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ABSTRACT Person re-identification (re-ID) performance has been significantly boosted in recent works, but
re-ID model trained on one dataset usually cannot work effectively on another one. To address this problem,
we proposed a novel framework—double-domain translation generative adversarial network (DTGAN) that
can train images between two domains and generalize the model trained on one domain well to another
domain. We divide this paper into two steps. First, the source images are translated in an unsupervised man-
ner, and the translated images retain the style of target images and the ID labels in the source domain. Second,
the translated images are used as the training data for supervised feature learning. Besides, with the purpose
of moderating the influence of noise, we employ the strategy of label smoothing regularization (LSR). In our
experiments, we observe that the images generated by the DTGAN are of high quality and more appropriate
for domain adaption. In addition, the re-ID accuracy of the DTGAN is competitive to the state-of-the-art
methods on Market-1501 and DukeMTMC-reID.

INDEX TERMS Generative adversarial network, domain adaption, person re-identification, deep learning.

I. INTRODUCTION
Person re-identification (re-ID) [2] recently gains its
popularity in the field of computer vision. It is a signifi-
cant task that aims at retrieving images of a person from
a large-scale gallery collected by multiple cameras, given
a query of person-of-interest. Re-ID has been a very chal-
lenging and demanding task because the appearance of a
person can be dramatically changed across views and cameras
and the lighting, viewpoint, occlusion, and body configura-
tion [28], [39] may change every time.We train a re-IDmodel
on one dataset and it works effectively when we test it on
this dataset, but when we apply the model to other datasets,
the accuracy of re-ID often falls drastically because of a
domain bias. As a consequence, the expensive labels of the
source dataset may be wasted. Moreover, the problem may
bring an issue that presently fully supervised trained re-ID
model cannot be made full use in real world scenes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lefei Zhang.

Unsupervised domain adaption (UDA) is a typical strategy
to address the problem. However, this series of methods has
a main drawback when applied to re-ID. These methods
suppose that the classes of source and target domain are
exactly same, but this supposition is not applicable to re-
ID, as individual re-ID dataset usually contains absolutely
different classes. In the field of domain adaption, domain
translation [10], [13], [23] is gaining increasingly popularity.
Reference [10], [16], [17] and [36] use style transfer methods.

In our work, we employ CycleGAN [10] referring to the
settings in [9]. However, in the task of re-ID, if we only use
CycleGAN to translate images between two domains, the ID
label information of the persons in source domain will be lost.
Therefore, we should preserve the ID information when we
perform image-to-image translation for re-ID task. Compared
to CycleGAN, we add identity mapping loss and identity
preserving loss to CycleGAN to ensure that an image should
contain the same ID information before and after transla-
tion. Besides, because the source dataset contains entirely
different ID information from the target dataset, the translated

103336 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0465-3258
https://orcid.org/0000-0002-3400-1613
https://orcid.org/0000-0001-8564-0346
https://orcid.org/0000-0002-4870-1493


S. Zhou et al.: Double-Domain Imaging and Adaption for Person re-ID

image should contain distinct ID information from any
target images. Compared to SPGAN [9], we adopt differ-
ent loss functions to preserve ID information and add LSR
strategy to eliminate the influence of noise.

In this paper, we propose the double-domain translation
generative adversarial network (DTGAN), an unsupervised
domain adaption method to translate images from source to
target domain and apply the translated images to supervised
feature learning [45]. The images generated by DTGAN are
supposed tomaintain the ID information from source domain.
Meanwhile, the translated images possess similar style of
target domain. Our work is mainly divided into two steps:
first, the source images are translated in an unsupervisedman-
ner [44], and the translated images retain the style of target
images and the ID labels in source domain; second, the trans-
lated images are used as the training data for supervised
feature learning. DTGAN is composed of two parts, one part
is a Siamese network [2], and the other part is a CycleGAN.
In Fig. 2, the CycleGAN learns the generative mappings
G and F between source domain and target domain in the
process of image-to-image translation. On the basis of Cycle-
GAN, we add ID-discriminative embedding (IDE) [2] as an
auxiliary for image-to-image translation so as to improve
re-ID accuracy and image quality. With the identity preserv-
ing loss, the Siamese network pulls close translated image and
its counterpart in source domain. On the contrary, because the
translated images should maintain different ID information
from any target images, the Siamese network pushes them
further away. This satisfies the particularity of re-ID that
translation between re-ID datasets needs to preserve the ID
information from source domain. In training process, the
images are first used to train generator and discriminator
of CycleGAN, and then sent to train the Siamese network.
With the cooperation of CycleGAN and Siamese network,
the translated images not only obtain the style of target
domain, but maintain the ID information during translation
as well.

