DBRI. We have

Costinsert = b0NP + b1 log
ND
NPNr

Costdelete = b0NP + b1 log
ND
NPNr

+ b2Nr

Costsplit = b33+ b4 log
ND
NPNr

Costmerge = b5λ+ b6 log
ND
NPNr

for some constants b0, b1, b2, b3, b4, b5, b6.
Proof: From the definitions of ND, NP, and Nr , we can

evaluate the number of bounded rings for each pivot as ND
NPNr

.
In the insert operation, we first search for the nearest pivot
which costs time b0NP. Then, we need to find a bounded ring
of the pivot in its bounded ring list List(BR). As List(BR)
is an ordered list, we can find the bounded ring and append
the new point in its point list in b1 log

ND
NPNr

. Thus, the time
complexity of the insert operation is b0NP + b1 log

ND
NPNr

.
Similarly, in the deletion operation we also need to locate the
bounded ring that contains the point, whose time complexity
is b0NP + b1 log

ND
NPNr

. Then, we remove the point from the
unordered point list of the bounded ring. Thus, the cost of the
delete operation is b0NP + b1 log

ND
NPNr
+ b2Nr .

For the split operation on BRij, we need to find the median
of the distances between the pivot Pi and the points in �ij to
partition the �ij into two subsets, which can be done in time
b33. Then, the new bounded ring is inserted into the ordered
bounded ring list Listi(BR), which takes time b4 log

ND
NPNr

.

VOLUME 7, 2019 103201



M. Yang et al.: Scalable Distributed kNN Processing on Clustered Data Streams

Thus, the time cost of split operation is b33 + b4 log
ND
NPNr

.
In the merge operation, all points in the ‘‘old’’ bounded ring
(i.e., the one with less points than λ) are appended to the
point list of the new bounded ring, which takes time b5λ.
We also need to remove the ‘‘old’’ bounded ring from the
pivot’s bounded ring list, which takes time b6 log

ND
NPNr

. So we
get Costmerge = b5λ+ b6 log

ND
NPNr

.
Compared with existing high-dimensional kNN query

indexes (e.g., tree-based structures, iDistance, VA-file, etc.),
DBRI can be easily deployed in a distributed setting because
there is no overlapping between the data points set in each
bounded ring. Individual bounded rings can be maintained
at different nodes in a cluster and the kNN query processing
can be performed in parallel on certain bounded rings. As the
number of points in each ring is always within a threshold,
load balancing is achieved over the distributed cluster. The
index information of a bounded ring only consists of the
identifier, the upper bound and the lower bound. The data
points in each bounded ring are stored in an unordered list
in different slave nodes. Thus, the overhead in storage and
maintenance in main memory on different nodes is small.
Furthermore, since each bounded ring has a minimum occu-
pancy of data points, it is possible to directly determine the
bounded rings that can contain at least k neighbors for a given
query, without invoking excessive iterations. It will make the
distributed kNN processing highly efficient, as shown in the
next section.

V. DHDKNN ALGORITHM FOR DISTRIBUTED kNN
PROCESSING ON DBRI
In this section, we propose a distributed high-dimensional
kNN algorithm (DHDKNN) on DBRI for efficient query
processing.

A. DHDKNN ALGORITHM
DHDKNN follows a filter-and-refine scheme. For a given
query q, we first find a candidate bounded ring set so that
we can find at least k neighbors of q. Then, we search for the
k nearest neighbors on the candidate set and the distance to
the k-th nearest neighbor found so far is called cdknn. Using
cdknn as a reference distance, we continue to identify the
bounded rings that are guaranteed to contain the final kNNs
points. Final kNN results are computed from these bounded
rings. Now, we introduce the details of DHDKNN algorithm.
Without loss of generality, we assume that the number of data
points in every bounded ring is larger than λ.

1) CALCULATING CANDIDATE BOUNDED RINGS
The procedure is to calculate, in two steps, a set of candi-
date bounded rings that are guaranteed to contain at least k
neighbors of a given query q. The pseudocode is shown in
Algorithm 1.

