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ABSTRACT In this paper, we present a cell-based delay-locked loop (DLL) with an enhanced continuous
tracking range. The main contribution is a novel delay line architecture called ping-pong delay line, making
it highly resilient to process and temperature variation. In such a DLL design, two cell-based delay lines
are incorporated in a way that they exchange their role of command dynamically like in a ping-pong game,
and therefore the joint ping-pong delay line can react to severe environmental changes over a very wide
range without disruption to the system’s operation. The post-layout simulation using a 90-nm complimentary
metal-oxide silicon (CMOS) process technology has demonstrated its advantages. A DLL using such a
feature can operate reliably even under an extremely hostile environment when the supply voltage drops
from 1 to 0.9 V within a timeframe of 4us.

INDEX TERMS Cell-based DLL, delay line, ping-pong, segment jumping.

I. INTRODUCTION
In today’s IC, the delay-locked loop (DLL) circuit is a very
common building block for numerous applications, rang-
ing from high-speed multi-phase clock generation, clock
synchronization, clock de-skew, timing control for the logic-
and-DRAM interface, etc [1]–[3]. Traditionally, analog cir-
cuits are used in building a DLL. However, more and more
all-digital solutions have emerged as alternatives [4]–[9]. In
a number of prior works, DLLs constructed by standard cells
only have also been proposed [10]–[13]. Using all-digital
DLLs have several benefits. For example, in a system oper-
ated with adaptive supply voltages, an all-digital DLL could
be more robust than its analog counterpart due to its relatively
wider operating range and better resistance to the environ-
mental noise. Also, an all-digital DLL is not only easier to
design and verified, but also more easily portable from one
process technology to another. Due to their digital nature,
compilers for cell-based DLLs or PLLs have been devel-
oped [14], [15]. These compilers can generate a cell-based
DLL or PLL macro according to the users’ requirements
within a few minutes.

However, existing DLL designs still face a dilemma
of either being too power consuming or having limited
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FIGURE 1. The delay profiles of two different types of TDL.

continuous tracking range (CTR), as to be detailed later.
The most important component in a DLL is the tunable
delay line (TDL). A TDL is a component with the end-to-
end delay from its input to its output controllable by control
code(s). There are two major types of cell-based TDLs,
namely the continuous TDL, and segmented TDL. As illus-
trated in Fig. 1(a), the delay profile of a continuous TDL is
monotonic (i.e., the delay changes monotonically with the
increase of the value of a control code). On the other hand,
the delay profile of a segmented TDL is divided into several
segments, as shown in Fig. 1(b). Note that such a segmented
delay profile is more and more popular because a TDL often
employs a two-level control code – coarse-tuning code and
fine-tuning code – to achieve both wide delay range and fine
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FIGURE 2. Segment-jumping problem–the operating point in the delay
profile of a segmented TDL jumps from one segment to its right neighbor
during the phase-tracking process of a DLL may introduce significant
jitter.

timing resolution. Within each ‘‘segment’’, the delay profile
is monotonic with the fine-tuning code. However, from one
coarse-tuning code to another, the delay profile exhibits
‘‘sudden jumps’’.

A segmented TDL is generally superior to continuous
TDL in both the area overhead and the power consumption.
However, its segmented delay profile is a major weakness,
making it unable to adapt to environmental changes robustly.
In the following, we elaborate on this issue by consid-
ering the operation of a DLL incorporating a segmented
TDL.

When a DLL starts to operate, it incorporates a so-called
‘‘phase-locking process’’, which changes the delay of its TDL
systematically until the delay across the DLL satisfies cer-
tain phase-locked condition (e.g., when the phase difference
between some clock signal, e.g., the output clock signal,
and the input reference clock signal has been reduced to a
very small value). Then, DLL enters a ‘‘locked state’’ and
initiates the ‘‘phase-tracking process’’. During the phase-
tracking process, the DLL’s controller will try to maintain
the phase-locked condition by incrementing or decrementing
the control code of the TDL. In a segmented TDL, if the
control code reaches the end-point of a segment in the delay
profile, then the DLL loses the ability to continue to adapt
to the environmental changes. In response to this awkward
situation, a DLL is forced to perform a ‘‘segment jump’’
as illustrated in Fig. 2, in order to continue to maintain the
phase-locked condition.

