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ABSTRACT This paper aims at proposing an abnormality detection framework for electrocardiogram
(ECG) signals, which owns unbalance distribution among different classes and gaining high accuracy in
rhythm/morphology abnormalities classification. The proposed framework is composed of two models: data
augmentation model and classification model. In this framework, data augmentation model is designed
to recast a class-balanced training dataset by generating artificial data of minor class. The outputs of
augmentationmodel are transferred into classificationmodel. The classificationmodel is designed to identify
abnormalities accurately after training using both the experimental and generated datasets. Data augmen-
tation model is supported by auxiliary classifier generative adversarial network (ACGAN). We construct
Generator and Discriminator of the ACGAN by stacking multiple 1-dimensional convolutional layers with
small kernel size. Dropout function and batch normalization are added to prevent gradients vanish and
speed up convergence. In order to evaluate the performance of augmentation model, a set of quantitative
indicators are introduced to verify the quality of generated ECG signals. We establish classification model
based on stacked residual network parallel connected with long short-term memory (LSTM) network.
The experimental study is conducted for single heartbeat detection and consecutive heartbeat detection.
The results based on standard benchmark, MIT-BIH, and competition database provided by 2018 China
physiological signal challenge (CPSC) have verified the proposed framework can achieve high performance
in robustness and accuracy for class-imbalanced dataset.

INDEX TERMS Electrocardiogram signals, heartbeat arrhythmias detection, auxiliary classifier generative
adversarial network, data augmentation, long short-term memory network, residual network.

I. INTRODUCTION
In recent years, the incidence of cardiovascular diseases
(CVDs) has exploded due to multiple factors such as pop-
ulation ageing, chronic cardiovascular disease and increas-
ing living pressures. With high mortality, heart disease has
become a major threat to human life [1], [2]. Therefore,
the task about monitoring and preventing it in advance is
quite important. One intrinsic presentation of heart diseases is
heart’s rhythm/morphology abnormal activity, and electrocar-
diogram (ECG) which records such electrical activity of heart
in visible way provides abundant information for abnormality
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diagnosis. Thus, detecting abnormalities of ECG signals has
often been applied in clinical CVDs diagnosis [3], [4].

The majority of extant models for rhythm/morphology
abnormalities detection [5], [6] are comprised by four
independent steps: 1) ECG signals acquisition; 2) data pro-
cessing; 3) features extraction; 4) identification. Each proce-
dure can introduce errors and lead to inaccurate detection.
Recently, deep learning-based approach which ensembles
feature extraction and classification into one process has been
successfully applied for ECG signal analysis to overcome
this challenge. Deep learning-based ECG signal processing
framework has powerful feature extraction ability which can
learn deep features from given signals and optimize model
automatically to achieve high accuracy in classification.
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Typically, there are different deep learning architectures,
such as Deep Belief Network (DBN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM), and so on. For example,
Acharya et al. [7] proposed a deep CNN structure to auto-
matically identify 5 different categories of ECGs arrhythmia.
Salloum andKuo [8] applied RNN to build an effective CVDs
identification system. Tan et al. [9] proposed a stacked LSTM
network with CNN to classify normal versus CVD ECGs,
which achieve high accuracy.

For deep learning-based approaches, each model is con-
structed by stacked multi-hidden layers. Meanwhile, each
hidden layer contains considerable parameters. Therefore,
the number of parameters in deep learning model which
needs to be trained is enormous. To achieve a high accuracy,
the deep learning model needs adequate training by plentiful
balanced training data. However, in practice, the occurrence
rate of different abnormalities is diverse. It often leads to an
imbalanced distribution between minor and major cases of
multiple abnormalities in collected ECG signals. Such class-
imbalance prevents the deep network to learn how to identify
minority class.