• Step 1:We first determine the number of bounded rings
needed to calculate a candidate set. Basically, we sup-
pose that β (β � λ) points that are nearest to q are

Algorithm 1 CCBR Algorithm
Require: query q, pivots P(P1, · · · ,PNP ), DBRI index, α
Ensure: candidate bounded rings set CBR

1: initial an upgrading ordered queue UOR − List with
|UOR− List| = α.

2: for each pivot Pi do
3: calculate dist(q,Pi).
4: get the last bounded ring BRiL in Listi(BR).
5: if dist(q,Pi) ≥ ubiL then
6: add BRiL into UOR− List .
7: else
8: find the bounded ring BRiC that contains q from

Listi(BR).
9: add BRiC into CBR.
10: get the adjacent bounded rings BRC−1 and BRC+1
11: calculate dist(q,BRC−1) and dist(q,BRC+1)
12: add BRC−1 and BRC+1 into UOR− List .
13: end if
14: end for
15: while |CBR

| < α do
16: add the first bounded ring BRxF in UOR − List into

CBR and delete it from UOR− List .
17: if there exist BRx(F−1) and BRx(F+1) in DBRI then
18: if lbxF > dist(q,Px) then
19: add BRx(F+1) into UOR− List
20: else if ubxF < dist(q,Px) then
21: add BRx(F−1) into UOR− List .
22: end if
23: end if
24: end while
25: return CBR

chosen from each selected bounded ring. We need to
choose the number of bounded rings to be α such that
α ∗ β ≥ k . In this way, we can get at least k neighbors
from these bounded rings. These k neighbors may not
be the final results but we can use these neighbors to
determine a search region that are guaranteed to contain
the final results. Notice that it does not have to include
all points in a bounded ring as we can already guarantee
that we have found k neighbors of q by picking only β
points from each bounded ring.

• Step 2: We then identify the candidate set of bounded
rings CBR which are the nearest bounded rings to the
query q. Firstly, we compute the distance of q to all
the pivots. Suppose that the radius of the pivot sphere
is MaxRadius (i.e., the distance between Pi and the
upper bound of the last bounded ring in Listi(BR)).
If dist(q,Pi) ≤ MaxRadiusi, indicating that q is within
a bounded ring BRin of the pivot, the distance between
q and BRin is set to 0, and we add it into CBR. Then,
we search for the left nearest bounded rings to q as
follows. We build an upgrading ordered queue UOR −
List which is ranked by the distance. For the pivot Pi
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FIGURE 2. An example of searching for 3NNs of q (α = 3, β = 1).

whose distance to q is larger thanMaxRadius, we add the
outermost bounded ring of Pi (i.e., the last bounded ring
of list Listi(BR)) intoUOR−List with the distance being
dist(q,Pi) − MaxRadius. For the pivot Pi which has a
bounded ring BRin containing q in its region, we add
the adjacent bound rings of BRin into UOR − List with
the distance being the value between q and the lower or
upper boundary. Then, at every turn we pick the first one
from UOR− List (i.e., the nearest bounded ring to q) to
CBR and meanwhile add the adjacent bounded rings of
the picked one intoUOR−List until we have α bounded
rings in CBR.

Take Figure 2 as an example where we assume α = 3,
β = 1, k = 3. First, BR12 and BR22 are added into CBR

because they contain q in their region. Then, we add their
adjacent bounded rings BR11, BR21 and the bounded ring of
the other pivot BR31 intoUOR−List . Obviously, the distance
between q andBR21 (dqbr21 in Figure 2) is the smallest. Thus,
we add BR21 into CBR and stop the procedure as |CBR

| ≥

α = 3. We get the final candidate bounded rings set CBR
=

{BR12,BR22,BR21}.