In a segment jump, the operating point of a DLL in the
delay profile jumps from one segment to its neighbor seg-
ment. Such a jump could lead to significant jitter, creating
a segment-jumping problem. The work in [16] has tried to
resolve this problem by adopting two mirror TDLs by a
sophisticated calibration scheme. However, it cannot easily
handle the jitters of segment jumps due to online environmen-
tal changes (e.g., VDD scaling and temperature variations),
even though it can reduce the jitter of segment jumps due to
process calibration.

In this paper, we aim to resolve the segment-jumping
problem by a novel ping-pong TDL. We have imple-
mented the proposed scheme as a cell-based DLL using a
90nm CMOS process technology, capable of operating from
400MHz to 1.25GHz under severe environmental conditions.

FIGURE 3. General architecture of a DLL and its function.

The contributions of this work include the following.
(1) Unlike [16], a fabricated ping-pong DLL macro in a

chip can be put into use immediately without any pro-
cess calibration, and is able to track significant online
environmental changes without creating significant
jitters.

(2) As compared to a DLL incorporating continuous TDL,
the proposed ping-pong DLL has a much smaller area
overhead and much lower power consumption.

(3) As compared to a DLL incorporating segmented TDL,
the CTR can be enlarged tremendously, and thereby
removing the significant jitters arising from potential
segment jumps.

In some sense, the proposed ping-pong scheme has
achieved one important property – it transforms a segmented
TDL into a pseudo-continuous TDL and so the entire delay
range of a TDL can become continuous to support full-range
phase-tracking operation.We believe that this improvement is
significant since a segmented TDL based DLL will become
much more useful in the future after overcoming this major
limitation with a reasonable area overhead.

The rest of this paper is organized as follows. Section II
reviews the general block diagram of an all-digital DLL and
its operation. Section III presents the proposed ping-pong
TDL, including its basic concept, architecture, circuitry, and
operations. Section V presents the post-layout simulation
results of a DLL, and Section VII concludes. It is notable
that even though the rough idea has ever appeared in a brief
Late-Breaking-Result conference paper [17], some detailed
circuits and the most important technique that enables the
ping-pong operation, referred to as wake-up-and-get-ready
(WUGR) protocol, are only presented in this paper for the
first time.

II. BACKGROUNDS
A. DELAY-LOCKED LOOP (DLL)
The general architecture of a DLL is shown in Fig. 3.

It consists of three major blocks: (1) a phase detector, (2)
a TDL, and (3) an overall controller. For simplicity without
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FIGURE 4. A cell-based continuous tunable delay line [10], [11].

losing generality, we assume that the phase-locked condition
in this case is to make the output clock signal in-phase with
the input clock signal.

Initially, the output clock signal (namely clock_out) is not
in-phase with the input clock signal (namely clock_in). But
after the DLL is locked, their phase difference will almost
disappear as shown in the figure. During the phase-locking
process, the output clock is successively compared with the
input clock to decide the result of a one-bit signal, called
lead/lag via a phase detector. When lead/lag signal is ‘1’,
it means the output clock signal is ahead of the input clock
signal in the timings of their rising edges. On the other hand,
when lead/lag signal is ‘0’, it means the output clock signal is
behind of the input clock signal. Then this lead/lag signal will
guide the controller to update the value of the control code of
the TDL so that the phase difference between the output clock
and the input clock will gradually diminish. After phase-
locking, the delay across the TDL will equal the clock period
of the input clock signal in the ideal case.

B. TUNABLE DELAY LINE (TDL)
In a DLL, the most important part is the TDL with its end-
to-end delay controlled by a digital code or several levels
of digital codes. Such a tunable delay is often characterized
by two factors - time resolution and operating range. Here,
the time resolution is referred to the change of a TDL’s end-
to-end delay when the value of the digital control code is
incremented or decremented by 1, while the operating range
is referred to the range defined by the maximum delay and
minimum delay of the TDL. It is often desirable that a TDL has
a very wide operating range and a very fine time resolution
(e.g., 1ps).