Several researches have been conducted to deal with this
data imbalanced issue. Rajesh and Dhuli [10] implemented
re-sampling techniques for imbalanced ECG beats classifica-
tion. Ukil et al. [11] combined over-sampling methods with
semi-supervised feed-back controlled approach to achieve an
intelligent class augmentation algorithm. Gogna et al. [12]
introduced semi-supervised deep learning approach, stacked
auto-encoder (SAE) model for ECG signal reconstruction.
However, previous work related to imbalanced data aug-
mentation mainly based on sample from original signal,
and the improvements are limited. Generative Adversarial
Network (GAN) which was firstly introduced to generate
artificial convincing image samples [13] provides a new
approach for imbalanced data learning. Madani et al. [14]
investigated its capability for learning from both labeled and
unlabeled medical images, and realized data-efficient cardiac
disease diagnosis. Chen et al. [15] modified original GAN
structure to boost risk prediction performance with limited
electronic health records (EHRs). Shao et al. [16] utilized
auxiliary classifier GAN (ACGAN) with label condition
information for imbalanced mechanical signal augmentation.
However, limited work has been conducted in ECG signal
augmentation using GAN structure.

Therefore, this work further investigate the GAN’s poten-
tial in dealing with imbalanced ECG signal issue, and
constructs a deep-learning based ECG rhythm/morphology
abnormalities detection framework. The framework is com-
posed of two models: data augmentation model and classifi-
cation model. The data augmentation model is supported by
ACGAN which is used to generate artificial ECG signal and
form a new class-balanced training dataset. It also proposes
a quantitative assessment criterion to evaluate the quality
of generated signal. The classification model is based on
stacked residual block and LSTM network. It is used for

ECG abnormalities classification after data augmentation.
The novelties and contributions of this work mainly includes:
1) the ACGAN is firstly applied for ECG signal generation
to solve the data imbalanced issue; 2) a set of evaluation
indicators are proposed to assess the performance of data
augmentation model; 3) the proposed detection framework
can achieve high performance in robustness, and accuracy for
class-imbalanced dataset.

The reminder of the paper is organized as follows:
Section II introduces the basic theories of ACGANs, residual
network, and LSTM network. Then the proposed detection
framework is illustrated in section III with detailed structure
of both ACGANs, and classification model. In section IV,
experiments are conducted to test the performance of pro-
posed detection framework for single heartbeat detection and
consecutive heartbeat detection. After that, results and some
discussions are presented. Finally, conclusion is drawn in
section V.

II. BASIC THEORY
In this paper, three deep-learning approaches are utilized
to form the detection model. The basic theories of GAN
and ACGAN, which are used for data augmentation, are
briefly introduced in part A. Residual network and LSTM,
which are applied in classification model, are represented in
part B and C, respectively.

A. AUXILIARY CLASSIFIER GENERATIVE ADVERSARIAL
NETWORKS
As shown in Fig.1(a), GANs are composed of two parts: the
Generator G and the Discriminator D. The principle of GANs
is to generate fake data which make the Discriminator hard to
classify fake or real, that is theGenerator is trained to generate
fake data which can fool the Discriminator. The input of
the Generator is random noise vector z, and the Generator
force z to model the distribution of real data vector x and
then output fake data. The input of the Discriminator is from
both real data and generated fake data, and the Discriminator

FIGURE 1. Typical structure of (a) regular GAN, (b) ACGAN.
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is trained to classify real and fake data correctly. In a word,
the training process of GANs is a two-player minimax game.
The Generator is trained to generate fake data by making the
Discriminator recognize fake data as real; on the contrary,
the Discriminator is trained to classify real and fake data
as accurate as it can. The target of GANs training can be
described with value function V (D,G) followed by (1) [13]:

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[
logD (x)

]
+Ez∼Pz(z)

[
log (1− D (G (z)))

]
(1)

where, D (x) represents the probability that x from the
real data distribution Pdata rather than the Generator Pg;
G (z) represents a mapping from noise vector to generated
vector. In training procedure, the Generator is trained after
the Discriminator has been well trained. We update param-
eters in Discriminator to maximum the function V (G,D),
while updating parameters in Generator to minimum the
function V (G,D).
ACGAN is a type of variant of the GAN. As shown

in Fig.1 (b), it introduces category information as auxiliary
term to improve the performance of the Generator [17]. And
the output of the Discriminator includes categories as well.
Therefore, the G(z) existed in (1) transform to G (c, z) in
ACGAN, where c represents corresponding class label. The
loss functions of ACGAN contains two parts: LS records the
probability of the correct source (the same as GAN) as shown
in (2), and LC records the probability of correct label as shown
in (3).

