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ABSTRACT Multi-view learning mechanism, which enhances learning performance by training
multi-model data sets, is a popular filed in recent years. Multi-view generalized eigenvalue proximal support
vector machine (MvGSVM), as a most recently proposed classifier, has been shown to be successful in
multi-model classification, which incorporates multi-view learning into classical GEPSVM. However, this
method is still based on squared L2-norm distance measure, thus its robustness is not guaranteed in the
presence of outliers. To address this problem, we propose a robust multi-view GEPSVM based on Lp-norm
minimization and Ls-norm maximization. But, the introduction of the Lp-norm and Ls-norm makes the
problem different from the generalized eigenvalue problem. So an efficient iterative algorithm is designed
to solve this problem, and we also give the proof of convergence of the algorithm. The performances in
extensive experiments demonstrate the effectiveness and robustness of the algorithm.

INDEX TERMS Robustness, multi-view learning, classification, generalized eigenvalue proximal support
vector machine (GEPSVM).

I. INTRODUCTION
Support vector machine (SVM) [1]–[3], as a supervised
learning tool [4], has performed powerfully in pattern recog-
nition and data mining over the past decades. The main idea
of traditional SVM is to construct two parallel hyperplanes
between +1 class and −1 class datasets in a real space,
and seek an optimal hyperplane by maximizing the margin
between the two parallel hyperplanes [5]. SVMhas been pop-
ularly applied in a great deal of practical problems [6]–[10]
with its characteristic based on structural and empirical
risk minimization, such as image classification, handwriting
recognition, disease diagnosis, bioinformatics and so on.

However, there are two main constraints for original SVM
that limit its exposure to a wider range of applications:
the complex Quadratic Programming Problems (QPPs) [11]
and Exclusive Or problems (XOR). In order to solve the
two problems, Mangasarian and Wild proposed a simple
and fast classifier for binary classification problem, termed
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as generalized eigenvalue proximal support vector machine
(GEPSVM) [12]. The main idea of GEPSVM is to generate
two hyperplanes and each hyperplane is close to one class
and as far as possible from another class [13]. Different from
the standard SVM in obtaining the optimal plane by solving a
quadratic programming problem (QPP), GEPSVM attempts
to achieve two nonparallel hyperplanes by solving a pair
of generalized eigenvalue problems. Hence, one superiority
of GEPSVM is that it can deal with XOR problem effec-
tively, which has been testified in many researches on the
cross datasets [12], [16], [36]. With the powerful scalability
of GEPSVM, many improved methods have been devel-
oped in the past period of time [14]–[22]. Jayadeva et al. [14]
proposed an extended fuzzy multi-category algorithm based
on GEPSVM for multiclass problem. Ye [16] put forward
a new algorithm to resolve the singular problem by sin-
gular value decomposition, which is called improved prox-
imal support vector machine via generalized eigenvalues
(IGEPSVM). Shao [17] presented a developed version of
GEPSVM via replacing generalized eigenvalue decompo-
sition with standard eigenvalue decomposition, which is
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more efficacious and faster than GEPSVM. Chen et al.
trained a novel manifold proximal support vector machine
(MPSVM) [18] for semi-supervised classification by intro-
ducing a manifold regularization (MR) term. After that,
Liang et al. [20] proposed a novel method called manifold
regularized proximal support vector machine via general-
ized eigenvalue (MRGEPSVM). By reformulating differen-
tial search algorithm (DSA) to find near optimal values of
the GEPSVM parameters, Marghny et al. proposed DSA-
GEPSVM [19]. In addition, inspired of the optimization
objective for GEPSVM, Jayadera et al. raised twin support
vector machine (TWSVM) [13], which tries to obtain two
nonparallel hyperplanes by solving two small-scale QPPs
instead of generalized eigenvalue problems, is an important
branch of SVM. After that, there have been many improved
versions of TWSVM in recently, like WLMSVM [23],
IMBSVM [24] and so on.

Multiview learning (MVL) [25], [26] is an ascendant
learning direction in machine learning that utilizes dif-
ferent feature sets of the same object to perform calcu-
lations, and via capitalizing on the complementarity and
consistency among distinct views to enhance classifiers
performance [28], [29]. These diverse views are usually
derived from common multi-model data with different fea-
ture extraction methods [25] in practical applications. For
instance, one picture can be described by color and texture
feature sets while a people can be identified by fingerprints or
gaits. Furthermore, it is still valid for the artificially generated
multi-view sets of the objects which have no extra modal
features [27]. However, the main challenge of multi-view
learning is to seek out an impactful model to combine mul-
tiple views. To solve the problem, Farquhar et al. [31] pro-
posed a new method which combines the two distinct stages
of kernel canonical correlation analysis (KCCA) [30] and
SVM [1] into a single optimization in 2005, called SVM-2K,
calculating with two views of the data. Sindhwani et al. [32]
devised a co-regularization framework with multiple views.
In recent years, Xie and Sun extended laplacian twin sup-
port vector machine (LapTWSVM) [33] to multi-view lapla-
cian support vector machines (MvLapTWSVM) [34] with
a new framework which combines two views in the con-
straint, by introducing two similar one-dimensional projec-
tions to find two variant TWSVM from distinct feature
spaces alternative to the objective function. Later, by intro-
ducing a multi-view co-regularization to associate two views,
Sun [35] gave an improved version based on GEPSVM,
termed as multi-view learning with GEPSVM (MvGSVM),
which converts a complex optimization problem to a gen-
eralized eigenvalue problem. Tang et al. propose a new
multi-view privileged SVM model, multi-view privileged
SVM model (PSVM-2V) [36]. After that, they built a
new multi-view learning model based on nonparallel sup-
port vector machine, termed as MVNPSVM [37], which
combines the large margin mechanism and the consensus
principle. Zhang et al. stacked the correlation restricted
boltzmann machine (RBM) to create the correlation deep

belief network (DBN), and then proposed the multimodal
correlation DBN for learning multi-view data representa-
tions (CRBM) [38]. He et al. [39] develop a model which
can perform better in both multi-view and transfer learning
settings (MTDM). Besides, there are many applications for
multi-angle learning in other fields of machine learning,
such as multi-view dimensionality reduction [40], multi-view
ensemble learning [41], and multi-view clustering [42].

Notwithstanding, it is worth noting that almost methods
mentioned above may suffer from the sensitivity of outliers
or noises due to the squared L2-norm operation. In order
to expand robust methods that can reduce the influence of
outliers and noises, many works introduce L1-norm dis-
tance metric into related algorithms in recent years, as a
result, extensive studies have shown that L1-norm operation
is an effective way against noises [43]–[51]. For instance,
Yan and Yan [45] reconstructed the ratio term of GEPSVM
with L1-norm metric to seek two nonparallel planes by
managing a pair of QPPs. L1-norm projection twin SVM
(L1-TWSVM) is proved that has a more stable performance,
in which Yan et al. [46] constructed an unconstrained con-
vex programming problem and generate multiple projection
axes for each class by using recursive algorithms. Besides,
L1-norm is also actively applied in feature extraction
and dimensionality reduction (DR), such as principal
component analysis based on L1-norm maximization
(PCA-L1) [52]–[54], linear discriminant analysis based on
L1-norm maximization (L1-LDA) [55], [56], etc. Yet, con-
sidering the fact that although L1-norm distance can obtain
better robustness than L2-norm distance, it also lacks satis-
factory robustness especially large outliers and noises exist.
In [64], inspired by [58]–[60], Sun et al. reformulated the
optimization based on L1-GEPSVM via using an Lp-norm
regularization to replace L2-norm regularization, named
robust nonparallel proximal SVM with Lp-norm regular-
ization (LpNPSVM), which solves a strongly convex pro-
gramming problem in each iteration. Qi et al. [62] extended
the generalized multiple kernel learning (GMKL) [63] to a
more robust generalized MKL method, by joining L1-norm
and Lp-norm. Actually, L1-norm and L2-norm are both the
special form of Lp-norm. However, the related Lp-norm
researches still employ non-robust squared L2-norm in the
objectives. Previous our work [57] has shown that Lp-norm
distance metric is a better choice for improving robustness,
who redesigned a flexible linear discriminant analysis via
simultaneous Ls-norm distance maximization and Lp-norm
distanceminimization (FLDA-Lsp), which solves a newmore
effective iterative algorithm for the solution to the objective
as an excellent contribution, and the result of this research
shows the convergence and superiority of Lp-norm distance
metric.