Algorithm 2 DHDKNN Algorithm
Require: query q, pivots P(P1, · · · ,PNP ), DBRI, α, β
Ensure: the kNN results set of q Rq
1: CBR

= CCBR(q,P, β)
2: find βNNs of q on each bounded ring in CBR and put

them into a set R′

3: compute cdknn on R′

4: determine the search region Sq

5: find the bounded ring set RBR which contains the
bounded rings intersecting Sq

6: find kNNs of q from each bounded ring in RBR and merge
the results to get the final kNNs Rq

7: return Rq

2) DETERMINING THE FINAL SEARCH REGION
After we get the set of candidate bounded rings for the query
q, we calculate β nearest neighbors from each candidate
bounded ring and merge the results. As we have α ∗ β ≥ k ,
we can get at least k nearest neighbors, which may not be

the final kNN results. We calculate the distance to the k-th
nearest neighbors of the candidate kNN results, which is
marked as cdknn. Then, we can determine a region (sphere)
Sq with q as the center and cdknn as the radius, which is
guaranteed to contain the kNNs of q. The final kNN results
can be found after we scan all the bounded rings that intersect
with Sq. As shown in the example of Figure 2, we first
compute the 1NN from each bounded ring of the set CBR

=

{BR12,BR22,BR21} and get the candidate 3NNs {p2, p3, p4}.
Then a search region Sq is determined as shown in the figure.
Thus, the final bounded ring set that should be scanned is
{BR11,BR12,BR20,BR21,BR22}. We search all the points in
the final bounded ring set whose distance to q is less than
cdknn. The final kNN results can be obtained by maintaining
a priority queue of points based on their distances to q. In the
example, we get the final 3NN results of q as {p1, p3, p4}.

3) RUNNING IN A MASTER-SLAVE SETTING
Figure 3 shows the steps to run DHDKNN algorithm in a
master-slave setting. DBRI is maintained in a distributed
manner by multiple slaves with each slave responsible for
several bounded rings. The master is the entrance for the
queries and the updated points, where we maintain the index
information of DBRI: the pivots set P and the bounded
rings lists with each bounded ring BRij taking the form
< i, idj, lbij, ubij >. In the master, we determine the candi-
date bounded ring set and send q to the shaded slaves that
hold these bounded rings. The results are sent to Slave A to
calculate the cdknn value and the search region Sq. This is
the first iteration as shown in Figure 3. Then, the bounded
rings set RBR which contains the bounded rings that intersect
Sq are identified in Slave A and we send Sq to the slaves that
hold the bounded rings in RBR (i.e., Arrow 3 in Figure 3).
In each of these slaves, we compute the k nearest neighbors of
q and send the results to Slave Bwhere the final kNNs of q are
obtained. In this way, we can complete the kNN processing
in a master-slave model in just two iterations.

FIGURE 3. The processing in a master-slave setting.

According to the steps of running in a master-slave setting,
we can deployDHDKNNalgorithm on some general-purpose
distributed streaming data processing platforms, such as
Apache Storm [33] and Yahoo S4 [34]. Take Apache Storm
as an example. Apache Storm uses custom-created ‘‘spouts’’
and ‘‘bolts’’ to define information sources andmanipulations.
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A Storm application is designed as a ‘‘topology’’ in the shape
of a directed acyclic graph (DAG)with spouts and bolts acting
as the graph vertices. In our problem, we can define a spout
as the entrance of the query source, which emits query points
as a stream. DHDKNN algorithm is decomposed into several
steps (i.e., arrows in Figure 3). Each step is handled by a
particular type of bolts. These spout and bolt components are
joint together orderly as a topology for DHDKNN algorithm.

B. ANALYSIS
Let ND be the total number of points in the sliding
window |W |. We use NP and Nr to denote the number of
pivots and the average number of points in each bounded ring
of DBRI. LetNin be the average number of bounded rings that
intersect the search region for a query q. The running time of
DHDKNN algorithm includes three parts: time to calculate
candidate bounded rings CostC , time to calculate the search
region CostS , and time to obtain kNN results CostK . Each
part contains both communication and computational cost.
To evaluate the communication cost, we assume g to be the
ability of a network to deliver data. Let the number of slaves
be Nsl . We can get the following theorem on the time cost of
DHDKNN algorithm.
Theorem 2: The time cost of DHDKNN algorithm is

CostC + CostS + CostK , while

CostC = c0NP + c1α logα + c2 log
ND
NPNr

+ gα (1)

CostS = (c3Nr + c4β logNr )α/Nsl + c5k log(αβ)+ gα/Nsl
(2)

CostK = (c6Nr + c7k logNr )Nin/Nsl + c8k log(kNin)

+g(Nin + Nin/Nsl) (3)

where {c0, · · · , c8} are some constants.
Proof: To calculate the candidate bounded rings set,

we first compute the distance of the query to all the piv-
ots which takes time c0NP. Then, about α bounded rings
are added into an upgrading ranking list to get the can-
didate bounded rings set, which costs time c1α logα +
c2α log

ND
NPNr

. As there are α messages delivered to different
slaves, the communication cost is gα. So we get CostC as
shown in Equation (1).