LS =Ex∼Pdata(x)
[
logD (x)

]
+Ez∼Pz(z)

[
log (1− D (G (z)))

]
(2)

LC =Ec∼Pdata(c)
[
logD (c)

]
+Ec∼Pz(c)

[
log (1− D (G (c)))

]
(3)

Since the Discriminator should be able to correctly classify
fake and real data with accurate corresponding label, the
Discriminator is trained to maximum LS + LC . Meanwhile,
we hope the output of the Generator can fool the
Discriminator to recognize it as real one with correctly
corresponding label. Therefore, the Generator is trained to
maximum LC − LS .

B. RESIDUAL NETWORK
After successful implementation in image classification
[18], [19], deep convolutional neural networks have been
extended to various fields, including physiological signal
analysis. Evidence [20], [21] reveals that networks with deep
structure have better performance. For example, outstanding
results [20], [21] on ImageNet challenging [22] all exploit
‘‘very deep’’ [20] models. But [19] also refers that with more
layers to stack, the phenomenon called vanishing/exploding
gradients more likely to occur during model training [23].
This problem can hamper the model converge to correct
direction. To overcome such problem, [24] proposed residual
block to reduce gradient vanish or explode, as shown in Fig.2.

FIGURE 2. Structure of residual block [24].

The process of deep model training is actually to opti-
mize parameters in stacked layer to fit one desired map-
ping H (x). As illustrated in [24], when the optimization of
H (x) is hard to conducted, an alternative residual mapping:
F (x) = H (x) − x can be established firstly, and then the
desiredH (x) can be recast by adding F(x) and x. The shortcut
connection which skips one or more layers in Fig.2 simply
performs identity mapping: x, and its output is added to the
output of stacked layers. Such operation does not introduce
extra parameters and complexity. Moreover, it resolves the
vanishing gradient problem by preventing partial derivative
to zero in chain rule. Besides that, residual block accelerates
the convergence speed for shallow network.

C. LONG SHORT-TERM MEMORY NETWORK
LSTM is derived from RNN, which has capability of learning
long-term dependencies. It is consisted of an input layer,
memory units and an output layer. Its memory unit has a
three-gate structure named input, forget and output gate [25].
A typical structure of a LSTM unit is illustrated in Fig.3. The
input gate learns what information is stored in the memory
unit. The forget gate is used to learn howmuch information to
be retained or forgotten by generating decision vectors ranged
in [0, 1]. Output gate learns when stored information can be
used.

FIGURE 3. Typical structure of a LSTM unit.

III. SYSTEM FRAMEWORK
The framework proposed in this study contains two parts: data
augmentation model and classification model. The original
training data are firstly transferred into data augmentation
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FIGURE 4. Proposed ECG arrhythmias detection framework with data augmentation model and classification model.

model to achieve a class-balanced distribution. Then the gen-
erated training data is used to train the classification model.
Data augmentation model is supported by ACGAN, and clas-
sification model is based on residual network and LSTM.

As shown in Fig.4, the procedure of ECG arrhythmias
detection proposed in this study consists of four major steps.
The random noise z and corresponding label c is put into
Generator (in data augmentation model) first to output the
generated data. Then, the generated data are mixed with
the real data together, and put into Discriminator (in data
augmentation model) to train parameters in Discriminator.
After that, with the well trained Discriminator, high quality
generated data can be obtained in Generator. Finally, a bal-
anced dataset can be formed to train the classification model.

Detailed structures of Generator and Discriminator are
discussed in part A. Meanwhile a set of statistical indicators
are introduced to evaluate the signal generated by ACGAN.
Then the frame of classification model is presented in part B.