FIGURE 5. A segmented tunable delay line [12], [14].

There are two major types of TDLs – namely the continu-
ous TDL and segmented TDL.

A widely adopted Continuous TDL is shown in Fig. 4,
first proposed in [10], [11]. Its end-to-end delay represents
the time needed for a signal propagating from input signal IN
to output signal OUT. In this example, it contains four delay
stages, each consisting of 64 parallel tri-state buffers. Overall,
there are 64 × 4 = 256 tri-state buffers, each controlled
by one bit of a 256-bit thermometer code γ [0:255]. Note
that when the value of this thermometer γ -code is larger,
more tri-state buffers will be turned on, leading to a shorter
propagation delay from input signal IN to output signalOUT.
Therefore, the delay of this TDL decreases monotonically
with the increase of the value of the thermometer γ -code.

The delay profile of the above TDL is smooth and its
entire operating range is also the CTR, during which the DLL
can move around without creating significant jitter. However,
it often requires a large number of tri-state buffers (e.g., 256 in
the example) and thus consuming relatively larger power.

The segmented TDL is another type of TDLs. One such
example is shown in Fig. 5. The delays from the input signal
IN to the output signal OUTcan be tuned by two different
schemes, namely (1) tunable driving strength by parallel tri-
state buffers, controlled by thermometer β-code with a value
in [0, 14], and (2) tunable output capacitances at certain
nodes, controlled by thermometer γ -code with a value in
[0, 34]. The tuning of the driving strength is the same as
that used in the continuous TDL just discussed, while the
tunable output capacitances are realized by adding parallel
NAND gates at the nodes where the capacitances need to
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FIGURE 6. Architecture of the proposed Ping-Pong DLL. Two ‘‘phase
quantifiers’’ are inserted to facilitate ‘‘instant handover’’ between
the two primitive TDLs.

be tuned [12], [14]. The control code for this TDL is a
2-level code, characterized by < β-code, γ -code>. Here,
β-code is called the coarse-tuning code and γ -code is
called the fine-tuning code. When the fine-tuning code,, i.e.,
γ -code, is incremented or decremented, there is only a small
amount of change in the TDL delay. However, when the
coarse-tuning code, i.e., β-code, is incremented or decrement,
the TDL delay will change with a large stride. Clearly, this
Segmented TDL has a much smaller area than the Continuous
TDL aforementioned. However, a delay segment could have
a relatively small range. As shown in the figure, the delay
segment for β = 3 has a span of roughly only 30ps. During
the phase-tracking process, it is very likely that the operating
point in the delay profile may need to jump to its neighbor
segment (as illustrated in the figure), and thereby causing a
significant jitter.

III. PROPOSED PING-PONG DLL
A. BASIC ARCHITECTURE
Fig. 6 shows the overall architecture of our proposed
ping-pong DLL. We have made some modifications beyond
a traditional DLL, as the following:

(1) We have replaced the TDL with two parallel primitive
TDLs, jointly forming a cooperating ping-pong TDL.
Since these two primitive TDLs take turn to produce the
final output clock signal, Clk_out, a MUX is inserted at
their outputs to decide who is in command.

(2) In order to facilitate ‘‘instant handover’’ between the
two primitive TDLs, two so-called ‘‘phase quantifiers’’
(PQ-1 and PQ-2) are further added. Their functions are
mainly to quantify the delay across theMUX, i.e., from
signal labeled as M1 to Clk_out, and M2 to Clk_out,
respectively. The scheme of the instant handover and
the details of the phase quantifiers will be further
explained in latter sections.

(3) The controller is more sophisticated. Not only it
will take the lead/lag signal produced by the Phase
Detector, but also the input clock signal,Clk_in, and the

TABLE 1. The meanings of key signals in the our ping-pong DLL.