With the purpose of moderating the influence of
noise [22], [43], we further adopt label smoothing regular-
ization (LSR) in feature learning. LSR assigns less weights
to ground truth classes and small value to non-ground truth
classes instead of 0. Therefore, LSR can softly distribute data
labels and avoid over-fitting risk. On the basis of DTGAN,
LSR further improves the re-ID accuracy.

The proposed domain adaption approach, DTGAN, has
three main advantages. First, the images generated by
DTGAN possess the style of target domain and maintain
the latent ID information [34] from source domain. Second,
it can be considered as an augmentation scheme smoothing
the domain gap. Third, it is an unsupervised re-ID method
with good scalability.

Overall, we summarize our contributions as follows,
(1) We introduce a novel framework DTGAN for re-ID

(Section III.C). It generates images possessing the style
of target domain and preserving the underlying ID
information during image-to-image translation.

(2) We apply an LSR method (Section III.D) to translated
images to regularize the feature learning process and
improve re-ID accuracy.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORKS(GAN)
GAN has achieved iconic results in the field of computer
vision in recent years, especially in image genera-
tion [6], [12]–[15]. GAN was originally introduced by
Goodfellow et al. [1] and GAN mainly learns two parts: a
generator and a discriminator. The discriminator intends
to discriminate if the generated images are real or fake
whereas the generator learns to generate fake images as
true as possible to fool the discriminator. Zheng et al. [6]
apply the GAN method to the field of re-ID for the first
time. This work uses DCGAN [12] as a data augmentation
method [30] to generate unlabeled images and adds them to
the training in a semi-supervised manner. Recently, GANs
have been widely used in image-to-image translation [9],
[10], [16], [17], [21], style transfer [7], [19], [20] and domain
image generation [13], [18].

B. IMAGE-TO-IMAGE TRANSLATION
Recently, the image translation research has made impressive
results. Conditional GAN [21] translates an image and learns
the mapping during the translation. For each input image,
it requires a relevant image as training data, however, pairs
of training images are often difficult to obtain. To solve
the hot spots problem [41], a couple generative adversarial
network [23] (CoGAN) is proposed to generate pairs of cor-
responding images and learn joint distribution in two differ-
ent domains. CycleGAN [10] is proposed to learn the cycle
consistency for image-to-image translation. The advantage
of this method is that it no longer requires paired images as
training data, but uses unpaired samples as input. The draw-
back is that the color of images generated by CycleGANmay
be strange. Our proposed DTGAN is similar to CycleGAN
because both of them are image-to-image translation, but the
difference is that our work adds some additional restrictions
on preserving persons’ ID information. It is more suitable
than direct applying CycleGAN to re-ID model learning, and
we adopt LSR which further improves the re-ID accuracy.
Choi et al. [25] propose starGAN to solve the image-to-image
translation problem on multi-domain. Bousmalis et al. [13]
use an unsupervised GAN network to translate images to
a simulation in target domain. Deng et al. [9] propose the
SPGAN adding contrastive loss based on CycleGAN, which
can identify and process [37] the ID information in the trans-
lation process. It has the same effect as our work, but our work
adopts different loss functions and adds LSR on the translated
samples to prevent over-fitting problems in training, so that
our work achieves better results in re-ID.

C. UNSUPERVISED PERSON RE-IDENTIFICATION
Unsupervised re-ID is aimed at addressing the problem
of extensibility of existing re-ID methods. Most re-ID
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FIGURE 1. The pipeline of DTGAN consists of two steps. In step 1,
the images with labels from source domain are translated to target
domain using an unsupervised method. In step 2, the re-ID model is
trained in a supervised manner with the translated images.

approaches require a great amount of paired, cross-view
label samples as training data, which needs a lot of time
and labor costs. Besides, because of the challenge of re-ID
problem itself (cross-view change, high similarity between
different persons, etc.), there may be some errors in the
label itself, which leads to poor scalability of these methods.
Lv et al. [4] propose an unsupervised incremental learning
algorithm, TFusion that learns the persons’ spatial-temporal
patterns. Reference [31] and [40] directly apply hand-craft
features to unsupervised re-ID. These methods focus on fea-
ture extraction [24] whereas ignoring the large amount of
information contained in the data distribution of the samples.
Pumarola et al. [8] uses an unsupervised method to generate
person images in arbitrary poses. Zhong et al. [7] use Cycle-
GAN to transfer the styles between different cameras in the
re-ID dataset in an unsupervised manner.