A. ACGAN BASED DATA AUGMENTATION MODEL
1) MODEL STRUCTURE
Generator is designed to establish a mapping from latent
space(z, c) to artificial ECG signal, where z is normal distribu-
tion noise and c is random corresponding label. Discriminator
is designed to train Generator towards better performance.
Since ECG signal from each individual possess different
morphology, to better learn hierarchical features of input
signal, 14 1-dimensional (1D) convolutional layers including
2 up-sampling operations are utilized with small kernel size
to construct the Generator, and 16 1D convolutional layers
are applied to form the Discriminator.Sigmoid function and
softmax function are adopted as the output layers of Discrim-
inator to generate predicted sample source and specific label
respectively. Batch normalization and dropout are added to

prevent overfitting. The specific structure of ACGAN is listed
in Table 1.

TABLE 1. Structure of data augmentation model.

For model training, based on loss function mentioned in
section II, parameters are updated iteratively using ADAM
optimizer with learning rate 0.0001 for Generator and
0.0002 for Discriminator. The procedure can be divided into
3 steps during each training epoch:
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a): Generating artificial data through Generator by
inputting random noise and corresponding labels.

b): Mixing artificial data with real data and transferring
them into Discriminator. Parameters in Discriminator are able
to update according inputted data and label.

c): After well training Discriminator, fixing parameters in
Discriminator into constant status and updating parameters in
Generator.

Through adequate iterations, losses of Generator and
Discriminator are forced to achieve a balance status called
Nash Equilibrium.

2) MODEL EVALUATION
The purpose of applying ACGAN architecture is to gener-
ate convincing ECG signal for data augmentation, and then
transfer them into classificationmodel. Therefore, it is impor-
tant to evaluate the similarity between the generated signal
and the original signal. However, the evaluation criterion
is still an open issue. For image generation task, it can be
conducted by visual evaluation or statistical measures, such
as peak signal to noise ratio (PSNR) and structural simi-
larity (SSIM). For one-dimensional time series, Euclidean
distance (ED), Pearson correlation coefficient (PCC) and
Kullback–Leibler (K–L) divergence are introduced as eval-
uation indicators [16].

Considering ECG signal is periodic time series which is
composed by several fixed waveforms, including P-wave,
QRS complex, and T-wave. The generated signal can be
evaluated both by vision and statistical indicators.

In this study, ED, PCC, and K-L divergence are chosen as
quantitative indicators. ED represents the distance between
the generated signal and original one, PCC measures the
linear correlation between the two distributions, and K-L
divergence evaluates the difference between the two sig-
nals. For each category, specific evaluation procedure can be
performed as follows:

a) Calculating average original signal as the template
signal;

b) Calculating the ED, PCC, and K-L divergence between
the template signal and original data, and calculating
the average ED, PCC, and K-L divergence as the com-
pared indicators CIs;

c) Calculating the ED, PCC, and K-L divergence between
the template signal and generated data, and calculating
the average ED, PCC, and K-L divergence as the final
indicators FIs;

d) Comparing FIs with CIs, the smaller difference
between FIs and CIs represents high similarity.

B. CLASSIFICATION MODEL
In classification procedure, multiple stacked 1D convolu-
tional layers with several residual blocks are used to extract
deep features of ECG signals. Considering ECG signals are
time-series signals, we combine LSTM network with residual
network to achieve a better performance in features learning.

The input of the model is parallel processed by
1D-convolutional residual network and LSTM respectively as
shown in Fig.5. To achieve concatenate operation of two out-
puts, global average pooling is added after residual network.
The pooling operation translates output of residual network
to 1D vector. Then it is concatenated with features extracted
by LSTM, and connected to three fully-connected layers.
Softmax function is adopted as final output layer to determine
the class of input ECG segment. The detailed structure of each
neural network is illustrated in Table 2.

TABLE 2. Structure of classification model.