Under the inspiration of the works of multi-view
learning [25], [33], [37] and robust Lp-norm distance
measure [57], we propose a robust multi-view GEPSVM
algorithm, Lp,s-MvGEPSVM, which is based on the
Lp-norm distance minimization and Ls-norm maximization.
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Of course, the differences between the proposed method and
our previous work, in addition to the multi-view learning,
there is a dimension reduction algorithm in [57] but ours is
a classification method. In specific, the main contributions of
this paper is shown as follows:

(1) Considering the importance of the distance from hyper-
planes to the corresponding+1 class and−1 class may be dif-
ferent, Lp,s-MvGEPSVM introduces Lp-norm and Ls-norm
distance measure. Hence the adverse impacts resulting from
outliers and noises could be alleviated by setting relatively
minor p and s.

(2) Despite previous improvement, we also do the same
managing for the multi-view co-regularization term to ensure
the difference between the two views is as small as possible.
Obviously, MvGSVM is a special form of our algorithm if
we set p = 2 and s = 2 in (30), which illustrates the new
proposed method is flexible. And in other words, the opti-
mization of the more complex objective is one highlight of
this paper.

(3) Since the objective function is non-absolutely convex
and contains Lp-norm minimization term and Ls-norm max-
imization term, we put forward a new impactful method to
solve this problem.

(4) The convergence of our iteration algorithm is guaran-
teed and the experiment results on the distinct datasets exhibit
the effectiveness and robustness of our algorithm. Moreover,
our ideas can be integrated into other methods that will be
discussed in future work.

The remainder content of this paper is organized as fol-
lows. Section II gives a brief retrospect about GEPSVM
and MvGSVM. Section III proposes Lp,s-MvGEPSVM with
its geometric interpretation and section IV gives theoreti-
cal proof in details. All results of our experimentation are
displayed in Section V. Finally, Section VI summarizes the
whole work.

II. RELATED WORK
In this paper, we consider a binary classification problem
and all vectors are column vectors. For a given real space
of dimension d , suppose dataset X = {x1, x2, x3, . . . , xn}
and the corresponding label vector yi(i = 1, 2, . . . , n) ∈
{+1,−1}, e1 and e2 represent the identity column vectors of
the appropriate dimension. And matrix A ∈ Rn1×d is a set of
points belonging to the +1 class in the sample, while matrix
B ∈ Rn2×d is a set of points belonging to the−1 class, where
n1 + n2 = n.

A. GEPSVM
The purpose of GEPSVM [12] is to find two hyperplanes
which are nonparallel and proximal optimal in space Rd

xTw1 + b1 = 0, xTw2 + b2 = 0. (1)

making the first hyperplane closest to the points of class
+1 and having the largest distance from the points of the
−1 class, while the second hyperplane is the opposite perfor-
mance, wherew1,w2 ∈ Rd , b1, b2 ∈ R. Therefore, the goal of

GEPSVM leads to the following two optimization problems

min
w1,b1

‖Aw1 + e1b1‖2 /
∥∥ [w1 b1]T

∥∥2
‖Bw1 + e2b1‖2 /

∥∥ [w1 b1]T
∥∥2 (2)

and

min
w2,b2

‖Bw2 + e2b2‖2 /
∥∥ [w2 b2]T

∥∥2
‖Aw2 + e1b2‖2 /

∥∥ [w2 b2]T
∥∥2 (3)

where (wi, bi) 6= 0 (i = 1, 2) and ‖ . ‖ indicates the
squared L2-norm operation, similarly, those also applies to
the following formulas. The above objective functions can be
optimized as

min
w1,b1

‖Aw1 + e1b1‖2

‖Bw1 + e2b1‖2
(4)

and

min
w2,b2

‖Bw2 + e2b2‖2

‖Aw2 + e1b2‖2
(5)

For the singularity problem caused by positive semi-definite
matrix in the process of calculating, formulas (6) and (7)
can obtain a more stable solution via introducing Tikhonov
regularization term [65], as follows

min
w1,b1

‖Aw1 + e1b1‖2 + δ
∥∥ [w2 b2]T

∥∥2
‖Bw2 + e2b2‖2

(6)

and

min
w2,b2

‖Bw2 + e2b2‖2 + δ
∥∥ [w2 b2]T

∥∥2
‖Aw1 + e1b1‖2

(7)

where δ is a non-negative regularization parameter. Define
z1 = [w1 b1 ]T , z2 = [w2 b2 ]T , G = [A e1 ]T [A e1 ],
H = [B e 2]

T [B e 2]. Thence, the optimization prob-
lems (6) and (7) are equivalent to

min
z1

zT1 (G+ δI)z1
zT1Hz1

(8)

and

min
z2

zT2 (H+ δI)z2
zT2Gz2

(9)

where I is a unit square matrix that matching with G and H.
Obviously, both (8) and (9) are Rayleigh quotient problems.
So the optimal solution of the objective function could be
obtained easily by solving following two generalized eigen-
value problems

(G+ δI) z1 = λ1Hz1, z1 6= 0 (10)

and

(H+ δI) z2 = λ2Gz2, z2 6= 0 (11)

where λ1 and λ2 are the minimum eigenvalues of (10)
and (11), z1 and z2 correspond to the eigenvectors of λ1 and
λ2, respectively. And the first d components of z1 denote the
weight vectorwi of the i-th hyperplane, the last component is
bias bi, with i ∈ (1, 2).
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min
z1 6=0,z2 6=0

zT1G1z1 + zT2G2z2 + δ( ‖ z1‖2 + ‖ z2‖2)+ ε
∥∥MA1z1 −MA2z2

∥∥2
zT1H1z1 + zT2H2z2

(14)

min
ξ1 6=0,ξ2 6=0

ξT1 H1ξ1 + ξ
T
2 H2ξ2 + δ( ‖ ξ1‖2 + ‖ ξ2‖2)+ ε

∥∥MB1ξ1 −MB2ξ2
∥∥2

ξT1 G1ξ1 + ξ
T
2 G2ξ2

(21)

B. MvGSVM
Assuming there are two different views, each view has n
samples X = (xi1, x

i
2, . . . , x

i
n) (i = 1, 2) and shares a com-

mon label vector yj(j = 1, 2, . . . , n) ∈ {+1,−1}, of course,
they have different dimensions. Matrix A1 ∈ Rn1×d1 denotes
the first view of positive class, matrix A2 ∈ Rn1×d2 denotes
the second view of this class. Similarly, we have B1 ∈ Rn2×d1
and B2 ∈ Rn2×d2 belong to the first view and the second
view of negative class, where n = n1 + n2.There are two
hyperplanes for each view as shown

view 1 : xT1w1 + b1 = 0 , xT1 u1 + p1 = 0
view 2 : xT2w2 + b2 = 0 , xT2 u2 + p2 = 0

(12)

where xi (i = 1, 2) means the data points in the i-th view. And
some abbreviations are defined as follows

MA1 = [A1 e], MA2 = [A2 e], G1 =MT
A1MA1

MB1 = [B1 e], MB2 = [B2 e], G2 =MT
A2MA2

H1 = MT
B1MB1 , H2 =MT

B2MB2 , z1 = [w1 b1]T

ξ1 = [u1 p1]T , ξ2 = [u2 p2]T , z2 = [w2 b2]T

Apparently G1 and G2 are symmetric matrices in space
R(d1+1)×(d1+1) and R(d2+1)×(d2+1) for this part, as same asH1
andH2. The goal ofMvGSVM is to seek out two hyperplanes
of each view, in which the positive class hyperplane is as
close as possible to the +1 class samples and as far away as
possible from the corresponding−1 class samples, contrarily,
the negative class hyperplane is the opposite. In addition, the
difference between two views should be as small as possible.
So before giving the objective function, a vital process is the
multi-view co-regularization of the algorithm

f =
∥∥MA1z1 −MA2z2

∥∥2 (13)

where f is going to be as small as possible. Now the opti-
mization objective of the first problem in MvGSVM is given
as (14), as shown at the top of this page, where the signif-
icance of the multi-view co-regularization term is to min-
imize the disparity between two views, ‖z1‖2 and ‖z2‖2

are Tikhonov regularization terms, δ and ε are non-negative
weight factors. Equally, the co-regularization term can be
written as∥∥MA1z1 −MA2z2