FIGURE 7. The overall operation of our ping-pong DLL. The
phase-tracking stage is now more involved with the need to perform
ping-pong operation in which the ‘‘role of command’’ is transferred from
one primitive TDL to the other on a regular basis.

signals produced by the two ‘‘phase quantifiers’’, i.e.,
PA-1 and PA-2, to make necessary decision and thereby
regulating the entire operation of the DLL. It produces
the 2-level control codes for the two primitive TDLs,
i.e.,< β1, γ1 > for TDL-1, and< β2, γ2 > for TDL-2.
And it also produces two auxiliary 2-level control codes
for the two ‘‘phase quantifiers’’, namely < x1, y1 >
for PQ-1, and < x2, y2 > for PQ-2. The meanings of
some key signals are summarized in Table 1 for easier
reference.

B. PING-PONG PROTOCOL
The overall operation of the proposed ping-pong DLL is
illustrated in Fig. 7. Similar to a traditional DLL, it has two
stages – phase-locking and phase-tracking.

Initially, the DLL performs phase-locking which finds
a proper 2-level control code in a binary search manner
for a designated TDL to reach a phase-locked condition
(e.g., signal Clk_out is in phase with signal Clk_in). In our
implementation, if the lead/lag signal changes its polarity
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for more than 4 times within a time frame of 16 consecutive
cycles, the DLL enters the ‘‘locked state’’ and phase-tracking
stage begins.

In the phase-tracking stage, DLL increments or decre-
ments the fine-tuning code, i.e., the γ -code, to maintain
the phase-locked condition. Nevertheless, the phase-tracking
stage is now more involved. In addition to the tuning of the
fine-tuning code of the TDL for maintaining the phase-locked
condition, we also need to perform a so-called ‘‘ping-pong
operation’’ in which the responsibility of driving the output
clock signal,Clk_out,is transferred from one TDL to the other.
The ping-pong operation involves the following 3 steps:

(Step 1:) When the fine-tuning code of the ‘‘TDL in com-
mand’’ is already very close to its boundary of the current
segment in the TDL’s delay profile, then a segment jump
for the current ‘‘TDL in command’’ is imminent. Therefore,
a ping-pong operation is initiated and the command is to
be transferred to the other primitive TDL. Also, our DLL
is designed in a way that the two primitive TDLs will take
turn to become the ‘‘TDL in command’’ regularly for every
designated amount of time, e.g., 10,000 clock cycles of the
input reference clock. This amount of time is referred to
as ping-pong interval. When a ping-pong interval expires,
a ping-pong operation will be initiated even though the ‘‘TDL
in command’’ does not have to perform segment jumping
yet. The reason of such regular ping-pong operations will
become clear in our latter discussion. But in a nutshell, it is
a mechanism to facilitate ‘‘regular delay calibration for each
primitive TDL to keep track of the environmental changes’’.

(Step 2:) Once the ping-pong operation is initiated, some
preparation work is needed before the other TDL can actually
take over the ‘‘role of command’’. This preparation work is
called wake-up and get ready (WUGR) operation. In a nut-
shell, the other TDL needs to wake up if it is in the sleep state
and start to perform ‘‘open-loop delay calibration’’ with the
assistance of the ‘‘phase quantifier’’ aforementioned in the
subsection III.A on ‘‘Basic Architecture’’. More details will
be revealed later. Once this WUGR operation is completed,
the delay of the other TDL (which is not in command yet) will
approximately match that of the current ‘‘TDL in command’’,
and therefore, the jitter amount when the actual ping-pong
handover occurs is mitigated.

(Step 3:) Once the other primitive TDL has completed the
WUGR operation, we can flip the value of the control signal
of the MUX, i.e., signal S, to actually switch the ‘‘TDL in
command’’ from the current one to the other. This ‘‘handover
action’’ should occur at a time instant with ample timing mar-
gins away from the clock edges of Clk_out in order to avoid
creating glitches in the final output clock signal, Clk_out.

C. WAKE-UP AND GET READY (WUGR) OPERATION
The WUGR operation is the most challenging part of this
work, in which we rely on ‘‘phase quantifiers’’ (PQ-1 and
PQ-2) to perform online MUX delay characterization.