IV. EXPERIMENT AND RESULTS
In this study, we test the proposed detection model’s per-
formance in both single heartbeat detection and consecutive
heartbeats detection. For single-beat detection, the standard
benchmark: MIT-BIH database is introduced. Comparative
experiments are also carried out to compare the classification
results with existingmethods. Then, the competition database
provided by 2018 China Physiological Signal Challenge
(CPSC) is applied for consecutive-beats detection. We also
compare the classification results with the Top Three Results
in the competition.

The proposed model is trained on a workstation with Intel
Core i7-7700, CPU 3.6 GHz, RAM 8 GB, and GPU NVIDIA
GeForce GTX 1060 8GB.

A. MIT-BIH DATABASE
MIT-BIH arrhythmia database is developed byMassachusetts
Institute of Technology (MIT) [26]. It contains 48 half-hour
recordings sampled at 360Hz. Four of them (recording 102,
104, 107, and 217) are generated by pacemaker, and are
excluded in this study. MIT also provided Annotation Files
with this database. They recorded the location of R-peak
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FIGURE 5. Structure of proposed classification model.

and type of the each heartbeat. The arrhythmia types of this
database are up to 16 including the normal type (N). Five
majority types including N, left bundle branch block (L),
right bundle branch block (R), premature ventricular con-
traction (V), and atrial premature contraction (A) obtained
from modified limb lead II are used to evaluate the proposed
detection model.

As shown in Fig.6, the typical ECG signal contains QRS
complex, P-wave, and T-wave. Among them, R-peak of
QRS complex divides a heartbeat into two parts. Therefore,
the location of R-peak can help to segment consecutive
ECG signal into single heartbeat segmentation. Based on the
R-peak location provided by Annotation Files, since one
heartbeat usually last 0.6s to 0.8s, 0.24s (88 points) offset
before R-peak and 0.44s (156 points) offset after R-peak are
adopted in this study as single heartbeat duration.

FIGURE 6. Typical consecutive ECG signal.

After signal segmentation, total of 99244 single heartbeat
segments are used for this work. The number of samples
within each type is listed in Table 3. Daubechies wavelet
8 is utilized to remove noise and baseline drift. For each
type, 90% of samples are formed as database DS1-1 which
is used for classification model training, and the rest 10%
are formed as database DS1-2 for testing. Among the DS1-1,
2000 samples of it are formed as the database DS1-3 which is
used for ACGAN training, and 200 samples of it are formed
as the database DS1-4 for ACGAN testing. Table 3 records
the number and data length of each dataset samples.

1) DATA AUGMENTATION
As shown in Table 3, the sample distribution of each
type is unbalanced, the number of type N accounts
for 75%, while the minor type A only represents 3%.
Therefore, database DS1-3 is firstly utilized to train ACGAN
model for data augmentation.

TABLE 3. Data profile of MIT-BIH before data augmentation.

The training epoch of ACGAN model is set to be 150, and
we generate different numbers of artificial samples for each
category to make sure each class contains 10000 recordings
for classification model training. Model training process is
recorded in Fig. 7. Generation loss in Fig.7 (a) reflects the
model’s ability in predicting the correct sample source (from
real data or generated data); classification accuracy (b) and
loss (c) present model’s performance in predicting correct
sample class.

As shown in Fig.7 (a), Generator and Discriminator go
towards Nash Equilibrium after approximately 20 epochs,
and there is an obvious improvement in classification accu-
racy presented in Fig.7 (b).

After data augmentation, the original training dataset
DS1-1 is enriched to database DS1-5 as recorded in Table 4.

TABLE 4. Data profile of MIT-BIH after data augmentation.

After adequate training, generated samples of each type
is listed in Fig.8 (a) to (e). The red line shown in the
figure represents the original signal, and blue line remarks the
generated signal. It is clear that although ECG signal within
different category has mutiple morphologies in both ampli-
tude and time duration, ACGAN can learn deeper features
automatically and generate alike samples.

VOLUME 7, 2019 100915



P. Wang et al.: ECG Arrhythmias Detection Using ACGAN and Residual Network

FIGURE 7. ACGAN performance in (a) generative loss, (b) classification
accuracy, and (c) classification loss.