∥∥2
=

∥∥∥∥ [MA1 −MA2
] [

zT1 zT2
]T∥∥∥∥2

=

[
zT1 zT2

] [
MA1 −MA2

]T [MA1 −MA2
] [

zT1 zT2
]T
(15)

let z = [zT1 zT2 ]
T , objection problem (14) is equivalent to

min
z6=0

zT
[
G1 0
0 G2

]
z+ δ ‖z‖2

zT
[
H1 0
0 H2

]
z

+
εzT

[
MA1 −MA2

]T [MA1 −MA2
]
z

zT
[
H1 0
0 H2

]
z

(16)

then define

K1=

[
(1+ δ)G1 −δMT

A1
MA2

−δMT
A2
MA1 (1+ δ)G2

]
+ εI, T1=

[
H1 0
0 H2

]
(17)

so the optimization problem is converted to a generalized
Rayleigh quotient

min
z6=0

zTK1z
zTT1z

(18)

It is easy to get the optimum solution by dealing with a
generalized eigenvalue problem as follows

K1z = λ1T1z (19)

The second optimization problem can be solved in the
same way as the first one. And the second multi-view co-
regularization term is∥∥MB1ξ1 −MB2ξ2

∥∥2 (20)

therefore, via drawing term (20) into the other objective func-
tion, the optimal problem can be rewritten as (21), as shown
at the top of this page, by employing the same processing
method with (15), the second minimization problem with
ξ =

[
ξT1 ξT2

]T can be described as

min
ξ 6=0

ξT
[
H1 0
0 H2

]
ξ + δ ‖ξ‖2

ξT
[
G1 0
0 G2

]
ξ

+
εξT

[
MB1 −MB2

]T [MB1 −MB2
]
ξ

ξT
[
G1 0
0 G2

]
ξ

(22)

and let

K2=

[
(1+ δ)H1 −δMT

B1
MB2

−δMT
B2
MB1 (1+ δ)H2

]
+εI, T2=

[
G1 0
0 G2

]
(23)
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same as (18), the formula (22) is simplified to the following
Rayleigh quotient

min
ξ 6=0

ξTK2ξ

ξTT2ξ
(24)

Naturally, it is easy to get the optimum solution by resolv-
ing the following generalized eigenvalue problem

K2ξ = λ2T2ξ (25)

where λ1 and λ2 have identical definitions with GEPSVM.
So that there are four hyperplane parameters z1, z2, ξ1, ξ2
to determine four hyperplanes corresponding to each classes
in the two views. Now, for given test samples x1 and x2,
the Euclidean distance from samples to hyperplanes in each
view can be calculated

view1 : dist11 =

∣∣xT1w1 + b1
∣∣

‖w1‖
, dist12 =

∣∣xT1 u1 + γ1∣∣
‖u1‖

view2 : dist21 =

∣∣xT2w2 + b2
∣∣

‖w2‖
, dist22 =

∣∣xT2 u2 + γ2∣∣
‖u2‖

(26)

Thus the decision function for x1 and x2 is

ŷ = sign(dist12+ dist22− dist11− dist21) (27)

where ŷ is the predicted result of the hybrid views.

III. Lp,s-MvGEPSVM
As shown that MvGEPSVM adopts squared L2-norm dis-
tance metric, which is not robust against outliers [33].
Inspired by our previous work [50], we proposed a new
multi-view learning method with generalized eigenvalue
proximal support vector machines, called Multi-view Learn-
ing with Robust Generalized Eigenvalue Proximal SVM
(Lp,s-MvGEPSVM), which computes the distances from the
positive and negative points to the plane by using Lp-norm
distance and Ls-norm distance.

Let X = (xi1, x
i
2, . . . , x

i
n)(i = 1, 2) denotes n points

in i-th view and yj(j = 1, 2, . . . , n) ∈ {+1,−1} be the
corresponding co-label. Define matrices A1 ∈ Rn1×d1 and
A2 ∈ Rn1×d2 representing the first and second view of +1
class respectively. Similarly, B1 ∈ Rn2×d1 and B2 ∈ Rn2×d2
represent the−1 class of the corresponding views, with n1+
n2 = n. Let sign(·) be a sign function with sign(·) = 1, where
(·) is a positive value and opposite sign otherwise. For a given
p > 0, the Lp-norm of a real vector f ∈ Rd is defined as
||f||p = (

∑d
i=1 |fi|

P)1/p. Pay attention that p is a variable that
can be replace by an arbitrary character such as s.

The goal now is to find two nonparallel hyperplanes in each
view that follows the same significance as MvGSVM

view 1 : xT1w1 + b1 = 0 , xT1 u1 + p1 = 0

view 2 : xT2w2 + b2 = 0 , xT2 u2 + p2 = 0 (28)

However, MvGSVM is also based on the traditional
squared L2-norm distance metric which broadens the out-
liers influence. L1-GEPSVM [39] substitutes L1-norm for
squared L2-norm inGEPSVM,which ismore robustness than
the latter. And inspired by the related works in [50], with
considering the degree of outliers act on the hyperplanes to
distinct classes may be diverse, we supersede the squared
L2-norm distance metric by Lp-norm and Ls-normmeasures.
In addition, we also employ Lp-norm to replace squared
L2-norm for the multi-view co-regularization term.

Before giving the optimization problem, it is necessary to
make some definitions as follows

H1= [A1 e]T , H2= [A2 e]T , z1=
[
w1
b1

]
, z2 =

[
w2
b2

]
G1= [B1 e]T , G2= [B2 e]T , ξ1=

[
u1
γ1

]
, ξ2=

[
u2
γ2

]
(29)

where e represents the identity column vector of the appro-
priate dimension. And

∥∥HT
1 z1 −HT

2 z2
∥∥p
p is a multi-view co-

regularization term which minimizes the difference between
two views. These bring about the first objective function (30),
as shown at the bottom of this page, the formula above can be
written in the form of vector operations by

min
z1,z2

∑n1
i=1

∣∣∣h(1)Ti z1
∣∣∣p +∑n1

i=1

∣∣∣h(2)Ti z2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z2
∣∣∣s

+

∑n1
i=1 ε

∣∣∣h(1)Ti z1 − h(2)
T

i z2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z2
∣∣∣s

+

∑d1+1
i=1 δ

∣∣∣e(1)Ti z1
∣∣∣p +∑d2+1

i=1 δ

∣∣∣e(2)Ti z2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z2
∣∣∣s (31)

where e1i (e
2
i ) denotes the vector of appropriate dimen-

sion in the first (second) view that the i-th element is
1 and others are 0, h(1/2)i , g(1/2)j represent the column
vectors of H1/2,G1/2, ε is the coefficient of multi-view
co-regularization and δ represents the coefficient of Tikhonov
regularization terms, which both are non-negative. This prob-
lem (31) makes the ratio of the distance from positive hyper-
planes to +1 class and −1 class is as small as possible. The
adverse impacts causing by outliers could be alleviated by
setting a small value to p and s, and theoretical results shows
the objective is robust when 0 < p < 2, 0 < s < 2.
Obviously, MvGSVM with L2-norm is a special form of our
algorithm. If set p = 2 and s = 2 in (30), we will obtain

min
z1,z2

∥∥HT
1 z1

∥∥p
p +

∥∥HT
2 z2

∥∥p
p + ε

∥∥HT
1 z1 −HT

2 z2
∥∥p
p + δ ‖z1‖

p
p + δ ‖z2‖

p
p∥∥GT

1 z1
∥∥s
s +

∥∥GT
2 z2

∥∥s
s

(30)
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MvGSVM, which indicates our method is very adaptable.
However, despite the improved robustness and flexibility of
our approach, there is also a problem need to be solved. The
introduction of non-convex proxy function makes it impos-
sible to resolve for a generalized eigenvalue problem. Here,
we propose solving (31) by transforming the problem into a
difference formulation, inspired by [48].

