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ABSTRACT Drivermodel is themost basic and importantmodel formoving direction control of autonomous
vehicles and it has been extensively studied from the perspective of precision and robustness of control,
driving safety, and riding comfort. However, human-like driver model is a rarely mentioned research issue.
In this paper, we first establish three preview-based driver models in PreScan+Simulink and collect human
drivers’ steering data on four two-way and two-lane free curved roads with 20 experienced drivers and one
experimental vehicle under four specified speeds. Then, the similarities between steering wheel angles of
preview-based models and those of human drivers are compared through dynamic time warping (DTW).
From the calculation results of DTW and analysis of human drivers’ gaze positions, it shows that the
preview-based models are hard to reflect the characteristics of human drivers’ maneuver. To this end,
we propose a human-like driver model based on the continuity of human drivers’ steering wheel angles. The
experienced drivers’ steering wheel angels are modeled with three different kinds of multivariate multi-step
recurrent neural networks (RNNs) and the inputs of models are historical speeds, historical road curvatures,
future road curvatures, and historical steering wheel angles, as well as the outputs are future steering
wheel angles. By comparing the three RNN-based driver models with different configuration structures
and historical steps, it is found that the long short-term memory (LSTM) model has the best prediction
performance in validation and testing period. In this way, a data-driven human-like driver model is developed
to generate human-like steering wheel angles on curved roads.

INDEX TERMS Human-like driver model, curved roads, RNN, LSTM, experienced drivers.

I. INTRODUCTION
In recent years, the development of autonomous vehi-
cles (AVs) have attracted the world’s attention. The deploy-
ment of AVs will also have important impacts on the future
transportation system [1], the way people travel [2], and
the future development trend of automobile industry. It is
believed that AVs are more likely to be accepted if they drive
safely, comfortably, and behave like human drivers [3], [4].
Driving safety and ride comfort are two common consider-
ations in AV technologies, but human-like driving is rarely
studied. The importance of human-like driving is that in the
initial stage of the popularity of AVs, AVs and human-driven
vehicles need to share the roads. The rationale is not that
human-like driving would somehow be superior, but rather
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that humans will find it easier to interact and feel at ease with
AVs in such case [5].

Driver model is the most basic and important model for
driving direction control (or lateral control) of AVs. The
main three groups of methodology used to develop driver
models are classical control theory, modern control theory,
and intelligent control theory [6]. In classical control theory,
the system is represented using transfer functions, and pre-
view control driver model is the typical and most widely used
driver model. As early as 1980, MacAdam [7] developed an
optimal preview control algorithm and successfully applied
this algorithm to lane tracking and lane changing tasks.
And since that time, various kinds of preview-based driver
models have been developed based on different assumptions
about the drivers’ preview positions. Preview-based driver
models represented the driver as an optimal preview con-
troller, constructing a path error functional by previewing
the road over a known preview distance, and minimizing the
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differences between the previewed path points and the cor-
responding estimated lateral positions of the vehicle over
the preview distance [8]. Model predictive control (MPC) is
another well-known method to model lateral control system
of AVs, and it uses modern control theory to represent the
human-vehicle-road closed-loop system in state space [9].
One thing in common with the aforementioned methods is
that they are all based on tracking control theory, so a tracking
trajectory (or desired trajectory) needs to be set in advance.
And lane centerlines are often used directly as the desired
trajectories. Of course, many studies adjusted the parameters
in the driver models by least squares parameter identifica-
tion to make the trajectories of AVs close to that of human
drivers’ [10]. The parameters of these models are difficult to
modify in order to characterize different driving behaviors;
instead, themodel must be retrained using new data to capture
new roads, new driving conditions, and new driver types.
In practical applications, generalization performance is the
biggest drawback of these two kinds of driver models. When
developing driver models with intelligent control theories,
neural network [11], fuzzy logic [12], and hidden Markov
model (HMM) [13] are commonly used. Neural network
and fuzzy logic have very good non-linear approximation
function. When embedded in preview-based driver model,
they can flexibly adjust model parameters. However, they still
need to work with other mathematical models like vehicle
dynamics model, preview model, and feedback model. The
driving pattern primitives consisting of states of the environ-
ment, vehicle, and driver are symbolized by HMMs, which
can be used for both recognition and generation of the driving
behaviors. Since the driver behavior is proposed of stochastic
model, the prediction steps of HMM are relatively short. This
means that as the forecast steps increase, the predicted perfor-
mances of the HMM driver model will gradually decrease.