The time to obtain β nearest points of q from each
candidate bounded ring (including computing distances
and selecting k smallest points by min heap) is (c3Nr +
c4β logNr )α/Nsl . Then, it takes time c5k log(αβ) to obtain
the radius cdknn of the search region. As we have α messages
from different nodes are sent to a node for the merge oper-
ation, the communication time can be evaluated as gα/Nsl .
Then we can get Equation (2).

We get the k nearest neighbors of q from each of these
bounded rings, which takes (c6Nr+c7k logNr )Nin/Nsl . Then,
it takes time c8k log(kNin) to obtain the final kNNs of q.
The communication cost includes the time to send Nin mes-
sages to Nsl slaves and collect the results finally, so the

communication cost is g(Nin + Nin/Nsl). We get CostK as
shown in Equation (3).

Notice that Nin is affected by two aspects. The first is the
distribution of data points. Fortunately, the real-world data
are often skewed, which can bewell clustered and partitioned.
Besides,Nin is also affected by the radius of the search region.
The more bounded rings and points are considered in the
step of calculating the candidate bounded rings, the higher
probability to get a smaller cdknn. Thus, larger α and β
decrease the value of Nin, but on the other hand, increase the
computation cost in the step of calculating candidate bounded
rings. The optimal value of α and β should be determined by
the actual workload.

Compared to existing high-dimensional kNN processing
method, the main advantage of DHDKNN algorithm is that
we can complete the processing in only two iterations without
storing the exact data points in the master node. It is highly
beneficial for the kNN processing in a distributed environ-
ment as it helps to incur less communication cost and com-
putation cost by searching only a small part of bounded rings
in different slave nodes. In contrast, most existing algorithms
do not have the property. With those algorithms, the master
cannot determine the final region for kNN search without
involving an uncertain number of rounds of communication
between the master and slaves, incurring significant com-
munication costs. Another advantage is that the DHDKNN
algorithm is easily parallelizable and scales well with respect
to the number of servers to handle the change of data size
on the stream. The throughput of DHDKNN algorithm is
roughly proportional to the number of servers.

VI. EXPERIMENTS
We conduct experiments on Apache Storm to validate the
efficiency of the DBRI index and the DHDKNN algorithm.

A. EXPERIMENTAL SETTINGS
The experiments are conducted on a cluster of 8 Dell
R210 servers with Gigabit Ethernet interconnect. The clus-
ter runs Apache Storm platform. Each node has a 2.4GHz
Intel processor and 8GB of RAM. We use a real dataset
which comes from the 64-dimensional color histogram data
from NUS-WIDE Image Data Set1 [35], which contains
269,648 records from Flickr. To evaluate the performance
on large datasets, we increase the size of this dataset
to 1,000,000 using similar data expanding methods [36].
We assume that the size of the sliding window is approxi-
mately fixed, meaning the average number of appearances
is asymptotically equivalent to the number of expirations.
To mimic the real applications where the items appear in
streams, we create a ‘‘streaming’’ version of the dataset.
We feed the system a batch of 100 queries in one snapshot,
and measure the time between the first query entering the sys-
tem and the kNN results of all queries having been obtained.
Some of the default values are shown in Table 2.

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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TABLE 2. Default values.