Firstly, let

λ(t) =

∑n1
i=1

∣∣∣h(1)Ti z(t)1
∣∣∣p +∑n1

i=1

∣∣∣h(2)Ti z(t)2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z(t)1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z(t)2
∣∣∣s

+

∑n1
i=1 ε

∣∣∣h(1)Ti z(t)1 − h(2)
T

i z(t)2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z(t)1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z(t)2
∣∣∣s

+

∑d1+1
i=1 δ

∣∣∣e(1)Ti z(t)1
∣∣∣p +∑d2+1

i=1 δ

∣∣∣e(2)Ti z(t)2
∣∣∣p∑n2

j=1

∣∣∣g(1)Tj z(t)1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z(t)2
∣∣∣s (32)

where z(t)1 and z(t)2 denote the optimal solution vectors in the
t-th iteration and λ(t) is the objective value at iteration t . After
that, we get the solution of the (t+1)-th iteration by resolving
the following problem

z(t+1)1 , z(t+1)2 = argmin
z(t)

∑n1

i=1

∣∣∣h(1)Ti z1
∣∣∣p +∑n1

i=1

∣∣∣h(2)Ti z2
∣∣∣p

+

∑n1

i=1
ε

∣∣∣h(1)Ti z1 − h(2)
T

i z2
∣∣∣p

+

∑d1+1

i=1
δ

∣∣∣e(1)Ti z1
∣∣∣p +∑d2+1

i=1
δ

∣∣∣e(2)Ti z2
∣∣∣p

− λ(t)(
∑n2

j=1

∣∣∣g(1)Tj z1
∣∣∣s +∑n2

j=1

∣∣∣g(2)Tj z2
∣∣∣s)
(33)

after deriving z1 and z2 in (33) separately and setting them to
zero, we get∑n1

i=1
p
∣∣∣h(1)Ti z1

∣∣∣p−1 sign(h(1)Ti z1)h
(1)
i

+

∑d1+1

i=1
pδ
∣∣∣e(1)Ti z1

∣∣∣p−1 sign(e(1)Ti z1)e
(1)
i

+

∑n1

i=1
pε
∣∣∣h(1)Ti z1 − h(2)

T

i z2
∣∣∣p−1

× sign(h(1)
T

i z1 − h(2)
T

i z2)h
(1)
i

− λ(t)
∑n2

j=1
s
∣∣∣g(1)Tj z1

∣∣∣s−1 sign(g(1)Tj z1)g
(1)
j = 0 (34)

and∑n1

i=1
p
∣∣∣h(2)Ti z2

∣∣∣p−1sign(h(2)Ti z2)h
(2)
i

+

∑d2+1

i=1
pδ
∣∣∣e(2)Ti z2

∣∣∣p−1 sign(e(2)Ti z2)e
(2)
i

−

∑n1

i=1
pε
∣∣∣h(1)Ti z1 − h(2)

T

i z2
∣∣∣p−1

× sign(h(1)
T

i z1 − h(2)
T

i z2)h
(2)
i

− λ(t)
∑n2

i=1
s
∣∣∣g(2)Tj z2

∣∣∣s−1 sign(g(2)Tj z2)g
(2)
j = 0 (35)

now, considering sign(zT hi) = zT hi
/
|zT hi|, equa-

tions (34) and (35) can be rewritten as following equivalent
formulations

∑n1

i=1

2ph(1)
T

i z1h
(1)
i

2
∣∣∣h(1)Ti z1

∣∣∣2−p +
∑d1+1

i=1

2pδe(1)
T

i z1e
(1)
i

2
∣∣∣e(1)Ti z1

∣∣∣2−p
+

∑n1

i=1

2pε(h(1)
T

i z1 − h(2)
T

i z2)h
(1)
i

2
∣∣∣h(1)Ti z1 − h(2)

T

i z2
∣∣∣2−p

− λ(t)
∑n2

j=1
s
∣∣∣g(1)Tj z1

∣∣∣s−1 sign(g(1)Tj z1)g
(1)
j = 0 (36)

and

∑n1

i=1

2ph(2)
T

i z2h
(2)
i

2
∣∣∣h(2)Ti z2

∣∣∣2−p +
∑d2+1

i=1

2pδe(2)
T

i z2e
(2)
i

2
∣∣∣e(2)Ti z2

∣∣∣2−p
−

∑n1

i=1

2pε(h(1)
T

i z1 − h(2)
T

i z2)h
(2)
i

2
∣∣∣h(1)Ti z1 − h(2)

T

i z2
∣∣∣2−p

− λ(t)
∑n2

j=1
s
∣∣∣g(2)Tj z2

∣∣∣s−1 sign(g(2)Tj z2)g
(2)
j = 0 (37)

For (36), we construct a diagonal matrix D1 ∈ Rn1×n1

and define d (1)i,i = p/(2|h(1)
T

i z1|2−p) as the i-th diagonal

entry of D1, as well as defining u(1)i,i = p/(2|e(1)
T

i z1|2−p)

and vi,i = p/(2|h(1)
T

i z1 − h(2)
T

i z2|2−p) as the i-th diagonal
entry of U1 ∈ R(d1+1)×(d1+1) and V ∈ Rn1×n1 , respectively.
Construct vector k1 ∈ Rn2 with its i-th element as k (1)j =

s|g(1)
T

j z1|s−1sign(g
(1)T

j z1). Define z = [ zT1 zT2 ]T and hi =

[h(1)
T

i −h(2)
T

i ]T , thus the minus item could be converted into∑n1
i=1 2ph

T
i zh

(1)
i

/
(2|hTi z|

2−p). Then, the formula (36) can be
equivalently reformed to a new matrix type in (38)

2H1D1HT
1 z1 + 2εH1VHT z+ 2δE1U1ET1 z1 − λ

(t)G1k1=0

(38)

where H denotes [HT
1 −H

T
2 ]T . And in the same manner as

the conversion from (36) to (38), we define a diagonal matrix
D2 ∈ Rn1×n1 and let d (2)i,i = p/(2|h(2)

T

i z2|2−p) be the i-th

diagonal entry of D2. Set u
(2)
i,i = p/(2|e(2)

T

i z2|2−p) as the i-th
diagonal entry of U2 ∈ R(d2+1)×(d2+1). Construct vector k2 ∈
Rn2 with its i-th element as k (2)j = s|g(2)

T

j z2|s−1sign(g
(2)T
j z2).

Next, the equation (37) can be rewritten as

2H2D2HT
2 z2 − 2εH2VHT z+ 2δE2U2ET2 z2 − λ

(t)G2k2=0

(39)

where E1 and E2 represent identity diagonal matrices cor-
responding to z1 and z2. Consolidate (38) and (39) we can
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obtain[
H1

H2

] [
D1

D2

] [
HT

1
HT

2

] [
z1
z2

]
− λ(t)

[
G1

G2

] [
k1
k2

]
+ δ

[
E1

E2

] [
U1

U2

] [
ET1

ET2

] [
z1
z2

]
+ ε

[
H1
−H2

]
[V]

[
HT

1 −H
T
2

] [ z1
z2

]
= 0 (40)

Let

MH1 =

[
H1

H2

]
, MH2 =

[
H1
−H2

]
, D=

[
D1

D2

]
,

E =
[
E1

E2

]
, U =

[
U1

U2

]
,

MG1 =

[
G1

G2

]
,k =

[
k1
k2

]
(41)

according to the transformations described above, (40) can be
written as

2MH1DM
T
H1
z+ 2εMH2VM

T
H2
z

+ 2δEUET z− λ(t)MG1k = 0 (42)

which has the same solution as the following objective ques-
tion

z(t+1) = argmin
z

zTMH1DM
T
H1
z+ εzTMH2VM

T
H2
z

+ δzTEUET z− λ(t)zTMG1k (43)

sinceD,V,U and k are unknown variables and connected to z
that could be solved by an iterative optimization framework.
In other words, we calculate z of the last iteration to get the
current D, V, U and k.

In the same way, by introducing another multi-view co-
regularization term

∥∥GT
1 ξ1 −GT

2 ξ2
∥∥, the second objective

optimization problem turns into (44), as shown at the bottom

of this page, by using the same trick of (31), formula (44) is
equivalent to (45), as shown at the bottom of this page, and
the objective value ϕ(t) in the t-th iteration is (46), as shown
at the bottom of this page, thus the objective function can be
simplified from division to subtraction and find out optimal
solution in the (t + 1)-th iteration

ξ
(t+1)
1 , ξ

(t+1)
2 = argmin

ξ (t)

∑n2

j=1

∣∣∣g(1)Tj ξ1

∣∣∣p+∑n2

j=1

∣∣∣g(2)Tj ξ2

∣∣∣p
+

∑n2

j=1
ε

∣∣∣g(1)Tj ξ1 − g(2)
T

j ξ2

∣∣∣p
+

∑d1+1

i=1
δ

∣∣∣e(1)Ti ξ1

∣∣∣p+∑d2+1

i=1
δ

∣∣∣e(2)Ti ξ2

∣∣∣p
−φ(t)(

∑n1

i=1

∣∣∣h(1)Ti ξ1

∣∣∣s +∑n1

i=1

∣∣∣h(2)Ti ξ2

∣∣∣s
(47)

taking the derivative of ξ1 and ξ2 in (47) and set them to zero∑n2

j=1
p
∣∣∣g(1)Tj ξ1

∣∣∣p−1 sign(g(1)Tj ξ1)g
(1)
j

+

∑d1+1

i=1
pδ
∣∣∣e(1)Ti ξ1

∣∣∣p−1 sign(e(1)Ti ξ1)e
(1)
i

+

∑n2

j=1
pε
∣∣∣g(1)Tj ξ1 − g(2)