In this paper, we firstly establish three preview-based
driver models in PreScan [14] and Simulink. To compare
the differences between preview-based driver models and
experienced drivers, the steering wheel angles, trajectories,
speeds, and other driving data of experienced drivers are
collect from a field test on four free curved roads. Twenty
participants and one experimental vehicle are included in the
experiments. By placing virtual landmarks on the experimen-
tal roads, the driving data of experienced drivers are trans-
formed into sequential data with a uniform format. DTW [15]
is used to compare the similarities between preview-based
driver models and human drivers, and the calculation results
show that the differences between the steering wheel angles
of experienced drivers and those of preview-based models are
big. Finally, the inherent disadvantages of the preview-based
driver models and the needs of human-like driving for AVs
that motivate us to build a human-like driver model. The
human-like driver model is based on three different multi-
variate multi-step recurrent neural networks, and the inputs
of model are historical speeds, historical road curvatures,
future road curvatures, and historical steering wheel angles,
as well as the outputs are future steering wheel angles.

The proposed human-like driver model in this paper learns
from experienced drivers directly which aiming at realizing
AVs’ human-like driving on curved roads. The contributions
of this paper include the following:

1) Three preview-based driver models are built in
PreScan+Simulink andDTW is introduced to calculate
the similarities between the steering wheel angles of
simulation results and those of experienced drivers.

2) A comprehensive field test with twenty experienced
drivers is conduct on four curved roads with different
curvatures under four specified speeds and the driving
data are able to reflect the characterization of human
driving on curved roads.

3) Based on recurrent neural networks, we propose a
human-like driver model on curved roads. The model
can generate human-like steering wheel angles and its
performance is evaluated with different hidden layers
and historical steps.

The remainder of the paper is organized as follows.
Section II outlines related studies. Three most classical
preview-based driver models are presented in Section III and
the simulation setup of the preview-based driver models in
PreScan+Simulink are illustrated in Section IV. The exper-
iment setup and details for human drivers’ driving data col-
lection are introduced in Section V. Section VI presents data
processing and comparisons between preview-based driver
models and human drivers. In sectionVII, a human-like driver
is developed with three different kinds of recurrent neural
networks. In Section VIII, we present all the hyperparameter
settings of the human-like driver and validate as well as test
its effectiveness. Finally, conclusions are made in Section IX.

II. RELATED WORK
For driver steering behavior, studies have been conducted
in regard to modeling physical human characteristics, sen-
sory information, and perception and behavioral aspects.
Preview-based models [16] are the most typical driver mod-
els, and they use compensatory transfer functions based on
heading errors at a preview distance. These preview-based
driver models provide many of the features expected in a
model of the human driver, namely preview of the future road
path, feedback of vehicle states, control based on knowledge
of the vehicle dynamics, and parameters to specify the control
priorities of the driver.When using single-point previewmod-
els, the first concern in choosing parameter values is to set a
preview distance (or preview time) which is reasonable [17].
Since if the preview point is a long distance in front of
the vehicle, it will be inappropriate to act on the preview
information at the time of its acquisition and the informa-
tion has gone by the time it is useful. On the other hand,
if the preview point is very close to the vehicle, control will
necessarily be very poor. Aware of the problems existing in
the single-point preview driver model, many scholars have
proposed the two-point preview driver model. Salvucci and
Gray [18] proposed a two-level model of steering control
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that used the perceived visual direction of two salient
visual points, a ‘‘near point’’ in the near region and a ‘‘far
point’’ in the far region of the roadway. Based on field test
data, You et al. [6] presented that two-point visual driver
model captures realistic driving behavior with time-varying
parameters. However, Sharp et al. [19] believed drivers not
only acquire path preview information by looking ahead
of the vehicle, but also have state error information from
the relation between the present position and that desired.
By weighting and summing all the estimated errors, they
proposed a multi-point preview driver model. In addition to
the parameters of the control system, drivers’ reaction time
td and neuromuscular delay time th are often considered
to be human properties. Auto-regression moving average
with exogenous inputs (ARMAX) [20], Fourier coefficient
method (FCM) [21], and least square method [22], [23] are
always used for identifying driver’s steer characteristics.
However, to the best as we know, no research has proved that
the identified parameters are the real physiological reaction
time of human drivers.