Unlike upper approaches which primarily focus on
improving image quality, our work can not only generate
images of high quality, but save the latent ID information
during the image-to-image translation as well.

III. METHODOLOGY
We first briefly review the baseline and CycleGAN in
Section III.A and Section III.B respectively. In Section III.C,
we will introduce the DTGAN method in detail, and in
Section III.D, we will introduce the training strategy and
LSR.

A. BASELINE OVERVIEW
Given two different datasets from source domain and target
domain, respectively.We serve the purpose of training a re-ID
model using the labeled source images that works well in
target dataset. In this paper, we divide the baseline into two
steps. The first step is the image translation from source to
target domain. The second step is to extract features from
translated images for re-ID model training. The pipeline of
DTGAN is shown as Fig. 1.
Step1: Image-to-image translation. In this step, we use

the generative mapping function G:A→B to translate the
annotated dataset from source domain A to target domain B,

so we generate a labeled dataset G(A) with the style of target
domain. Similarly, we apply F:B→A to translate images
in a opposite direction and generate F(B). We adopt the
translation strategy of [36] and [38].
Step2: Feature learning. After we translate the annotated

dataset in the first stage, we can use the translated images
G(A) to train the re-ID model. We refer to the practice as [2]
and add LSR [11] to softly distribute the labels.

In this paper, our main work focuses on improving the first
step with the purpose of improving the entire re-ID accuracy.
In the first step we used CycleGAN, but we added IDE and
identity preserving loss on it. In the second step we add LSR
and further improved re-ID accuracy.

B. CYCLEGAN OVERVIEW
CycleGAN serves the purpose of learning two pairs of
generator and discriminator, {G,DB} and {F,DA}. The gen-
erator G : A→ B maps the source images to target domain
and F : B→ A maps images in the opposite direction. The
discriminator DA andDB are respectively used to discriminate
if the generated images come from another domain. The
adversarial loss for discriminator DB and its related generator
G can be expresses as,

LBadv (G,DB, px, py) = Ey∼py [(DB(y)− 1)2]

+Ex∼px [(DB(G(x)))
2], (1)

where px denote the distribution in source domain and py
denote the distribution in target domain. The adversarial loss
for discriminator DA and its corresponding generator F can
be written as,

LAadv(G,DA, py, px) = Ex∼px [(DA(x)− 1)2]

+Ey∼py [(DA(G(y)))
2]. (2)

However, only two separate pairs of generator and dis-
criminator loss functions are not enough for image-to-image
translation. CycleGAN proposes a cycle consistent loss that
combines two pairs of generator and discriminator. Forcing
F(G(x)) ≈ x and G(F(y)) ≈ y so that every picture passes a
cycle mapping for reconstruction. Cycle-consistent loss is,

Lcyc(G,F) = Ex∼px [‖F(G(x))− x‖1]
+Ey∼py [‖G(F(y))− y‖1]. (3)

In addition to adversarial loss, cycle-consistent loss,
we also added target domain identity constraint [10] which
helps regularizing generator to learn the identity mapping
when the real samples from target dataset are set to be input
images. Therefore, the identity mapping loss can be written
as,

Lide
(
G,F, px , py

)
= Ex∼px

[
‖F (x)− x‖1

]
+Ey∼py

[
‖G (y)− y‖1

]
. (4)

As mentioned in [10], the color of the images generated
from source domainmay changewithout Lide (Fig. 3(b)). This
is confirmed by our later experiments.
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FIGURE 2. The proposed DTGAN is composed of two parts: a CycleGAN and a Siamese network. The CycleGAN learns the generative mappings G and F in
the process of image-to-image translation. The Siamese network pulls close the images of the same ID and pushes away the images of different IDs. The
blocks in yellow are convolution layers, the blocks in red are max pooling layers and the block in purple is fully connected layer. During training,
the training images are first used to train the generators, then the discriminators, and finally sent to train the Siamese network.