As illustrated in Section III. Part A, quantitative indica-
tors are conducted to evaluate the similarity between gener-
ated samples and original samples. The results are listed in
the Table 5. ED and K-L divergence indicates the distance
and divergence between the two distributions, and the lower
value represents more similar. PCC represents the correlation
between two samples, and high value over 0.8 represents
strong correlation. As shown in Table 5, the differences
between CIs and FIs values are small which indicate the

TABLE 5. Quantitative evaluation of generated signal.
FIGURE 8. Generated data and original data of (a) type N; (b) type L;
(c) type R; (d) type V; (e) type A.

generated data and original data have similar distribution.
Besides that, the PCC values of FIs are all over 0.8 which
represents strong similarity among the generated data and
original one.

2) CLASSIFICATION RESULTS
After data augmentation, generated database DS1-5 is used
for classification model training. To test the capability of
data augmentation model, the original imbalanced database
DS1-1 is applied to training the same classification model

100916 VOLUME 7, 2019



P. Wang et al.: ECG Arrhythmias Detection Using ACGAN and Residual Network

TABLE 6. Classification performance of DS1-1 and DS1-5.

as well. The classification performance is evaluated by three
measures, sensitivity (SEN), specificity (SPE) and classifi-
cation accuracy (ACC). SEN is the true positive rate, and it
represents the proportion of all positive samples classified to
positive. SPE is the true negative rate, and it represents the
proportion of all negative samples classified to negative. ACC
is the classification accuracy. Higher values of those mea-
sures indicate better performance. Mathematically, they are

calculated by (4) to (6)

SEN = TP/(TP+ FN )× 100% (4)

SPE = TN/(TN + FP)× 100% (5)

ACC = (TN + TP)/(TN + TP+ FN + FP)× 100% (6)

where TP is the number of true positive samples, FN is the
number of false negative samples, TN is the number of true
negative samples, and FP is the number of false positive
samples.

The results of classification performance trained by
DS1-1 and DS1-5 are listed in Table 6. It shows that the SEN
of type A in DS1-1 is relatively low. That means the classifi-
cation model is not well trained since A class is the minority
class, and the model has difficulty in dealing with it. It may
wrongly classify other types’ samples into type A. After
resolving the data imbalance issue by data augmentation,
SEN of type A in DS1-5 has a significant improvement, from
85.83% to 93.7% . Besides that, compared with training by
imbalance database, the total ACC, SEN, and SPE all have
improvement.

For comparison, other related works including supervised,
and unsupervised/semi-supervised approaches based on this
standard benchmark are listed in Table 7. Considering we

TABLE 7. Comparison between the related work and proposed detection model.
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introduce ACGAN model to deal with data imbalanced
issue, some other results using multiple data augmentation
algorithms are also summarized in Table 7. It can be seen
that the detection model proposed in this study has better
performance over all the comparison methods. For data aug-
mentation, ACGANhas stronger capability than conventional
sampling methods and deep-learning based SAE model.

B. COMPETITION DATABASE
The competition database used for consecutive heartbeats
detection is provided by CPSC2018 [29]. It contains 6,877
(female: 3178; male: 3699) 12 leads ECG recordings lasting
from 6s to 60s (sampled with 500 Hz). As shown in Table 8,
the distribution between minor and major cases is imbal-
anced. For example, STE and LBBB only have 202 and
207 recordings, respectively, while RBBB has 1695 record-
ings. Since the most minor case (STE) only occupies 3% of
the total dataset, even if the network structure learns nothing
about this case and gives out totally wrong detection results
about it, we still can get the accuracy as high as 97%. Such
class-imbalance prevents the network to learn how to identify
minor class.

TABLE 8. Data profile of competition database.