To further improve the performance of the preview-based
driver models, fuzzy logic and artificial neural net-
work (ANN) are often embedded in the models. A fuzzy
rule-based neural network model was proposed in [24] to
simulate driver behavior in terms of longitudinal and lat-
eral actions. In [25], the collision avoidance maneuver is
performed using fuzzy controllers for AVs to mimic human
behavior and reactions. Lin et al. [26] proposed a ANN-based
driver handling behaviour model with the position, velocity
and acceleration of the vehicle used as the input and the
front wheel steer angle considered as the desired output
of the trained network. Caoet et al. [27] developed a new
vehicle path-following strategy based on the preview optimal
simple artificial neural network (POSANN). Model predic-
tive control (MPC) is an efficient trajectory tracking control
algorithm and is often used to build driver model [28]. Based
on a linear optimal path tracking controller, Ungoren and
Peng [29] proposed an adaptive lateral driver model using
MPC. Cole et al. [9] compared the method of MPC with
receding horizon linear quadratic (LQ) and infinite horizon
LQ. The time-variant predictive control method was applied
in [30] to model the driver steering skill. Most of the afore-
mentioned models were designed to control steering wheel
for specific applications. However, none of these studies took
into account each driver’s desired trajectory as part of their
driver models. Their mathematical formulations were used
for precise control so the physical characteristics of human
drivers were ignored.

With the study and development of machine learning,
especially deep learning, data-driven modeling methods are
becoming more and more widely used. Bojarski et al. [31]
trained a convolutional neural network (CNN) to map raw
pixels from a single front-facing camera directly to steering
commands of AVs and this end-to-end approach proved sur-
prisingly powerful. Similarly, Chi and Mu [32] designed a
convolutional long short term memory (Conv-LSTM) neural

network to predict the due wheel angle for a AV. Imitation
learning was applied in [33] to learn car racing behaviors
from the data of human drivers. NN-based model has accu-
rate prediction performance and convenient model structure,
and the generalization ability of NN-based model is very
good [34]. What’s more, due to the direct use of drivers’
maneuver data to build the driver model, the obtained driver
model has a high similarity with human drivers. We believe
that the driving behavior of human drivers under normal
conditions mainly depends on their driving experience and
driving habits. This paper proposes a human-like driver
model based on three different kinds of recurrent neural
networks: standard recurrent neural network (RNN) [35],
long short-term memory (LSTM) [36], and gated recurrent
unit (GRU) [37]. The driver model can generate human-like
steering wheel angles on free curved roads. The modeling
work in the paper is based on normal driver conditions.
Abnormal driver condition variations caused by factors such
as physiological conditions, stress, and distractions are not
considered.

III. PREVIEW-BASED DRIVER MODEL
One may consider ‘‘driving an AV’’ intuitively as a control
task and this may be a reason why control theory based driver
models have been successful. From a control theory point
of view, the crucial ability of the driver model is to follow
a specified course given by a desired trajectory. In order to
study and simulate the characteristics of driving behaviors in
different traffic conditions, many types of driver models are
built. The three most classical driver models are single-point
preview driver model, two-point preview driver model, and
multi-point preview driver model. However, these models
cannot really reflect the characteristics of human drivers’
maneuver when controlling the steering wheel angles. To this
end, we propose a human-like driver model based on recur-
rent neural networks.

A. SINGLE-POINT PREVIEW DRIVER MODEL
Taking into account the perception and delay behavior of
humans during the steering process, single-point preview
driver model is proposed. The steering strategy can be under-
stood as the driver always attempts to minimize the error1yp
between the vehicle’s actual trajectory and desired trajectory,
as shown in Figure 1(a). The distance L ahead the vehicle is
called ‘‘preview distance’’.Most of the time, we use ‘‘preview
time’’ tp (tp = L/v) to indicate driver’s preview behavior.
In terms of transfer functions, single-point preview driver

model can be illustrated in a more general form by the control
loop of Figure 2. In the preview segment P(s), the driver
previews a distance ahead the desired trajectory f (t) with
the output fe. H (s) donates the control characteristics of the
driver, G(s) the transfer function of the vehicle model, and
B(s) the feedback function.
etps donates driver preview transfer function, e−td s the

natural reaction delay transfer function, and 1
1+ths

the iner-
tial delay of driver hand and vehicle steering system.
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FIGURE 1. Three different preview-based driver models.