C. DTGAN
After the translation between source domain and target
domain using CycleGAN and IDE, we found that using
only CycleGAN and IDE is not enough for re-ID tasks.
The ID information should be utilized, so we proposed
DTGAN. In DTGAN, we can not only translate the images,
but also preserve the relevant ID information in the process.
In DTGAN, we combine Siamese network and CycleGAN
together, as shown in Fig. 2. CycleGAN learns the mapping
between source domain and target domain, whereas Siamese
network pulls close pairs of images containing the same per-
son ID information and pushes away the distance of different
persons’ image pairs. During training process, the images
are first used to update the generator and discriminator of
CycleGAN, and then sent to train the Siamese network.

1) IDENTITY PRESERVING LOSS FUNCTION
The Siamese network is trained with the following loss
from [29],

Lip
(
C, x1,x2

)
= (C)

2
Q

(
d
(
x1,x2

))2
+ (1− C) 2Qe−

2.77
Q d(x1,x2), (5)

where x1 and x2 represent a pair of input vectors, and d(x1,x2)
denotes the Euclidean distance of the two input person
images: d

(
x1,x2

)
= ‖x1 − x2‖2. C denotes the ground-truth

label, where C = 1 if x1 and x2 form a positive pair; C = 0 if
x1 and x2 form a negative pair. Q denotes a constant.

2) POSITIVE AND NEGATIVE IMAGE PAIR DEFINITION
The proposed DTGAN requires positive and negative
pairs [27] as shown in (5). Assuming sample XA comes
from source domain and XB comes from target domain, for
the generator G and F, we define 1)XA and G(XA), 2) XB
and G(XB) as the positive image pairs. In a positive pair,
two samples have the same ID information. The difference
is that one contains the style of source domain, and the
other contains the style of target domain. When training the
Siamese network, we pull close the distance of the posi-
tive pairs. At the same time, we define two negative pairs:
1) XB and G(XA), 2)XA and G(XB). We introduced the two
datasets in re-ID with different ID information, the images
translated from source domain should have different ID infor-
mation than any images in target domain. So, when training
the Siamese network, we push the distance of the negative
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FIGURE 3. Sample images of image-to-image translation between
Market-1501 and DukeMTMC-reID. The left side is translating images
from Market-1501 to DukeMTMC-reID, and the right side is translating
images from DukeMTMC-reID to Market-1501. (a) original dataset
images. (b) translated images by CycleGAN. (c) translated images by
CycleGAN +Lide. (d) translated images by DTGAN.

pairs away. Some positive image pairs can be shown as (a)
and (d) in Fig. 3.

3) THE OVERALL TRAINING OBJECTIVE
The mentioned adversarial loss, cycle-consistent loss, iden-
tity preserving loss above jointly work for learning a Siamese
network and preserving ID information. The overall DTGAN
loss function can be written as,

Ldt = LAadv + LBadv + λ1Lcyc + λ2Lide + λ3Lip, (6)

where λ1, λ2, and λ3 regulate the relevant proportion of the
four objectives. We obtain the optimal value of λ3 in the
following experiment (Fig. 6). LAadv, LBadv, and Lcyc come
from CycleGAN formulation [10]. The identity preserving
loss Lip is used to train the Siamese network, which is a new
constraint on the system.

D. FEATURE LEARNING WITH LSR
Oncewe obtained the translated images and associated labels,
we can start using these translated samples for feature learn-
ing and training the re-ID model in a supervised manner.
We employ the baseline ID-discriminative Embedding (IDE)
in [2] for network training. We adopt ResNet50 [26] as back-
bone and refer to the practice in [2]. Besides, we modify the
last 1000-dimensional fully-connected layer to the number of
the dataset identities.