Since data length in each recording is different, original
signals need to be segmented into the same date length.
As demonstrated in study 1, the location of R-peak can help to
segment the heartbeat, so, finding the R-peak location which
is also known as QRS detection is conducted firstly. For each
12-lead ECG sample, the lead-I signal is used to determine the
specific location of R-peak. Dyadic splines 4-level wavelet is
apply to realizing QRS detection. After getting the location
of R-peak, 0.25s (125 points) offset before R-peak and 0.35s
(175points) offset after R-peak are adopted as one heartbeat
duration. Five consecutive heartbeats are integrated as one
sample. Hence, each sample in this study is 12 × 1500 time-
series vector. Fig.6 shows the segment of the original lead-I
signal, and locations of R-peak are illustrated in Fig.9 (a) with
black circles. The final lead-I sample after preprocessing is
listed in Fig.9 (b).

Since the shortest length of one original recording contains
3000 points, after preprocessing, the capacity of the database
is up to 13754 samples. Followed by the stipulation of
CPSC2018, 50 samples of each type are formed as the testing
database (DS2-2) for model verification, and the remainders
are formed as database DS2-1 which is used for model

FIGURE 9. (a) Detection the location of R-peak; (b) signal segmentation
based on R-peak.

training. Among the DS2-1, 300 samples of it are formed as
the database DS2-3 which is used for ACGAN training, and
50 samples of it are formed as the database DS2-4which is for
ACGAN testing. Table 9 records the number and data length
of each dataset samples. Numbers 1-9 listed in the ‘Type’
column represent type Normal, AF, I-AVB, LBBB, RBBB,
PAC, PVC, STD, and STE, respectively.

TABLE 9. Data profile of competition database before data augmentation.

1) DATA AUGMENTATION
Each sample contains 12-lead signal, since the scale of
database for ACGAN training is limited (only 300 samples),
training the ACGAN to learn variations among 12-lead signal
is difficult. Therefore, we utilize lead-I to lead-XII signal
to train ACGAN model respectively, and generating each
lead signal one by one. Finally 12 leads generated signal are
integrated as one sample.

The training epoch of ACGAN model is set to be 150,
and model training process is recorded in Fig. 10. As shown
in Fig.10 (a), Generator and Discriminator go towards Nash
Equilibrium after approximately 90 epochs, and classification
accuracy finally up around 100% as presented in Fig.10 (b).

We generate different numbers of artificial samples for
each category to make sure each class contains 4000 record-
ings for classification model training. After data augmen-
tation, the original training dataset DS2-1 is enriched to
database DS2-5 as recorded in Table 10.

Since the scale of one generated sample in this study is
large, we do not intend to list the waveform here, and only

100918 VOLUME 7, 2019



P. Wang et al.: ECG Arrhythmias Detection Using ACGAN and Residual Network

FIGURE 10. ACGAN performance in (a) generative loss, (b) classification
accuracy, and (c) classification loss.

TABLE 10. Data profile of competition database after data augmentation.

evaluating the generated samples based on quantitative indi-
cators. The results are listed in the Table 11.

As shown in Table 11, the differences between value CIs
and FIs are small, and the PCC value of FIs are all over 0.8.
Therefore, the generated data and original data have similar
distribution and strong correlation.

2) CLASSIFICATION RESULTS
Considering the database provided by CPSC 2018 is not
the standard benchmark, there is few work conducted with

TABLE 11. Quantitative evaluation of generated signal.

this database. This study is only compared with the Top Three
Results outcome in this physiological signal challenge. The
evaluation criterion is proposed by the CPSC 2018 as well.
As shown in Table 12, the number of classification results is
counted by each label firstly.

TABLE 12. Counting rules for the numbers of the variables.

Then for each type, F1 score is defined in Table 13.
Based on mathematical definition of F1 score, the final

scores are defined as (7)-(11):

F1 = (F11 + F12 + F13 + F14 + F15 + F17 + F17
+ F18 + F19) /9 (7)

FAF = 2× N22/ (N2 X + NX2) (8)

FBlock = 2× (N33 + N44 + N55) / (N3 X + NX3
+ N4 X + NX4 + N5 X + NX5) (9)

FPC = 2×
(
N66+Nη

)
/ (N6 X+NX6+N7 X+NX7) (10)

FsT = 2×
(
Ngs+Ngg

)
/ (NBX+NX8+N0X+NX9) (11)
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TABLE 13. Definition for each nine types.