B. BASELINES
As introduced in Section I, the state-of-art methods of dis-
tributed kNN processing can be categorized to two types
by whether a global index is used in master node. A global
index makes the query processing not necessarily happen on
all nodes, but existing methods either (usually a tree-based-
index [11]) require unpredictable communications across
nodes in the query processing, or can only provide approx-
imate results [12], which are difficult to be implemented on
data streams to compete our methods. The other type of
methods process kNN query in all nodes and finally merge
the results, which are easily to be adapted to our problem.
Thus, we compare our index and algorithm to the following
methods on Apache Storm as the baselines:
1) Naive solution (NS):We simply partition the dataset to

different nodes using a hashing function and search the
k nearest neighbors for each query on each partition by
direct distance computations, and then merge the kNN
results from each partition to acquire the final kNNs.

2) Distributed iDistance Solution (DIS):We implement a
distributed version of iDistance [24] on Apache Storm.
We first find some reference points and assign all the
points in the dataset to their nearest reference points.
A B+-tree is built to index the assigned points using
the distance to the reference points as the key. Each
sub-tree for a reference point is distributed stored in dif-
ferent slave nodes. When processing kNNs, we search
the k nearest neighbors for each query on each sub-tree
and finally merge all the kNNs to acquire the k nearest
neighbors.

3) Distributed Tree Solution (DTS) [10]: It firstly parti-
tions the dataset using a hashing function in the master
node, and builds an M-tree index on the subset of each
partition in different slave nodes. Similarly, we search
the k nearest neighbors on the distributed partitions
for each query and merge the kNNs to acquire the
final kNN results. Without loss of generality, we can
also build other existing centralized indexes (1-tree,
VA-file, etc.) instead of M-tree to accelerate the kNN
query processing.

C. PERFORMANCE OF INDEX MAINTENANCE
1) EFFECT OF 3 AND λ

From Figure 4 we can see that the split frequency is approx-
imately reversely proportional to the value of maximum

FIGURE 4. Number of splits w.r.t 3.

capacity 3. As expected, a larger 3 results in a reduction
in the number of splits. However, an overly large 3 will
affect the average number of points in a bounded ring, which
increases the time in the query processing. Figure 5 shows
the influence of the minimum occupancy λ on the frequency
of merge operations. A larger λ means that the underflow
will occur more often and thus cause more merge operations.
Furthermore, more updated points trigger higher split and
merge frequency and thus cause greater maintenance cost.

FIGURE 5. Number of merge operations w.r.t λ.

2) EFFECT OF THE NUMBER OF UPDATED POINTS
We then test the effect of the number of updated points
(i.e., the time interval between two snapshots multiplying the
velocity of updates) on the maintenance time and the result
is shown in Figure 6. We can see that the maintenance time
of all indexes increase when the number of updates becomes
larger. The maintenance time is roughly linear with respect to
the number of updated points since each update requires an
independent maintenance operation for all indexes. Besides,
we can see that the DBRI index incurs a bit more mainte-
nance time than DIS and DTS as it involves extra split and
merge operations. But on the other hand, DBRI incurs much
less processing time than the other methods (Figure 9) as it
can dynamically accommodate to the continuously changing
data.

D. PERFORMANCE OF DHDKNN ALGORITHM
1) VARYING α AND β

Figure 7 and Figure 8 show the effect of α and β on the perfor-
mance of DHDKNN algorithm. α and β are the parameters
in calculating candidate bounded rings. As expected, larger
α and β can help to settle a smaller cdknn value, i.e., larger
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FIGURE 6. Comparison of maintenance time.

FIGURE 7. Performance w.r.t α.

FIGURE 8. Performance w.r.t β.

α and β make cdknn closer to the final dknn value of the
kNN results and thus less bounded rings intersecting with the
search region are computed. Therefore, the average time of
one query decreases when α and β get larger. However, when
α and β is greater than 10, increasing α and β has little influ-
ence on the cdknn value. Thus, the curves go upward when
the value is greater than 10 in both figures as the increment
of computation cost in calculating candidate bounded rings
becomes dominant.

Meanwhile, we can see that efficiency increases when the
pivot number goes from 100 to 500, because more pivots
lead to finer granularity of the data partition, which increases
the pruning ability in the query processing. When the pivot
number grows to more than about 500, the increment of pivot
number has less and less effect, but the computation cost to
the pivots incurs a little increment.