1) TRAINING WITH LSR
Although the translated images can effectively transform to
the style of target images and retain the ID information to
promote our re-ID effect, the translation process still pro-

duces noise, which may affect the accuracy of re-ID. The
generation of noise can be attributed to two aspects. On the
one hand, CycleGAN cannot fully learn the mapping rela-
tionship between two domains, so that errors may occur
during the translation process; On the other hand, because of
occlusion and detection errors, there is already some noise
in the sample. Translating these noisy samples may generate
more noise samples. For the sake of addressing this problem,
the proposed DTGAN utilizes label smoothing regularization
applying to images to softly distribute these labels and avoid
over-fitting risk. LSR assigns less weights to ground truth
classes and small value to non-ground truth classes instead
of 0. This strategy avoids our excessive tendency to ground
truth, which decreases the possibility of over-fitting. LSR is
commonly used on cross-entropy loss, and it is written as,

L = −
∑K

k=1
log (p (k)) q (k), (7)

where k in {1, 2, . . . ,K} corresponds to a class in the dataset
and K is the number of classes. p (k) ε [0, 1] denotes the
predicted probability of the samples belonging to class k
and q (k) denotes the ground truth distribution. Let y be the
ground truth label, q (k) could be expressed as,

q (k) =

{
0 k 6= y
1 k = y.

(8)

At this point, we have to reduce the loss of (7), which
is equivalent to increasing the proportion of ground truth,
so if the 0 term is not taken into consideration in (7), the
formulation can be rewritten as,

L = − log (p (y)) . (9)

However, only considering the ground truth may cause
the problem of over-fitting. Therefore, the LSR takes non-
ground-truth into consideration. The ground truth label
distribution can be re-defined as,

qLSR (k) =


ε

K
k 6= y

1− ε +
ε

K
k = y,

(10)

where ε ε [0, 1], if ε = 0, (10) will be reduced to (8). If ε is
set as an overly large value, then the model may be difficult
to predict the ground truth label. Therefore, ε is usually set to
0.1. At this time, loss function can be rewritten as,

LLSR = − (1−ε) log (p (y))−
ε

K

∑K

k=1
log (p (k)) (11)

2) DISCUSSION
Label Smoothing Regularization for Outliers (LSRO) [6] was
proposed to train a re-ID model with the unlabeled images
generated by DCGAN [12].It assigns a uniform distribution
over the unlabeled images. There are two differences between
LSRO and our proposed work. First, LSRO is applied when
the samples do not contain labels, which is a semi-supervised
method. We train the re-ID model with labels, so we apply
LSR to our work. Second, the images generated by DTGAN
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FIGURE 4. Examples of the style transfer. The upper left is images from
DukeMTMC-reID, and the upper right is DukeMTMC-reID images
translated to Market-1501 style. The lower left is images from
Market-1501, and the lower right is Market-1501 translated to
DukeMTMC-reID style.

maintain the main characteristics of source domain and con-
tain the style of the target domain.

IV. EXPERIMENT
A. DATASET
In this paper, we test and verify our proposed DTGAN
method onMarket-1501 [31] andDukeMTMC-reID [6], [32].
Market-1501 collects 12,936 images from 751 identities for
training and 19,732 images from 750 identities for testing.
DukeMTMC-reID is a re-ID version of the DukeMTMC
dataset, which includes 1,402 identities, 16,522 images from
702 identities for training, 2,228 query images from the
other 702 identities for testing, and 17,661 database images.
We employ mean average precision (mAP) and rank-1
accuracy to the two large-scale datasets to evaluate the per-
formance of our method for re-ID. Fig. 4 shows some image
samples of Market-1501 and DukeMTMC-reID.

B. EXPERIMENT SETTINGS
1) TARGET-SOURCE DOMAIN TRANSLATION
We employ the deep learning framework TensorFlow [33] to
train DTGAN. Noted that the image translation is an unsuper-
vised process, therefore, we do not employ any annotation of
identity information during the training process. In all exper-
iment, some of our parameters are set as follows, for λ1= 10,
λ2= 5, λ3= 2 and Q = 2 in (6). We set the learning rate as
0.0002, and the number of epochs is 5. ε in LSR is set as 0.1.
In the test phase, we use G for mapping images fromMarket-
1501 to DukeMTMC-reID and F for mapping images from
DukeMTMC-reID toMarket-1501. The translated images are
used to train re-ID models.

To train CycleGAN, we refer to the training strategy
in [10], and when training Siamese network, we refer to
the training strategy in [9], which consists of 4 convolution
layers, 4 maximum pooling layers, and 1 fully connected
layer.