T

j ξ2

∣∣∣p−1
× sign(g(1)

T

j ξ1 − g(2)
T

j ξ2)g
(1)
j

− λ(t)
∑n1

i=1
s
∣∣∣h(1)Ti ξ1

∣∣∣s−1 sign(h(1)Ti ξ1)h
(1)
i = 0 (48)

and∑n2

j=1
p
∣∣∣g(2)Tj ξ2

∣∣∣p−1sign(g(2)Tj ξ2)g
(2)
j

+

∑d2+1

i=1
pδ
∣∣∣e(2)Ti ξ2

∣∣∣p−1 sign(e(2)Ti ξ2)e
(2)
i

−

∑n2

i=1
pε
∣∣∣g(1)Tj ξ1 − g(2)

T

j ξ2

∣∣∣p−1
× sign(g(1)

T

j ξ1 − g(2)
T

j ξ2)g
(2)
j

− λ(t)
∑n1

i=1
s
∣∣∣h(2)Ti ξ2

∣∣∣s−1 sign(h(2)Ti ξ2)h
(2)
i = 0 (49)

min
ξ1,ξ2

∥∥GT
1 ξ1

∥∥p
p +

∥∥GT
2 ξ2

∥∥p
p + ε

∥∥GT
1 ξ1 −GT

2 ξ2
∥∥p
p + δ ‖ξ1‖

p
p + δ ‖ξ2‖

p
p∥∥HT

1 ξ1
∥∥s
s +

∥∥HT
2 ξ2

∥∥s
s

(44)

min
ξ1,ξ2

∑n2
j=1

∣∣∣g(1)Tj ξ1

∣∣∣p +∑n2
j=1

∣∣∣g(2)Tj ξ2

∣∣∣p +∑n2
j=1 ε

∣∣∣g(1)Tj ξ1 − g(2)
T

j ξ2

∣∣∣p∑n1
i=1

∣∣∣h(1)Ti ξ1

∣∣∣s +∑n1
i=1

∣∣∣h(2)Ti ξ2

∣∣∣s
+

∑d1+1
i=1 δ

∣∣∣e(1)Ti ξ1

∣∣∣p +∑d2+1
i=1 δ

∣∣∣e(2)Ti ξ2

∣∣∣p∑n1
i=1

∣∣∣h(1)Ti ξ1

∣∣∣s +∑n1
i=1

∣∣∣h(2)Ti ξ2

∣∣∣s (45)

φ(t) =

∑n2
j=1

∣∣∣g(1)Tj ξ
(t)
1

∣∣∣p +∑n2
j=1

∣∣∣g(2)Tj ξ
(t)
2

∣∣∣p +∑n2
j=1 ε

∣∣∣g(1)Tj ξ
(t)
1 − g(2)

T

j ξ
(t)
2

∣∣∣p∑n1
i=1

∣∣∣h(1)Ti ξ
(t)
1

∣∣∣s +∑n1
i=1

∣∣∣h(2)Ti ξ
(t)
2

∣∣∣s
+

∑d1+1
i=1 δ

∣∣∣e(1)Ti ξ
(t)
1

∣∣∣p +∑d2+1
i=1 δ

∣∣∣e(2)Ti ξ
(t)
2

∣∣∣p∑n1
i=1

∣∣∣h(1)Ti ξ
(t)
1

∣∣∣s +∑n1
i=1

∣∣∣h(2)Ti ξ
(t)
2

∣∣∣s (46)
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with the analogic alternation in (36) and (37), the derivation
formula above can be described by the following equivalence
forms∑n2

j=1

2pg(1)
T

j ξ1g
(1)
j

2
∣∣∣g(1)Tj ξ1

∣∣∣2−p +
∑d1+1

i=1

2pδe(1)
T

i ξ1e
(1)
i

2
∣∣∣e(1)Ti ξ1

∣∣∣2−p
+

∑n2

j=1

2pε(g(1)
T

j ξ1 − g(2)
T

j ξ2)g
(1)
j

2
∣∣∣g(1)Tj ξ1 − g(2)

T

j ξ2

∣∣∣2−p
− λ(t)

∑n1

i=1
s
∣∣∣h(1)Ti ξ1

∣∣∣s−1 sign(h(1)Ti ξ1)h
(1)
i = 0 (50)

and∑n2

j=1

2pg(2)
T

j ξ2g
(2)
j

2
∣∣∣g(2)Tj ξ2

∣∣∣2−p +
∑d2+1

i=1

2pδe(2)
T

i ξ2e
(2)
i

2
∣∣∣e(2)Ti ξ2

∣∣∣2−p
−

∑n2

j=1

2pε(g(1)
T

j ξ2 − g(2)
T

j ξ2)g
(2)
j

2
∣∣∣g(1)Tj ξ2 − g(2)

T

j ξ2

∣∣∣2−p
− λ(t)

∑n1

i=1
s
∣∣∣h(2)Ti ξ2

∣∣∣s−1 sign(h(2)Ti ξ2)h
(2)
i = 0 (51)

Obviously, according to the treatment of the first problem
in (38) and (39), (50) and (51) can be rewritten as

2G1F1GT
1 ξ1 + 2εG1QGT ξ + 2δE1O1ET1 ξ1 − φ

(t)H1η1= 0
(52)

2G2F2GT
2 ξ2 − 2εG2QGT ξ + 2δE2O2ET2 ξ2 − φ

(t)H2η2= 0
(53)

where both F1 and F2 are diagonal matrixes with dimen-
sion n2 × n2, whose the j-th diagonal element are f (1)j,j =

p/(2|g(1)
T

j ξ1|
2−p) and f (2)j,j = p/(2|g(2)

T

j ξ2|
2−p), severally.

Define qj,j = p/(2|g(1)
T

j ξ1 − g(2)
T

j ξ2|
2−p) as the j-th diagonal

entry of the second multi-view co-regularization term Q ∈
Rn2×n2 . O1 ∈ R(d1+1)×(d1+1) and O2 ∈ R(d2+1)×(d2+1) repre-
sent diagonal matrixes with their diagonal entries as o(1)i,i =

p/(2|e(1)
T

i ξ1|
2−p) and o(2)i,i = p/(2|e(2)

T

i ξ2|
2−p). Define η1

with its i-th element as η(1)i = s|h(1)
T

i ξ1|
s−1sign(h(1)

T

i ξ1), and

η2 with its i-th element as η(2)i = s|h(2)
T

i ξ2|
s−1sign(h(2)

T

i ξ2).
Let

MG2 =

[
G1
−G2

]
, F =

[
F1

F2

]
,

O =
[
O1

O2

]
, η =

[
η1
η2

]
(54)

where MG1 , MH1 and E have been defined in (40). Thus
combining (52) and (53) leads to

2MG1FM
T
G1
ξ + 2εMG2QMT

G2
ξ

+ 2δEOET ξ − φ(t)MH1η = 0 (55)

whose solution is equal as the minimum problem

ξ (t+1) = argmin
ξ

ξTMG1FM
T
G1
ξ + εξTMG2QMT

G2
ξ

+ δξTEOET ξ − φ(t)ξTMH1η (56)

where F,Q,O and η in (56) are determined by ξ which could
be computed upon the ξ that obtained in the i-th iteration.
And both the solutions of minimization problem (43) and (56)
in each iteration can be simplified into the following linear
system of equations as

z(t+1) = 0.5λ(t)(MH1D
(t)MT

H1
+ εMH2V

(t)MT
H2

+ δEU(t)ET )−1(MG1k
(t)) (57)

and

ξ (t+1) = 0.5φ(t)(MG1F
(t)MT

G1
+ εMG2Q

(t)MT
G2

+ δEO(t)ET )−1(MH1η
(t)) (58)

Now the hyperplane parameters for Lp,s-MvGEPSVM can
be obtained until the algorithm converges, for given test
samples x1 and x2, the vertical distances can be computed
as

view1 : dist11 =

∣∣xT1w1 + b1
∣∣

‖w1‖
, dist12 =

∣∣xT1 u1 + γ1∣∣
‖u1‖

view2 : dist21 =

∣∣xT2w2 + b2
∣∣

‖w2‖
, dist22 =

∣∣xT2 u2 + γ2∣∣
‖u2‖

(59)

then we can provide the forecasting function as same as
MvGSVM [35]

ŷ = sign(dist12+ dist22− dist11− dist21) (60)

where ŷ is a prediction result of a mixed decision function
that combines two views. For simplification, the algorithm
we designed is described in Algorithm1.