2) VARYING THE NUMBER OF QUERIES
We vary the number of queries and compare DHDKNN algo-
rithm with baseline methods. From Figure 9 we can see that
the time for all the methods increases almost linearly with the

FIGURE 9. Performance w.r.t number of queries.

FIGURE 10. Communication time w.r.t number of queries.

FIGURE 11. Computational time w.r.t number of queries.

increasing number of queries as each query involves a single
processing. DIS and DTS run faster than NS as the index
in each partition accelerates search processing in the slave
nodes. DHDKNN algorithm incurs the least processing time
as we can reduce both computation cost and communication
cost by pruning a large amount of bounded rings in the search
procedure. Details of time cost are shown in Figure 10 and
Figure 11. As can be observed from Figure 10, DHDKNN
algorithm costs about 60% less communication time than
baseline methods. NS, DIS, and DTS incur same communi-
cation time as each query is sent to all the slave nodes for
kNN search in the three algorithms. Meanwhile, DHDKNN
algorithm incurs the least CPU time as shown in Figure 11
because we only need to search for the kNN results in the
small amount of bounded rings in the candidate set. Besides,
experimental results show that the communication cost is
almost one order of magnitude greater than the computing
cost for processing one query, which verify our view that the
communication cost between different nodes in a distributed
cluster is very expensive compared with CPU cost.
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FIGURE 12. Performance on the uniformly distributed dataset.

FIGURE 13. Performance w.r.t |W |.

FIGURE 14. Performance w.r.t k .

We further generate a 64-dimensional synthetic dataset
containing 1,000,000 points which follow a uniform distribu-
tion for comparison. From Figure 12 we can see that all the
index structures have very close time cost to the NS method
in a uniform dataset. The reason is that the data partitions
formed by clustering technique in the index structures can
be greatly overlapped with each other for the affection of
‘‘dimensionality curse’’ in high-dimensional space. Fortu-
nately, data are often skewed in real world which can be well
partitioned. Thus, DHDKNN algorithm is efficient to solve
the problem in most cases.

3) VARYING |W | AND k
As can be observed from Figure 13, the average time of one
query for all the methods increases when the size of sliding
window |W | gets larger. The NS algorithm suffers the most
from the increasing |W | because it has to go through all the
points in all slave nodes without an index. From Figure 14
we can see that the processing time of NS algorithm almost
remains unchanged when k increases as it always involves
distance computations to all points in the sliding window.

FIGURE 15. Scalability w.r.t number of workers.

DIS, DTS, and DHDKNN algorithm incurs more time as k
becomes larger because more points need to be computed in
the indexes with increasing k . The effect of k on DHDKNN
algorithm is most obvious as both communication cost and
computation cost increase when k increases.

4) VARYING THE NUMBER OF WORKERS
Finally, we vary the number of workers to measure the
average response time per query and the result in shown
in Figure 15. As can be observed, with more workers being
employed, all algorithms enjoy a decrease in the processing
time. The curves are non-linear because the communication
cost increases with more workers. Clearly, DHDKNN algo-
rithm has good scalability and performs much better than all
the baseline methods.

VII. CONCLUSIONS
Wepresent a real-time recommendation system that canmake
fast response to a user’s current interest. If we represent both
users’ interests and items by high-dimensional points in vec-
tor space, a sensible and robust approach for content-based
filtering is to recommend the user the k nearest neigh-
bors (kNN) items, given a distance metric. Thus, the main
issue tackled is to efficiently process kNN queries on data
streams. Considering the vast volume of data, we aim to solve
the problem in distributed settings to support our recommen-
dation scheme. We propose a new distributed index called the
Dynamic Bounded Rings Index (DBRI), which can be better
adapted to the changing data points on data streams. DBRI
can also be naturally distributed in the cluster to make the
query processing more efficient. We present the distributed
high-dimensional kNN query algorithm (DHDKNN) based
on DBRI. DHDKNN algorithm involves only two iterations
to prune a large amount of unnecessary bounded rings in dis-
tributed slave nodes, and thus incurs less communication and
computational cost. Experimental results on Apache Storm
demonstrate that our methods scale well and significantly
outperform existing methods.
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