Fig. 8 shows the micro-architecture to support the WUGR
operation, including the following key issues.

FIGURE 8. Micro-architecture to support the WUGR operation. This
example assumes that TDL-1 is in command and TDL-2 is conducting the
WUGR operation.

(1) During the phase-locking stage, the MUX delays
(including ‘‘M1-to-Clk_out’’ and ‘‘M2-to-Clk_out’’)
have both quantified by the two phase quantifiers
(PQ-1 and PQ-2) as two digital codes, PA-1 and
PA-2, recorded in two registers PAR-1 and PAR-2
(where PAR stands for phase amount register).

(2) For simplicity without losing generality, we assume
that TDL-1 is now in command, driving the output
clock signal Clk_out. On one hand, it continues to
update the fine-tuning code so as to maintain the
phase-locked condition. On the other hand, the MUX
delay (‘‘M1-to-Clk_out’’) will be quantified regularly
and recorded in register PAR-1.

(3) When the fine-tuning code of TDL-1, i.e., γ 1, has
entered a warning zone near the boundary of its seg-
ment in the delay profile, the WUGR operation of the
other TDL, i.e., TDL-2, will be triggered. The WUGR
operation of TDL-2 is conducted in conjunction with
the above operation of TDL-1.

(4) The WUGR operation of TDL-2, as controlled by
DLL-controller, is conducted in an open-loop config-
uration. It is mainly a process that repeatedly updates
the control code of TDL-2, including γ 2 and possibly
β2, so that it will produce a signal at M2 such that the
following WUGR condition is satisfied:

The phase difference of signal M2 and signal Clk_out as
quantified by PQ-2 produces a digital code matching that
previously stored in register PAR-2.

It is notable that the digital code stored in register PAR-2 is
the MUX-delay (from M2 to Clk_out) recorded last time
when TDL-2 is still ‘‘in command’’. If the above WUGR
condition is satisfied, then it implies the following condition:
The current TDL-2 delay plus the recently recorded MUX

delay (from M2 to Clk_out) can produce at the DLL’s output
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TABLE 2. The meanings of flags used in our DLL controller for regulating
the ping-ping procedure.

a signal very close to the current output clock signal Clk_out
(driven by TDL-1) in their phases.As a result, whenwe switch
the command of the DLL from TDL-1 to TDL-2, the new
clock output signal will match that of the old clock output
signal in their phases and therefore a low jitter can be ensured
during the ping-pong handover action.

There is one subtle point regarding why the above WUGR
operation is needed. An idle TDL may have experienced a
segment jump a while ago when it relinquished the command
to the other TDL. Now it may have been waken up in a new
segment in the delay profile, and thus it needs the WUGR
operation to adjust itself in the new segment of the delay pro-
file until it can reach a new phase-locked condition according
to the latest operating environment.

Table 2 summarizes several binary flags and their
meanings, used in our DLL controller for regulating the
ping-pong procedure. For example, flag Zone is used to indi-
cate if the TDL in command has been operating in a warning
zone (e.g., when γ -code is less than 4 or larger than 31,
or the number of clock cycles elapsed since the last ‘‘handover
action’’ has reached a pre-designated value (e.g., 10,000).
When this flag is set to ‘1’, the WUGR operation needs to be
initiated for the other TDL. Also, a flag ‘‘Action_now’’ is used
to indicate that a ‘‘handover action’’ needs to be executed
immediately (e.g., when γ -code is now 0 or 35, or the number
of clock cycles elapsed since the last ‘‘handover action’’ has
reached a pre-designated threshold value (e.g., 11,000).