Algorithm 1 Lp,s-MvGEPSVM
Input: Training dataset A1, A2, B1, B2.
Initialize z, ξ , give model parameters (ε, δ).
Until objective converges, do
1. Calculate λ(t), φ(t), D(t),V(t),U(t), k(t),

F(t),Q(t),O(t) and η(t).
2. Obtain optimal solutions by solving (43) and (56).
3. Obtain hyperplane parameters (w1, b1) and (w2, b2)

for the first view, as well as (u1, γ1) and (u2, γ2) for
the second view.

end
Output: Determine the attribution of class +1 or −1 for
the test sample.

For the nonlinear case, we choose Gaussian kernel and
give the derivation of kernel Lp,s-MvGEPSVM. Firstly, for a
given arbitrary data set X = {x1, x2, . . . , xm}, the definition
of Gaussian kernel is

k(xi, xj) = exp(−
∥∥xi − xj

∥∥2 /2σ 2), i, j ∈ (1, 2, . . . ,m)

(61)
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min

∥∥∥∥[k(A1,CT
1 ) e

] [w1
b1

]∥∥∥∥p
p
+

∥∥∥∥[k(A2,CT
2 ) e

] [w2
b2

]∥∥∥∥p
p
+ δ

∥∥∥∥[w1
b1

]∥∥∥∥p
p∥∥∥∥[k(B1,CT

1 ) e
] [w1

b1

]∥∥∥∥s
s
+

∥∥∥∥[k(B2,CT
2 ) e

] [w2
b2

]∥∥∥∥s
s

+

ε

∥∥∥∥[k(A1,CT
1 ) e

] [w1
b1

]
−
[
k(A2,CT

2 ) e
] [w2

b2

]∥∥∥∥p
p
+ δ

∥∥∥∥[w2
b2

]∥∥∥∥p
p∥∥∥∥[k(B1,CT

1 ) e
] [w1

b1

]∥∥∥∥s
s
+

∥∥∥∥[k(B2,CT
2 ) e

] [w2
b2

]∥∥∥∥s
s

(63)

min

∥∥∥∥[k(B1,CT
1 ) e

] [ u1
p1

]∥∥∥∥p
p
+

∥∥∥∥[k(B2,CT
2 ) e

] [ u2
p2

]∥∥∥∥p
p
+ δ

∥∥∥∥[ u1p1
]∥∥∥∥p

p∥∥∥∥[k(A1,CT
1 ) e

] [ u1
p1

]∥∥∥∥s
s
+

∥∥∥∥[k(A2,CT
2 ) e

] [ u2
p2

]∥∥∥∥s
s

+

ε

∥∥∥∥[k(B1,CT
1 ) e

] [ u1
p1

]
−
[
k(B2,CT

2 ) e
] [ u2

p2

]∥∥∥∥p
p
+ δ

∥∥∥∥[ u2p2
]∥∥∥∥p

p∥∥∥∥[k(A1,CT
1 ) e

] [ u1
p1

]∥∥∥∥s
s
+

∥∥∥∥[k(A2,CT
2 ) e

] [ u2
p2

]∥∥∥∥s
s

(64)

where σ is the width of Gaussian kernel, so that the kernel
generated hyperplanes can be written as

view1 : k(xT1 ,C
T
1 )w1 + b1 = 0, k(xT1 ,C

T
1 )u1 + p1 = 0

view2 : k(xT2 ,C
T
2 )w2 + b2 = 0, k(xT2 ,C

T
2 )u2 + p2 = 0

(62)

where CT
1 = [AT

1 BT1 ], C
T
2 = [AT

2 BT2 ], so that the two mini-
mization objective problem can be described as (63) and (64),
as shown at the top of this page, then, we give these definitions

H1 = [k(A1,CT
1 ) e], H2 = [k(A2,CT

2 ) e]

G1 = [k(B1,CT
1 ) e], G2 = [k(B2,CT

2 ) e]

z1 =
[
w1
b1

]
, z2 =

[
w2
b2

]
, ξ1 =

[
u1
p1

]
, ξ2 =

[
u2
p2

]
(65)

where z1, z2 correspond to the dimension of the kernel gen-
eration metrics H1,H2, as well as ξ1, ξ2 corresponding to
G1 and G2.
Thus the optimization problems can be written in the same

form as (30) and (44). With the same iteration solving as
the linear case, kernel Lp,s-MvGEPSVM can be described
in Algorithm 2.

However, the calculating of distances from hyperplanes to
samples should be redefined as

view1 : dist11 =

∣∣k(x1,C1)Tw1 + b1
∣∣

‖w1‖
,

dist12 =

∣∣k(x1,C1)Tu1 + p1
∣∣

‖u1‖

view2 : dist21 =

∣∣k(x2,C2)Tw2 + b2
∣∣

‖w2‖
,

dist22 =

∣∣k(x2,C2)Tu2 + p2
∣∣

‖u2‖
(66)

and the decision function is the same as (60).

Algorithm 2 kernel Lp,s-MvGEPSVM
Input: Training dataset A1, A2, B1, B2.
Initialize z, ξ , give model parameters (ε, δ, σ ).
Until objective converges, do
1. Define H1,H2,G1,G2 by using (65).
2. Calculate λ(t), φ(t), D(t),V(t),U(t), k(t),

F(t),Q(t),O(t) and η(t).
3. Obtain optimal solutions by solving (43) and (56).
4. Obtain hyperplane parameters (w1, b1) and (w2, b2)

for the first view, as well as (u1, γ1) and (u2, γ2) for
the second view.

end
Output: Determine the attribution of class +1 or −1 for
the test sample.

IV. ALGORITHMIC ANALYSIS
The following procedures are given to prove the convergence
of the new algorithm and it is necessary to introduce the
lemma as follows
Lemma 1 [52]: For any nonzero scalarsθandω, there

havep|ω|p−2|θ |2 − 2|θ |p ≥ p|ω|p−2|ω|2 − |ω|p when
0 < p ≤ 2.
Theorem 1: Algorithm 1 will monotonically decrease the

objective value of (31) in each iteration whens ≥ 1.
Proof: According to the first optimal objective of step 3

in Algorithm 1 for each iteration we have

z(t+1)
T
MH1D

(t)MT
H1
z(t+1) + εz(t+1)

T
MH2V

(t)MT
H2
z(t+1)

+ δz(t+1)
T
EU(t)ET z(t+1) − λ(t)z(t+1)

T
MG1k

(t)

≤ z(t)
T
MH1D

(t)MT
H1
z(t) + εz(t)

T
MH2V

(t)MT
H2
z(t)

+ δz(t)
T
EU(t)ET z(t) − λ(t)z(t)

T
MG1k

(t) (67)
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For the convenience of calculation, the inequality (61) can
be rewritten as

z(t+1)
T
M30(t)MT z(t+1) − λ(t)z(t+1)

T
MG1k

(t)

≤ z(t)
T
M30(t)MT z(t+1) − λ(t)z(t)

T
MG1k

(t) (68)

whereM = [MH1 MH2 E] ∈ R(d1+d2+2)×n(n = 3n1+ d1+
d2 + 2) with the i-th column vector as mi ∈ Rd1+d2+2, and

0(t)
= diag(D(t),V(t),U(t)), 3 = diag(I, ε, δ) (69)

both 0 and 3 are in a real space of Rn×n, αi,i is the i-th
diagonal element of the scalar diagonal array 3 which is
non-negative and corresponding to 0. So, according to the
definitions of D(t),V(t) and U(t), we can give the new defi-
nition for τi,i = p/(2|mT

i z|
2−p) as the i-th diagonal element

of 0. Thus the inequality (62) can be reformulated as

p
2

∑n

i=1

αi,iz(t+1)
T
mimT

i z
(t+1)

|mT
i z

(t)|2−p
− λ(t)

× s
∑2n2

i=1
|gTi z

(t)
|
s−1sign(gTi z

(t))gTi z
(t+1)

≤
p
2

∑n

i=1

αi,iz(t)
T
mimT

i z
(t)

|mT
i z

(t)|2−p
− λ(t)

× s
∑2n2

i=1
|gTi z

(t)
|
s−1sign(gTi z

(t))gTi z
(t)