TABLE 14. Performances with different data augmentation strategies.

To test the advantage of constructing an ACGAN
based data augmentation model before training classifica-
tion model. We conduct comparison experiment in three

frameworks, and the results are listed in Table 14. Those
three frameworks have the same classification model but
different in data augmentation part. The first one is barely
a classification model with no data augmentation procedure.
The second one uses SMOTE to augment minor classes [30].
The third one is the proposed framework in this study.

As shown in Table 14, with no data augmentation proce-
dure, classification model performs poorly in minor classes,
such as PAC, PVC, and STE. Since those classes occupy
small proportion in the training set, the losses generated
by those classes are small. Therefore, classification model
ignores the limited loss decline.

After applying SMOTE to augment data, the performance
of the same classification model significantly improves. But
SMOTE’s capacity in class-imbalanced resolving is weaker
than ACGAN. The ACGAN model performs better in each
type.

To evaluate the performance of proposed detection frame-
work, we compare the scores of proposed framework with
The Top Three Results whose Entry Numbers are CPSC0236,
CPSC0223, and CPSC0183, respectively in 2018 CPSC.
The models with final codes they applied are listed in [29].
To deal with data imbalanced issue, CPSC0236 introduced
Attention Mechanism to adjust weight, CPSC0223 applied
over-sampling strategy to augment dataset. However, none
of them attempt to utilize unsupervised or semi-supervised
approaches to generated artificial data for augmenta-
tion. We summary the detailed model structure of each
work, and record classification performance of them
in Table 15. We highlight the highest score in each item by
red mark.

TABLE 15. Comparison between the related work and proposed detection model.
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It is clear that the proposed model has more balanced per-
formance in each category, and gets the highest scores in F1,
FPC, and FST. Since F1 score has the similar definition with
ACC, the proposed framework significantly improves the
classification accuracy. Although FAF and FBlock calculated
based on proposed framework are not the best, the differences
between them with the best values are little. Furthermore,
one notable point is that the accuracy of minor types (FST)
has a great promotion by dealing with data imbalanced issue.
Although CPSC0236 and CPSC0223 did not investigate
semi-supervised approaches, they adopted other strategies to
deal with the imbalanced data and achieve relatively high
results. However, the ACGAN applied in this work further
improves the performance, and verifies its efficiency in solv-
ing data imbalanced issue.

V. CONCLUSION
In this paper, we propose a heartbeat arrhythmias detection
framework which has high performance in robustness and
accuracy. The proposed framework contains two parts:
ACGAN based data augmentation model and residual
network-LSTM based classification model.

Data augmentation model is designed to enrich data of
minor class and recast new training dataset which has
class-balanced distribution. Generator and Discriminator of
ACGAN proposed in this paper are construed by stacked
1D convolutional layers with small size kernel. Dropout and
Batch Normalization are utilized to avoid overfitting and
gradients vanish. Classification model is designed to extract
deep features from the ECGs. We adopt stacked residual
network parallel connected with LSTM network as main
frame to construct the classification model. Experiments on
standard benchmark, MIT-BIH and competition ECG sig-
nals provided by 2018 CPSC have verified that proposed
framework achieve high accuracy in both single heartbeat
abnormalities detection and consecutive heartbeat detection.

However, there are still some limitations in the proposed
architecture: 1) the classification accuracy of consecutive
heartbeat detection is not as high as the performances of stan-
dard benchmark. It may be caused by un-accurate ECG signal
segmentation. The location of R-peak in standard benchmark
is accurately annotated by MIT, while the R-peak in compe-
tition database needs to be calculated by ourselves. In further
development, we plan to investigate more accurately QRS
detection approach to increase the classification accuracy.
2) The proposed framework is composed of two separated
model, and these models are trained separately. However, the
performance can be improved if joint training is feasible to
achieve the global optimization. Therefore, in future work,
we plan to achieve an end-to-end framework to improve the
classification performance.
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