FIGURE 2. Basic control loop of preview tracking models.

What’s more, td is the reaction time of the driver, th the neu-
romuscular delay time, δsw the steering angle of the vehicle,
y(t) the output of the vehicle, and yp the driver’s predicted
lateral trace. In general, the control structure of a driver model
coupled with a vehicle coincides with the preview-follower
theory.

B. TWO-POINT PREVIEW DRIVER MODEL
A steering control model that uses the perceived visual direc-
tion of two salient visual points, a ‘‘near point’’ in the near
region and a ‘‘far point’’ in the far region of the roadway,
is propose as the two-point preview driver model. As shown
in Figure 1(b), θf donates the angle between the driver’s sight
direction on the far point and vehicle’ heading direction, and
θn the angle between the driver’s sight direction on the near
point and vehicle’s head direction. The control law of steering
angle is:

δ̇ = kf θ̇f + knθ̇n + kI θn. (1)

When modeling two-point driver model, we always use the
discrete formulation:

1δ = kf1θf + kn1θn + kI θn1t, (2)

where kf , kn, and kI are gain parameters, and δ is the ideal
steering angle. The distance from the center of gravity (CG)
to the near point is donated as Ln, and the distance from CG
to the far point is Lf . The reaction time and neuromuscular

FIGURE 3. Construction of simulation in PreScan and Simulink.

delay time are also included in Simulink model. Two-point
preview driver model assumes that the driver aims to keep
the sight angles θn and θf to these points stationary, and at the
same time attempting to reduce the near point angle to zero.

C. MULTI-POINT PREVIEW DRIVER MODEL
The multi-point preview driver model also makes use of
the preview-follower theory. However, instead of calculating
its steering wheel angle as a weighted sum of current and
previewed trajectory deviations ei along a forward optical
lever, multi-point preview driver model extends a preview
time tp ahead (as illustrated in Figure 1(c)), and calculates the
current deviation eψ between vehicle and trajectory heading:

δ = kψeψ + k1e1 + kp6n
i=2kiei, (3)

where kψ , k1, and kp are gain parameters, δ the ideal steering
angle, and n the number of preview points. Additionally,
to allow for a fair comparison with the other models, reac-
tion time td and neuromuscular delay time th are added to
Equation 3.

IV. SIMULATION
In order to compare the differences between the traditional
preview-based driver models and human drivers on the same
road, three preview-based driver models (single-point pre-
view, two-point preview, and multi-point preview driver
models) are simulated in PreScan+Simulink, respectively.
PreScan is an active experimental platform [38], and it is able
to build scenes based on the actual road environment and
sensor model.

A. CONSTRUCTION OF SIMULATION
PreScan and Simulink are used to build the simulation envi-
ronment. Each simulation model consists of three parts: vehi-
cle model, road environment, and driver model. The main
function of PreScan is to build the road environment, while
the vehicle model and driver model are connected to PreScan
via Simulink.

A total of four roads are built in PreScan, each of which is
the same as the experimental road in field test. For the vehicle
dynamics model, we use a 2-degree-of-freedom (dof) bicycle
model [39]:

mv̇+ (
2Cf + 2Cr

u
)v+ (mu+

2lf Cf − 2lrCr
u

)r =
2Cf δsw
nsw

,

(4)
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TABLE 1. Parameters of the vehicle model.

TABLE 2. Parameters of three preview-based models.

Izṙ + (
2lf Cf − 2lrCr

u
)v+ (

2l2f Cf + 2l2rCr

u
)r =

2lf Cf δsw
nsw

,

(5)

where u donates the longitudinal vehicle velocity, v the lat-
eral vehicle velocity, r the yaw rate, and δsw the steering
wheel angle. The parameters of the vehicle model are shown
in Table 1.