=
p
2

∑n

i=1

αi,iz(t)
T
mimT

i z
(t)

|mT
i z

(t)|2−p
− λ(t)s

∑2n2

i=1
|gTi z

(t)
|
s (70)

let θ = mT
i z

(t+1) and ω = mT
i z

(t) in Lemma 2, we can obtain
that

p
2

∑n

i=1

αi,iz(t+1)
T
mimT

i z
(t+1)

|mT
i z

(t)|2−p
−

∑n

i=1
αi,i|mT

i z
(t+1)
|
p

≥
p
2

∑n

i=1

αi,iz(t)
T
mimT

i z
(t)

|mT
i z

(t)|2−p
−

∑n

i=1
αi,i|mT

i z
(t)
|
p (71)

combining (64) and (65), we arrive at the new inequality
shown as∑n

i=1
αi,i|mT

i z
(t+1)
|
p
− λ(t)s

∑2n2

i=1
|gTi z

(t)
|
s−1

× sign(gTi z
(t))gTi z

(t+1)

≤

∑n

i=1
αi,i|mT

i z
(t)
|
p
− λ(t)s

∑2n2

i=1
|gTi z

(t)
|
s (72)

Since the function f (z) =
∑2n2

i=1 |g
T
i z|

s is convex when s ≥
1, and according to the work [59], for any convex function
f (x), the inequality f (x) ≥ f (x(t)) + ∇ f (x)|x=x(t) (x − x(t))
is true, where ∇x f (x)|x=x(t) represents the gradient of f (x) at
point x(t). Combine the property mentioned above of f (z) and
the equality ∇ f (z)|z=z(t) = s

∑2n2
i=1 |g

T
i z

(t)
|
s−1sign(gTi z

(t))gi,
we get∑2n2

i=1
|gTi z

(t+1)
|
s
≥

∑2n2

i=1
|gTi z

(t)
|
s

+∇ f (z)|z=z(t) (z
(t+1)
− z(t)) (73)

which results in∑2n2

i=1
|gTi z

(t+1)
|
s
−s

∑2n2

i=1
|gTi z

(t)
|
s−1sign(gTi z

(t))gTi z
(t+1)

≥ (1− s)
∑2n2

i=1
|gTi z

(t)
|
s (74)

By subtracting (66) and (74) from each side, we obtain∑n

i=1
αi,i|mT

i z
(t+1)
|
p
− λ(t)

∑2n2

i=1
|gTi z

(t+1)
|
s

≤

∑n

i=1
αi,i|mT

i z
(t)
|
p
− λ(t)

∑2n2

i=1
|gTi z

(t)
|
s (75)

where λ(t) =
∑n

i=1 αi,i|m
T
i z

(t)
|
p
/∑2n2

i=1 |g
T
i z

(t)
|
s is the i-th

iteration objective value, and we can obtain the following
form by substituting λ(t) into the right hand in (75)∑n

i=1
αi,i|mT

i z
(t+1)
|
p
− λ(t)

∑2n2

i=1
|gTi z

(t+1)
|
s

≤

∑n

i=1
αi,i|mT

i z
(t)
|
p
−

∑n

i=1
αi,i|mT

i z
(t)
|
p
= 0

(76)

which leads to∑n
i=1 αi,i|m

T
i z

(t+1)
|
p∑2n2

i=1 |g
T
i z

(t+1)|s
≤ λ(t) =

∑n
i=1 αi,i|m

T
i z

(t)
|
p∑2n2

i=1 |g
T
i z

(t)|s
(77)

Thus, the objective value of (30) monotonically decreases in
each iteration. �

Note that the above proof is motivated by [57] and for the
first objective function, the second optimal function is in the
same way as the first one.

V. EXPERIMENT
In this section, we evaluate the classification performance
of our proposed method on several public datasets from the
UCI repository, CUHK Face Sketch database (CUFS) [67]
and AR Face database, comparing with relevant algo-
rithms GEPSVM [12], IGEPSVM [17], L1-GEPSVM [45],
MvTSVM, MvGSVM [35], MvIGSVM [35]. The details of
these datasets are shown in table 1.

TABLE 1. List of dataset descriptions.

It should be noted that GEPSVM1 and GEPSVM2 are
consider as different single view of GEPSVM, in the same
way, IGEPSVM1 and IGEPSVM2, L1-GEPSVM1 and L1-
GEPSVM2 are seen as diverse single view of IGEPSVM and
L1-GEPSVM respectively. In terms of parameter settings,
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the parameter δ of Tikhonov regularization term for all meth-
ods is selected from the set {2i|i = −6,−5, . . . , 5, 6}, while
the co-regularization parameter ε of multi-view methods is
selected from the set {i|i = 0.25, 0.5, 0.75, 1}. Except for
the δ and ε are set as same as above, there are two more
parameter selections for Lp,s-MvGEPSVM in which p is
chosen from the set {p|p = 0.1, 0.2, . . . , 1.9, 2} and s is
chosen from the set {s|s = 1, 1.1, . . . , 1.9, 2}. All meth-
ods obtain optimal parameters via five-fold cross validation
with an exhaustive search strategy. And we also consider
the predictive function of the combined views [35] which is
different from the single view for bothMvTSVM,MvGSVM,
MvIGSVMand Lp,s-MvGEPSVM.OnUCI datasets, we first
compare the accuracy and robustness of our algorithm with
other relevant methods, then we observe the convergence of
the new iteration program and finally the impact of changes
in p and s are reported. For CUHK and AR database, part
B shows the performance of classification and anti-noise
of Lp,s-MvGEPSVM. All experiments are implemented
in MATALB 2014b on a PC with an Intel(R) Core(TM)
i5-4590S, CPU @3.00GHz, RAM for 4GB.

A. UCI DATASETS
For the dataset Handwritten digits, it consists of six dis-
tinct feature sets (views) of handwritten numerals (‘0’—‘9’)
extracted from a collection of Dutch utility maps. There are
200 patterns per number (for a total of 2,000 patterns) have
been digitized in binary images. In order to have comparabil-
ity with previous method, we choose 76 Fourier coefficients
of the character shapes and 64 Karhunen-Loéve coefficients
as the first view and the second view respectively. Seven digit
pairs (1, 7), (3, 4), (3, 5), (3, 6), (3, 9), (4, 8) and (6, 9) are
employed to evaluate performance of all mentioned algo-
rithms, and the range of corresponding parameter selections
and the partition of datasets have been confirmed above.

As a result, Table 2 shows the average accuracy, stan-
dard deviation, and the running time of each algorithm
on digit pairs datasets. Table 3 shows the performance of
all methods on other seven UCI datasets (Spect, Wpbc,
Housingdata, Germ, Heart, Ionosphere, Sonar), the sec-
ond view are generated via PCA dimensionality reduc-
ing which contains 99% significant features, and note that
the best results are shown in bold. In Figure 1 below,
1.a and 1.c are the classification accuracy on 7 digit
pairs and UCI datasets in the absence of noise which
display the comparison between GEPSVM1, IGEPSVM1,
L1-GEPSVM1, MvTSVM, MvGSVM, MvIGSVM and
Lp,s-MvGEPSVM, Figure 1.b and 1.d show the accu-
racy of GEPSVM2, IGEPSVM2, L1-GEPSVM2, MvTSVM,
MvGSVM, MvIGSVM and Lp,s-MvGEPSVM.

From Table 2 and Table 3, we can see that the accuracy of
the four multi-view methods are higher than other algorithms
in most cases, which validates the classification performance
of multi-view learning is better than single view learning.
Owing to the multi-view learning considers the consistency
and complementary of different views. There is a special

FIGURE 1. The accuracy of each algorithm on 7 Handwritten Digit Pairs
and other UCI datasets.

situation worthy of attention in Figure 1 that the accuracy of
the three single-view methods have a great divergence which
may be due to the distribution of the dataset. In stark contrast
MvTSVM, MvGSVM, MvIGSVM and Lp,s-MvGEPSVM
still hold advantageous results, that can be explained by the
stability of multi-view learning mechanism.

Separate Lp,s-MvGEPSVM out for comparison, the result
of our proposed method in Figure 1.a-d is more accurate
than other methods on most datasets, and we can also see
a more smoother trends on different Handwritten digit pairs
in Figure 1.a-b, which shows great stability and adaptability.
Furthermore, the standard deviation of Lp,s-MvGEPSVM
shown in Table 2 and Table 3 are smaller than other methods
on most datasets, which implies its great stability and robust-
ness again.

Since the superiority of our algorithm in terms of noise
resistance theoretically, we add thirty percent Gaussian noise
to the Handwritten digit pairs and twenty percent Gaus-
sian noise to the other UCI datasets respectively to evaluate
the robustness of Lp,s-MvGEPSVM, and the result is seen
in Table 4 and Table 5. In addition, we conduct more detailed
and persuasive experiments for Lp,s-MvGEPSVM. Firstly,
MvGSVM and Lp,s-MvGEPSVM are compared on the seven
UCI datasets with 5% and 10% percent noise to observe the
ability of anti-noise, whose result shown in Figure 2. Next,
Figure 3 displays the comparison between L1-GEPSVM and
Lp,s-MvGEPSVM on the seven digit pairs, for the accuracy
bar graphs with 30 percent Gaussian noise or not.