D. CIRCUIT AND OPERATION OF PHASE QUANTIFIER
To support our ping-pong operation, two phase quantifiers
with high resolutions (e.g., with a time resolution of 3ps) are
needed. Recall that a phase quantifier isused to calibrate the
delay across the primary MUX in our ping-pong architecture
at a particular moment. So, one of its input is eitherM1 orM2,
the other input is Clk_out. The typical delay across a MUX in
the 90nm CMOS process is shown in Fig. 9(a), ranging from
109ps to 185ps, under 5 process corners denoted as {TT, FF,
SS, SF, FS}. Therefore, our phase quantifier needs to cover
a delay range larger than [109ps, 185ps] to ensure robust
operation under process variations. In order to minimize the
area overhead, we incorporate a 2-stage micro-architecture

FIGURE 9. The phase quantifiers and the target MUX delay to be
calibrated. (a) Simulated MUX delay in a 90 nm CMOS process and
(b) the two stages of a phase quantifier.

FIGURE 10. Detailed circuitry of a phase quantifier.

as shown in Fig. 9(b), including a fast-shrinking logic
(FS-Logic) as the first stage, and a time-to-digital converter
(TDC) as the second stage.

The function of the FS-Logic is to quickly reduce the
amount of the input timing signal (i.e., the phase differ-
ence between M1 and Clk_out, assuming for phase quanti-
fier PQ-1) to a smaller range (e.g., less than 30ps). Then,
this timing signal (defined by the phase difference between
the two signals at nodes X1 and Y1) is further provided
to a higher-resolution TDC in the second stage for encod-
ing. The produced output code for PQ-1 is denoted as
PA-1, further consisting of two digital codes - Fast-Shrinking
part, σ [6:0], and TDC part, θ [7:0]. Both of these two dig-
ital codes are recorded to assist the subsequent WUGR
operation. Fig. 10 shows the detailed circuitry of a phase
quantifier.

Fig. 10(a) is the Fast-Shrinking part. The 4 LSB bits of
σ -code, i.e., σ [3:0], is one-hot. Each pin when turned ON
selects a unique path in the upper path. When considered
together with the fixed delay along the lower path, it creates
a unique amount of phase shrinking. The 3 LSB bits of
σ -code, i.e., σ [6:4], is thermometer like. More pins when
turned ON creates larger capacitance at the output signal of
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FIGURE 11. A illustration of a ‘‘differential timing signal at (X1, Y1)’’
passing through the TDC, while producing a thermometer code θ [7:0].

the upper path, and thus longer upper path delay. Again, when
considered together with the fixed delay along the lower path,
it creates a larger amount of phase shrinking as observed as
(X1, Y1). In our implementation, we use CLKBUFX2 for
the regular buffer and TBUFX4 for those tri-state buffers.
Typically, the phase shrinking amount of our Fast-Shrinking
Logic is approximately in a range from [101ps, 247ps] in
a 90nm CMOS process, adequate to cover the MUX delay
under calibration.

Fig. 10(b) is the TDC part. We follow the Vernier delay
line based TDC concept. The two input signals propagates
through two different paths of delay - the upper path with
slightly longer delay, and the lower path with slightly shorter
delay. Note that their delay difference is created by adding
buffers as extra loading at the upper path. The structure can be
viewed as the cascade of 8 fine-shrinking elements, each hav-
ing a shrinking ability of about 3ps. After each fine-shrinking
element, the differential signal is sampled by a D-type
Flip-Flop, to produce a bit of the TDC’s output code, from
θ [0] to θ[7], respectively.
(Example 1): Consider a differential timing signal at (X1,

Y1) at the end of the Fast-Shrinking Logic in Fig. 11. This
differential timing signal then passes through the TDC part,
with their value sampled by the D-type flip-flops changing
from positive to negative. Thus, we will have an output of
thermometer code θ [7:0] = [00001111].
Before we conclude this subsection, we discuss one

detail of how phase quantifiers are utilized in the
ping-pong procedure operation. In this discussion, we assume
that TDL-1 is in command, and TDL-2 is in WUGR
operation.

(1) For TDL-1, the PQ-1 is operated from time to time, and
the resulting output code PA-1 (including the σ1[6:0]
part and θ1[6:0] part) is recorded into register PAR-1.