In order to match the speed requirement in the field test,
a proportional–integral–derivative controller (PID controller)
is used to control the vehicle speed during simulation so that
it maintains a constant value throughout the curves. The pro-
portional gain Kp is 20, integral gain Ki is 0.3, and derivative
gain Kd is 3.065.

B. PARAMETERS OF THE THREE PREVIEW-BASED DRIVER
MODELS
As illustrated in Section III-A, B, and C, each preview-based
model has its own parameters, which directly affect the
performance of the driver models [40]. For each param-
eter, the allowed range is presented in Table 2, together
with information on which models made use of the param-
eters. Additionally, the lane centerline of each road is set
as the desired trajectory for three preview-based driver
models.

It should be noted that in the simulation, the interval of tp
and td are 0.1 s, the interval of Lf and Ln are 10 m, the interval
of kf , kn, kψ , and k1 is 5, and the interval of kI and kp is
1. We want to compare the steering wheel angles obtained
by preview-based models with those of human drivers by
traversing all parameters.

C. DYNAMIC TIME WARPING
After the simulation is completed, we use dynamic time
warping (DTW) [41] to calculate the similarities between the

TABLE 3. Details of all participants.

steering wheel angles of simulation results and those of expe-
rienced drivers. Before comparing, the original sequential
data should be normalized. For F = {f1, f2, · · · , fi, · · · , fm},
the z-normalization algorithm:

f̂i =
fi − µ
σ

, (6)

where µ and σ donate mean and standard deviation of F . The
normalization result of F is F̂ = {f̂1, f̂2, · · · , f̂i, · · · , ˆfm}.
For two sequential data of steering wheel angles F =
{f1, f2, · · · , fi, · · · , fm} and G = {g1, g2, · · · , gj, · · · , gn},
the DTW distance between them is denoted by DTW (F,G):

DTW (F,G) =
√
D(F,G), (7)

D(F,G) = dist(fi, gj)+ min


D(fi−1, gj)
D(fi, gj−1)
D(fi−1, gj−1),

(8)

where D(f0, g0) = 0, D(fi, g0) = D(f0, gj) = ∞, i =
1, 2, · · · ,m, and j = 1, 2, · · · , n. Typically the Euclidean
distance is used, so dist(fi, gj) = (fi − gj)2. In this paper,
on the same road, the lengths of F and G are the same (i.e.
m = n).

V. FIELD TEST
To collect the steering wheel angles of experienced drivers
on curved roads and further make comparisons with
preview-based driver models, we conduct a field test on four
curves with different curvatures. The participants, experi-
mental equipments, experimental roads, and procedures are
detailed in the following subsections.

A. PARTICIPANTS
We recruited 5 driving instructors, 5 bus drivers, and 10 taxi
drivers as the representatives of experienced drivers. Expe-
rienced drivers have excellent driving ability and relatively
stable driving style. The age, gender, driving experience,
and annual vehicle kilometers traveled (AVKT) are presented
in Table 3.
Four of the experienced drivers are female and the average

age all participants is about 41.7. The average AVKT of all
the participants is 4.5×104 km/year and the average driving
experience is about 16.8 years.

B. EXPERIMENTAL VEHICLE AND EXPERIMENTAL
EQUIPMENTS
In this study, one SKODA Octavia is used as the experimen-
tal vehicle (as shown in Figure 4). To record vehicle posi-
tions, a differential GPS system and a integrated positioning
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FIGURE 4. Experimental vehicle and experimental equipments.

FIGURE 5. Test fields with four curved roads.

TABLE 4. Details of the four experimental roads.

system (INS) are installed on the top of the experimental
vehicle. What’s more, a measurement steering wheel (MSW)
is mounted on the steering wheel of the original vehicle to
measure the steering wheel angles.

The acquisition accuracy of the GPS/INS is ± 0.01 m
and the sampling frequency is 20 Hz. The speed, longitude,
latitude, time, row, pitch as well as other data could be
collected through the NovAtelConnect_1.4.0 software. The
type of MSW is Kistler CMSWB, the measurement range
of steering angle is ± 1250 ◦, and the accuracy of MSW
is ± 0.1 ◦.