From Table 2 to Table 4, we can see the accuracy of
all methods in the presence of noise decrease but Lp,
s-MvGEPSVM is also the highest method that meets theo-
retical expectations, and the general reduction current is the
most smooth in all methods.
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TABLE 2. The classification accuracy on digit pairs datasets.

TABLE 3. The classification accuracy on UCI datasets.

In Table 5, the result shows L1-GEPSVM has lighter
degradation than GEPSVM, IGEPSVM, MvGSVM and
MvIGSVM. Besides, there is also a highest result on heart
dataset for L1-GEPSVM, which both indicate L1-norm is
more robust than the counterparts based on squared L2-norm

distance measure. Figure 2 shows that MvGSVM fluc-
tuates significantly in some data sets with the increase
of noise ratio, but Lp,s-MvGEPSVM demonstrates a
flat performance generally at the same time. Because
Lp-norm minimization distance measures and Ls-norm
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TABLE 4. Classification accuracy on Digit pairs datasets for 30% noise.

TABLE 5. Classification accuracy on UCI datasets for 20% noise.

maximization distance measures have a strong advantage
in anti-noise than squared L2-norm squared operation.
According to Figure 3, we know Lp, s-MvGEPSVM is
not only generally higher in accuracy than L1-GEPSVM,

but also has a relatively lower change after adding noise.
To sum up in this section, our proposed algorithm is con-
firmed to have a great robustness and stableness against
noise.
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FIGURE 2. The accuracy of MvGSVM and Lp,s-MvGEPSVM on 7 UCI
datasets with 0, 5% and 10% noise, respectively.

FIGURE 3. The accuracy of Lp,s-MvGEPSVM and L1-GEPSVM on 7 Digit
Pairs with the comparison in the absence or presence of noise.

In addition to verifying classification performance and
robustness advantages, the algorithm we designed is an iter-
ative algorithm, convergence is the prerequisite to ensure
the effectiveness of the algorithm. Despite the theoretical
convergence analysis in the previous section, we also need to
prove its convergence from the experiment. Several datasets
are extracted randomly (digit pair (3, 4), digit pair (3, 9),
wpbc dataset, sonar dataset) with the parameters p, s, δ, ε
fixed, and we set the difference between the consecutive
target values of the iteration is less than 0.001, the results are
plotted in Figure 4. The horizontal axis represents the number
of iterations and vertical axis is the difference between two
continuous objective values.

From Figure 4.a-d, we can get that Lp,s-MvGEPSVM
keeps monotonically decreasing along with the iteration pro-
cesses until the D-value converges a small positive number
close to zero, within about five to seven times, which means
our algorithm is fast convergent and feasible on the computa-
tion cost.

Thus far we have described the efficiency and robustness of
our proposed method. Next, we disentangle the influence of
parameters on the performance. In order to verify the effect
of the values of p and s on the classification accuracy, we first
study the influence of p and s separately on the germ dataset,
with the other three parameters fixed, and Figure 5 shows the
result. Then the interaction of the values of p and s on the
accuracy is tested on digit pairs (3,5) and (6,9), the classifica-
tion performance is ploted in Figure 6. Finally, we compare
the impact of p and swith or with no noise on the housingdata
dataset. Figure 7.a shows the accuracy in the absence of noise
on the housingdata dataset, and Figure 7.b shows the accuracy
after introducing 20 percent Gaussian noise.

FIGURE 4. The convergence along with the number of iterations.

FIGURE 5. The accuracy of Lp,s-MvGEPSVM with the change of (a) the
norm parameter p, and (b) the norm parameter s respectively on the germ
dataset.

Comprehensive Figure 5 to Figure 7, it can be seen that
the classification accuracy varies with the change of the
p and s, which means that it is meaningful to measure the
distance from hyperplanes to corresponding positive class
and negative class by introducing the Lp-norm minimization
and Ls-norm maximization. Specifically, with reference to
Figure 5 and Figure 6, we can learn that the accuracy is lower
and fluctuates greatly when p is between 0.1-0.5 and s is
in the range of 0.1-1, synchronously. However, in the range
of 0.5-2 for the value of p, the accuracy gradually increases
with the increase of p, in the case of s value decreasing by
degrees. Furthermore, an interesting result is when p = 2
and s = 2, the accuracy of Lp,s-MvGEPSVM is very close
to MvGSVM, which shows the excellent flexibility of our
proposed method. Finally, the comparison experiment on the
housingdata dataset displays the low-order distance metric
performs well against noise.

B. CUHK FACE DATASET (CUFS) and AR DATABASE
In CUFS, each face has another sketch drawn by an artist
based on original photo taken in a frontal pose. So we choose
188 student faces from CUHK that taking the photos as the
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FIGURE 6. The accuracy of Lp,s-MvGEPSVM versus the variations of the
parameters p and s on the digit pairs (3,5) and (6,9).

first view and sketches as the second view, which is shown
in Figure 8.

Since the photos are under normal lighting condition, and
with a neutral expression, we add random black and white
block for 30 percent training face, which is displayed in
Figure 9. All experimental settings has been mentioned in
the beginning of this section. Table 6 and Table 7 record the
experimental results, respectively, in the case of no noise and
30% noise. Figure 10 shows the performance of all methods
after adding noise more intuitively.

For AR dataset, there are 26 pictures per person of 50males
and 50 females in different lighting, occlusion and expres-
sions, so it can be seen as a noisy binary face database.
Of course, the original pictures are choose to be the first
view, and the second view is LBP feature of original pictures,
which are exhibited in Figure 11. And Table 8 reports the
experimental result. Figure 12 is the convergence trend of
Lp,s-MvGEPSVM on CUFS and AR database, where the
threshold is set to 0.001 and parameters fixed.

FIGURE 7. The accuracy of versus the variations of the parameters p and s
on the housingdata dataset for (a) with no noise, and (b) with 20 % noise.

FIGURE 8. The photos and sketches of student faces from CUHK.

FIGURE 9. The examples after adding random black and white block.

From Figure 11, firstly we can learn that the accu-
racy of last four multi-view methods are higher than other
single-view methods on noiseless faces. When adding noise,
obviously, the difference between two results (the blue
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TABLE 6. The classification accuracy on CUFS with no noise.

TABLE 7. The classification accuracy on CUFS with 30 noise.

TABLE 8. The classification accuracy on AR database.

FIGURE 10. Accuracy comparison for all methods on CUFS.

FIGURE 11. Grayscale and texture maps per person for AR.

and yellow columns of each method) of L1-GEPSVM and
Lp,s-MvGEPSVM are lower than other algorithms based
on squared L2-norm distance measure, which means bet-
ter robustness. In Table 6 and Table 7, the results of Lp,

FIGURE 12. The convergence along with the number of iterations.

s-MvGEPSVM are both highest, and standard deviation get
minimum after adding block noise. In Table 8, the proposed
method is also the highest result. So, the experiment on CUFS
and AR database demonstrate the advantages of our approach
in classification accuracy, noise immunity and stability. How-
ever, despite the experimental on CUFS and AR have an
ideal convergence rate, the calculation time is also the highest
among all methods except MvTSVM, because of the iterative
process.

In convergence of Lp,s-MvGEPSVM on CUFS and AR
database, there are about ten times to converge for proposed
algorithm.

VI. CONCLUSION
In this paper, a new robust multi-view generalized eigen-
value proximal SVM based on Lp-norm minimization and
Ls-norm maximization distance measure is proposed termed
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as Lp,s-MvGEPSVM. By setting special value of p and s,
Lp,s-MvGEPSVM can be degenerate to previous versions
such as MvGSVM, which represents the favorable flexibility
of our method. Since our objective function is non-smooth
and non-convex due to the introduction of Lp-norm and Ls-
norm, we design an efficient iterative algorithm to solve this
problem. Next, we give the theoretical proof of the conver-
gence of the new algorithm. The result in a large number
of experiments testifies the great generalization ability and
robustness over all related methods of comparison, as well
as a fast convergence speed within a finite number of times.
In future work, the robust multi-view learning idea can be
extended to other machine learning fields such as sparse
learningwhich ismeaningful to deal with a large-scale dataset
problem. However, the major limitations of our research are
the binary classification and just two views, we will extend
the binary classification to multiple classification and more
than two views in future work.
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