2) FEATURE LEARNING
We refer to the training strategy in [2] and train a classi-
fication network (IDE). ResNet-50 [26] is utilized as the
backbone to fine-tune the training images. Specially, wemod-
ify the output of the last fully connected layer to the number of
identities of the dataset. For example, we changed the output
of the fully connected layer to 702 on DukeMTMC-reID and
changed to 751 on Market-1501. We utilize the mini-batch
stochastic gradient descent to train re-ID model on a TITAN
X GPU.

C. EVALUATION
1) SUPERVISED LEARNING COMPARED TO DIRECT
TRANSFER
In Table 1, it can be apparently observed that when we
use a model trained on source domain to classify target
domain images, the accuracy of the model drops dramat-
ically. For example, as the experiment reported in [35],
the ResNet-50 model trained on the DukeMTMC-reID
achieves 63.4% in rank-1 accuracy, however, whenwe test the
model on Market-1501, the accuracy falls sharply to 33.1%.
It can be also observed that the model trained on Market-
1501 attains 76.2% in rank-1 accuracy and when we test it on
DukeMTMC-reID, the accuracy drops drastically to 43.1%.

TABLE 1. Comparison of different methods applied to target domain.
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FIGURE 5. Visualization of the comparison of different settings testing on target domain. (a) Comparison of different methods testing on
DukeMTMC-reID. (b) Comparison of different methods testing on Market-1501.

The main reason is the domain bias and we propose DTGAN
to address this problem.

2) THE DOMAIN ADAPTION BASELINE USING CYCLEGAN
In the baseline method (Section III.A), we perform the
image-to-image translation following two steps. As displayed
in Table 1, there is an obvious improvement between direct
transfer and the baseline framework. Compared to direct
transfer, the performance of CycleGAN baseline obtains
+2.9% and +5.0% improvement in mAP and rank-1 accu-
racy on DukeMTMC-reID. The performance gains +2.1%
in mAP and +2.5% in rank-1 accuracy on Market-1501.
The result shows the effectiveness of the baseline than direct
transfer method.

3) THE INFLUENCE OF TARGET DOMAIN
IDENTITY CONSTRAINT
As shown in Table 1, on DukeMTMC-reID, CycleGAN
+Lide attains analogous mAP and rank-1 accuracy compared
to CycleGAN. However, CycleGAN +Lide gains +1.6% in
mAP and +2.5% in rank-1 accuracy on Market-1501. The
reason why testing on Market-1501 achieves better results is
thatMarket-1501 dataset ismore inclusive of the inter-camera
variance. The target identity constraint does not largely
improve the re-ID accuracy, but as shown in Fig. 3, this
loss can significantly improve color distortion of the images.
Therefore, we adopt the identity constraint as an auxiliary
tool. The experiment shows the effectiveness of the identity
loss for re-ID.

4) THE EFFECTIVENESS OF THE PROPOSED DTGAN
As shown in Table 1, the proposed DTGAN achieves higher
re-ID performance than previous methods. Compared with
CycleGAN +Lide, DTGAN obtains +2.7% and +2.6% in
mAP and rank-1 accuracy on DukeMTMC-reID, respec-
tively. Similarly, DTGAN gains +2.9% in mAP and +5.9%
in rank-1 accuracy on Market-1501. The proposed DTGAN
can preserve the latent ID information of the source images
and thus improves the re-ID performance. The consistent

growth of the re-ID accuracy proves that the proposed
DTGAN generates images suitable for the model training
in the target domain. Translated images by DTGAN are
displayed in Fig. 4.

5) STUDY OF THE SENSITIVITY OF THE PARAMETER –
We evaluate the influence of the key parameter λ3 in (6).
λ3 controls the weight of the identity preserving loss Lip.
As shown in Fig. 6, the identity preserving loss achieves
improvement when compared to λ3 = 0. However, a larger
λ3 does not bring better results. Therefore, λ3 = 2 achieves
the best result.

6) LSR FURTHER IMPROVES THE RE-ID PERFORMANCE
In our experiments, we apply LSR so as to softly distribute
labels and avoid over-fitting risk. We show in the Table 1,
using LSR achieves higher performance. On DukeMTMC-
reID, the performance of adding LSR gains +2.4% and
+3.8% improvement in mAP and rank-1 accuracy than
DTGAN. The performance improvement is +2.2% and
+2.7% in mAP and rank-1 accuracy when testing on
Market-1501. The LSR method reduces the focus on labels
and prevents the network from over-fitting, which explains
why applying LSR obtains a superior performance. The
visualization of the effect of these settings is shown as Fig. 5.