C. TEST FIELDS
The experiments are conducted on four two-lane roadways,
with one lane in each direction (as shown in Figure 5).

Each curve consists of two straight line segments, two
transition curve segments, and one circular curve segment.
The radius of curvature r and deflection angle α of each
experimental road’s circular curve segment are illustrated
in Table 4.

D. PROCEDURE
Each experimental road has two moving directions, experi-
enced drivers drive on each moving direction five times with

four specified vehicle speeds, 20 km/h, 30 km/h, 40 km/h,
and 50 km/h, respectively. Before each test, the experienced
drivers are informed about the required vehicle speed for
the current test and asked to keep this speed as much as
possible during their driving. All participants are explicitly
informed about the contents of the experiment. Since there is
only one experimental vehicle and the experimental roads are
separated, the participants take turns to carry out their tests
and each participant’s test time is about 2 hours.

VI. DATA PROCESSING AND COMPARISON RESULTS
The field test collects a total of 3200 pieces of data, among
which the valid data are 2976 pieces. In the course of the
field test, experienced drivers control the vehicle speed very
well, but the speed is not a fixed value on the whole curve.
We want to project the steering wheel angle to the position
of the road, that is, to plot the figure of steering wheel
angle changing with the length of the curve (as shown in
the top of Figure 6). In order to achieve the above purpose,
we process the collected data in two steps: First, determine the
position of the vehicle on each virtual landmark; Then, find
the corresponding steering wheel angle and vehicle speed.
The calculation process of vehicle speeds, vehicle position,
road curvature, and steering wheel angles are depicted in the
following subsections.

A. CALCULATE VEHICLE POSITION
Due to the differences of vehicle speeds, there is a certain
degree of inconsistency between each original trajectory (e.g.
two trajectories in Figure 6). So a lot of virtual landmarks
are placed along the separation line of each experimental
road. The virtual landmarks are only used for calculating
the vehicle position. The distance between two neighboring
virtual landmarks of each experimental road is 1 m.

The GPS sampling point closest to the virtual landmark
is selected as the feature point. As an example, see Figure 6
for two sample trajectories, {· · · ,Pi−1,Pi,Pi+1, · · · }, and
{· · · ,Qj−2,Qj−1,Qj,Qj+1,Qj+2, · · · }.

For each virtual landmark VLk , k = 1, 2, · · · ,N ,
we define the following neighborhood:

Dk := {s|||VLk − s|| ≤ R}, (9)

where R is the radius and we choose R =5 m in this study.
Then we searched for all GPS sampling points in the calcula-
tion domain.

For trajectory {· · · ,Pi−1,Pi,Pi+1, · · · }, it has only one
GPS sampling point in the computation domain and Pi is
the feature point. However, trajectory {· · · ,Qj−2,Qj−1,Qj,
Qj+1,Qj+2, · · · } has two sampling points in the calculation
domain. Multiple sampling points may also occur during the
actual calculation.When two ormore sampling points appear,
the linear distance between each sampling point and virtual
landmark VLk is calculated first. And it is found that:

Qj+1VLk < QjVLk . (10)
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FIGURE 6. Calculations of vehicle positions.

FIGURE 7. Sequential data of one test on experimental road R3.

So Qj+1 is selected as the feature sampling point. Through
the above calculation, each trajectory has one unique feature
point at each virtual landmark.

B. CALCULATE STEERING WHEEL ANGLE
Based on the feature point at each virtual landmark, we can
find the vehicle speed and steeringwheel angle corresponding
to the feature point. All the data we collected can be trans-
formed into sequential data with a uniform format.

Figure 7 illustrates the data processing of one test on the
inside lane of experimental road R3. The length of experi-
mental road R3 is 167 m, so N (N donates the maximum
number of visual landmark) is 168. It should be noted that
when the steering wheel rotates clockwise, the steering wheel
angles are defined as positive, and when the steering wheel
rotates counter-clockwise, the steering wheel angles are
negative.

C. PREVIEW MODELS VERSUS EXPERIENCED DRIVERS
We get a total of N steering wheel angle data for human
drivers in one specified speed. We will use the single-point
preview model as an example to introduce the specific
process of calculating similarity using DTW. For example,
signal-point preview driver model totally has M sets of
parameters. Through simulation, we can get M pieces of
steering wheel angle sequence data. For one piece steering

TABLE 5. Similarities between preview-based driver models and
experienced drivers (specified speed: 40 km/h).