(2) For TDL-2 in WUGR operation, the previously
recorded digital code of the FS-Logic part in register
PAR-2, i.e., σ2[6:0], is used to configure the FS-Logic
part of PQ-2. Then, an iterative process is employed to
search for a control code < β2, γ 2> for the TDL-2 so
that the produced output signal at M2 will have a right
timing to drive the PQ-2 and produce a new digital code
for the TDC part, i.e., θ2[6:0], which matches the old
digital code θ2[6:0] recorded in the register PAR-2 pre-
viously. When this match is complete, the open-loop
calibration is completed and the TDL-2 is synchronized
to TDL-1 and become ready for the imminent handover
action.

FIGURE 12. The architecture of wide-range TDL.

FIGURE 13. Layout of proposed DLL.

E. WIDE-RANGE DELAY TUNING
As illustrated previously, we can construct a Segmented
TDL using only 102 standard cells, covering a tunable delay
range from 545ps to 778ps, controlled by two-level control
codes - a 16-bit coarse-tuning thermometer code β[15:0] and
a 36-bit fine-tuning thermometer code γ [35:0]. However,
the delay range is certainly too narrow. Thus, we need to
add another Long-Range Tuning Block, controlled by another
16-bit one-hot code, namely α[15:0], as illustrated in Fig. 12.
Note that the time resolution of the fine-tuning γ -code can
be as small as 1ps in a 90nm CMOS process, while the time
resolution of the long-range tuning α-code is roughly 200ps
in our design. Here the DG means the delay group, made up
of three clock buffer cells of CLKBUFX1, representing the
time resolution of the Delay Block. After adding this Delay,
our design can support the DLL operation for input clock
signals from 400MHz to 1GHz over three process corners by
post-layout simulation.

IV. SIMULATION RESULTS
A. LAYOUT AND SIMULATION
We have realized the proposed cell-based DLL design in a
90nm CMOS process with the layout show in Fig. 13. The
layout size is 0.023mm2 (with a configuration of 210µm ×
110µ m). It has been divided into six hard macros - two
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FIGURE 14. Post-layout simulation waveforms of our DLLs under 1GHz
input clock signal and stable operating conditions (VDD = 1V, 25◦C).

FIGURE 15. Post-layout simulation waveforms of our DLLs under 1GHz
input clock signal under more changing operating conditions (VDD
changes from 1V to 0.9V gradually in 4µs, 25◦C).

long-range TDLs, two phase quantifiers, one phase detector,
and a controller.

Fig. 14 shows the post-layout simulation waveform of
our DLL operated with 1GHz input clock signal with stable
operating conditions (at 1V VDD and 25◦C). The phase dif-
ferences between input and output clock signals, i.e., Clk_in
and Clk_out, before and after the phase-locking has been
highlighted to demonstrate its correct function. Note that the
operating conditions (such as VDD and temperature) have
been kept stable during this simulation and thus the α-code
and β-code of the ‘‘TDL in command - which is TDL2’’ have
been stable at α2 = 1 and β2 = 3 (in their binary versions
instead of thermometer versions).

To demonstrate the resilience of our DLL, we perform
another set of post-layout simulation with more varied oper-
ating conditions in which the VDD drops gradually from
1V to 0.9V in 4µs as shown in Fig. 15. Since temperature
change is not easy to simulate and thuswe attempt to usemore
supply voltage change to signify the effects of both VDD and
temperature changes.

It is also notable that that even though the ping-pong inter-
val (which is set to 10,000 cycles of the input clock signal) has
not been reached yet during the simulation, segment jumps
have occurred, and thus triggering the ping-pong actions for
several times. This can be evidenced in two aspects. First,
the control signal of the MUX, i.e., Mode, has been chang-
ing frequently, with each switch in its value from 0→1 or
1→0 signifies a ping-pong action (or handover in command

FIGURE 16. Comparisons with two previous cell-based DLL designs.

between the two primitive TDLs). Second, in order to catch
up with the environmental changes in the operating condi-
tions while remaining in lock, a Segmented TDL would have
to keep increasing its coarse-tuning code, i.e., β-code, in this
case from 4, 5, 6, . . . , etc. Such an increase has been jointly
achieved by the two primitive TDLs taking turn to drive the
output clock signals as demonstrated in their β-codes.