7) DISCUSSION
As shown in Fig. 4, the style of the translated images has
changed close to the target domain. It is important that the
translated images are visually closer to the style of target
images. However, whether the model trained with the trans-
lated images achieves better performance in target domain
than direct transfer is of greater importance. As shown
in Table 1, on DukeMTMC-reID, DTGAN obtains +5.9%
and +8% than direct transfer in mAP and rank-1 accuracy,
respectively. On Market-1501, DTGAN obtains +6.6% and
+8.9% than direct transfer in mAP and rank-1 accuracy,
respectively. The result proves that the model brings the
source images closer to target domain and the model trained

103342 VOLUME 7, 2019



S. Zhou et al.: Double-Domain Imaging and Adaption for Person re-ID

FIGURE 6. Influence of λ3 on re-ID accuracy. A larger λ3 means larger weight of identity preserving loss.

TABLE 2. Comparison with the state-of-the-art methods on market-1501.

with translated images is more appropriate than the model
trained with original source images.

D. COMPARISON WITH THE STATE-OF-THE-ART
METHODS
As shown in Table 2, on Market-1501, we compare
our DTGAN approach with local maximum occurrence
(LOMO) [40] and Bag-of-Words (BoW) [31] at first. Unlike
other domain adaption methods, they are not trained and
directly tested on dataset, and obviously obtain poor per-
formance. We also compare our methods to other unsu-
pervised methods, including UMDL [42], the Progressive
Unsupervised Learning (PUL) [35] and Similarity Preserving
Generative Adversarial Net (SPGAN) [9]. We achieve better
performance than these existing methods, where mAP =
23.6% and rank-1 accuracy= 54.0%. It is+0.8% inmAP and
+2.5% in rank-1 accuracy beyond the second-best method.
After applying LSR, we arrived at mAP = 25.8% and rank-1
= 56.7%, which is +3% in mAP and +5.2% in rank-1 accu-
racy than SPGAN, respectively. These comparisons show that
our DTGAN method is competitive to the state-of-the-art
unsupervised methods.

As shown in Table 3, on DukeMTMC-reID, we make
comparisons between DTGAN and LOMO [40], BoW [31],

TABLE 3. Comparison with the state-of-the-art methods on
dukemtmc-reid.

UMDL [42], PUL [35], SPGAN [9] methods. The proposed
method obtains the excellent performance of mAP = 22.6%
and rank-1 accuracy= 41.1%. After applying LSR, we obtain
the result of mAP = 25.0% and rank-1 accuracy = 44.9%,
which gains the improvement of +3.8% and +2.7% in
rank-1 accuracy and mAP than SPGAN. These comparisons
prove the superiority of DTGAN on DukeMTMC-reID.
Discussion: As shown in our experiments, we prove the

superiority and effectiveness of the proposed DTGAN to
direct transfer and CycleGAN method. Moreover, we show
the effectiveness of added identity preserving loss and LSR.
Both our method and SPGAN adopt CycleGAN to translate
images between two domains. But compared to SPGAN,
our method adopts different loss functions to preserve the
identity information, and we add LSR strategy to moderate
the noise in feature learning process. Therefore, our method
achieves better results. Besides, this method achieves bet-
ter results compared with the state-of-the-art methods on
Market-1501 and DukeMTMC-reID.

V. CONCLUSION
This paper mainly focuses on domain adaption in re-ID.
When the model trained on one dataset is directly tested
on another dataset, re-ID accuracy usually drops drastically
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owing to the dataset bias. To address this problem, we
introduce the DTGAN. The proposed DTGAN is composed
of two parts: a CycleGAN and a Siamese network. The
DTGAN baseline is divided into two steps, 1) unsupervised
image-to-image translation, 2) supervised re-ID model learn-
ing with translated images. The proposed method can not
only translate images between different double domains but
preserve the latent ID information as well, which satisfies the
requirement of re-ID. Besides, we adopt the LSR strategy
in order to moderate the influence of noise, which further
improves the re-ID accuracy. The experiments demonstrate
the effectiveness and superiority of our proposed DTGAN
method on Market-1501 and DukeMTMC-reID.
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