B. PERFORMANCE COMPARISON
In this subsection, we highlight the contributions of this work
by comparing with two reference works in cell-based DLLs
- (Ref-1) continuous type of DLL using parallel tri-state
buffers, first proposed in [10], [11] and automated in [15], and
(Ref-2) segmented type of DLL using both parallel tri-state
buffers as well as ‘‘cell-based varied capacitance’’ first
proposed in [12] and automated in [14] shown in Fig. 16.

We focus on three criteria, including area, power consump-
tion, and Peak-to-Peak jitters (Pk-Pk jitters). Note that the Pk-
Pk jitters are measured in simulation over 1000 clock cycles
after locking.
(Comparison #1):We have achieved smaller area and less

power consumption than Ref-1 (Continuous type) design.
If the area and power consumption of the Ref-1 design are
denoted as 100%, then the area and the power consumption
of our ping-pong DLL is 61% and 53%, respectively, while
the increase of the Pk-Pk jitter is only moderate from 11ps to
13ps.
(Comparison #2):We have solved the robust problem that

have long plagued the Ref-2 (Segmented type) design due to
the potential segment jumping under hostile operating envi-
ronment. Even though a Ref-2 design could have a smaller
area (30%) and a lower power consumption (31%) as com-
pared to Ref-1 design, its Pk-Pk jitter could be as high as 48ps,
mainly due to the segment jumps. On the other hand, if we
adopt the proposed pong-pong scheme, the Pk-Pk jitter can
be dramatically reduced significantly from 48ps down to only
13ps. In Fig. 17, we plot the histograms of the jitters observed
by post-layout simulation within a time frame of 1000 clock
period samples for both Ref-2 design and this work, for easier
visual comparison.
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FIGURE 17. Simulated jitter plots of traditional segmented TDL-based
DLL and the proposed ping-pong-based DLL, under a VDD-changing
scenario.

We want to further point out that this segment-jumping
problem has been the ‘‘Achilles’ heel’’ of synthesizable PLLs
or DLLs as evidenced by the following quote published
very recently by a state-of-the-art commercial IP provider in
May 2019 [18]:

‘‘Unfortunately, most (synthesiable) designs proposed do
not (have wide linear continuous tuning ranges with high
resolution on the clock frequency). They have a large number
of frequency bands with highly non-linear frequency control.
What this means for your PLL is that once locked, where a
locking assist circuit has found the center of one of the bands,
very little change in input frequency, voltage, or temperature,
can be tolerated without the design producing large amounts
of jitter and glitching.’’

This paper has given the synthesable solutions a boost by
solving the above nasty segment-jumping problem that have
plagued the cell-based PLLs or DLLs for a long time.

V. CONCLUSION
Significant jitter due to segment jumping in a cell-based
DLL using segmented TDL is one major limiting factor that
prevents it from widespread adoption. If this problem is not
solved, then a segmented TDL basedDLL could have reliabil-
ity problem in an application in hostile operation conditions.
In this work, we have resolved this problem by a ping-pong
protocol, and thereby reducing the peak-to-peak jitter from
48ps to 13ps when operating in 1GHz. In this novel DLL
architecture, two primitive Segmented TDLs are incorporated
to take turn to produce the output clock signal. Through
a sophisticated WUGR operation, instant handover can be
achieved, while not creating noticeable jitter. Our implemen-
tation of a 400MHz-1GHzDLL using a 90nmCMOS process
shows that, it also enjoys an area reduction of 35%, and a
power reduction of 47% as compared to the traditional con-
tinuous type of DLLs, while keeping the increase of the jitter

only marignally from 11ps to 13ps. On the othe other hand,
if compared to a segmented DLL, then we enjoy a huge jitter
reduction from 48ps to only 13ps. Furthermore, the proposed
ping-pong protocol can be applied to any other timing circuits
(such as Phased-Locked Loop) that incorporates a cell-based
Tunable Delay Line.
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