FIGURE 8. The most similar pair of steering wheel angles between
preview-based models and experienced drivers.

wheel angle data i, its similarity to the steering wheel angles
of all experienced drivers is defined as:

DTWi =
1
N

N∑
j=1

DTW (i, j), j = 1, 2 · · · ,N , (11)

where DTWi donates the similarity of steering wheel angles
between i-th signal-point preview driver model and experi-
enced drivers. We also use DTWmax , DTWmin, and DTWave
to present the maximum, minimum and average values
of DTWi:

DTWmax = maxDTWi

DTWmin = minDTWi

DTWave =
1
M

∑M

i=1
DTWi,

i = 1, 2 · · · ,M . (12)

Table 5 illustrates the calculation results of similarities
between the steering wheel angles of three preview-based
models and those of experienced drivers on experimental road
R2 when the specified speed is 40 km/h.

It can be seen that two-point andmulti-point preview driver
models are more similar to human drivers in general. In order
to show the similarities more intuitively, we find the most
similar pair (DTW ∗ = minMi=1min

N
j=1DTW (i, j)) of steering

wheel angles and show them in Figure 8.
It should be noted that the steering wheel angles of expe-

rienced drivers in the three sub-figures of Figure 8 do not
belong to the same driver. Obviously, the differences between
the steering wheel angles of experienced drivers and those of
three preview-basedmodels are very big. It is difficult to show
different driving habits and driving characteristics of different
drivers with only one preview-based driver model.
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FIGURE 9. TP and FP reference points in the visual field.

VII. HUMAN-LIKE DRIVER MODEL
A. GAZE POSITIONS OF HUMAN DRIVERS
The preview-based driver models imitate the forward-looking
characteristics of human drivers when driving. The selection
of preview points has a great influence on the performance
of the model. Common sense suggests that drivers should
‘‘keep their eyes on the road’’ and ‘‘look where they are
going’’. Indeed, measurement of drivers’ eye movements
has shown that during curve negotiation gaze is focused in
a remarkably small region in the visual field. One main-
stream model is ‘‘tangent point model’’ [42], which posits
that drivers’ gaze position is the tangent point (TP). TP model
quickly became the default account of how vision is used dur-
ing curve negotiation. More recent studies, however, believe
drivers seek out target points on the road surface that they
desire their locomotor trajectory to fall on—their future
path (FP) [43].

Single-point preview, two-point preview and multi-point
preview driver models are based on preview-follow theory.
However, there is no evidence to determine whether the TP or
the FP is the ‘‘real’’ target that drivers always look at. TP and
FP are often only of reference value for preview-based driver
models. This leads to a very serious drawback of the above
three driver models: It is difficult to determine the preview
distance, or it is difficult to select a suitable preview distance
in different scenarios. What’s more, the preview-based driver
models rely heavily on the pre-set desired trajectory, which is
generally considered as the centerline of the lane. However,
there is no evidence that human drivers have a clear desired
trajectory in their mind when driving. To summarize, limited
by the preview-follow theory, the previewmodels are difficult
to reflect the actual personality characteristics of different
human drivers.

B. MODEL ESTABLISHMENT
Since preview-based driver models are difficult to make AVs
behave like human drivers, we propose a human-like driver
model on curved roads. The driver model considered in
this paper is on free-roads. We believe that when driving

FIGURE 10. Framework of the human-like driver model.

vehicles on free-roads, human drivers’ driving behavior
mainly depends on their own driving experience and driving
habits, and there are no clear desired trajectories in their mind.
Normally, the car does not stop abruptly, nor does it move
instantaneously. This means the trajectory of the vehicle is
continuous, and the steering wheel angle of the driver is
also continuous. Since that, the driver model can be built by
sequential data modeling approach. At the same time, on free-
road, two main factors affecting driver’s steering maneuver
are vehicle speed and road curvature. So the framework of
the human-like driver model is shown as follows:

The inputs of the human-like driver model are histor-
ical speeds [vn−s+1, vn−s+2, . . . , vn], historical road cur-
vatures [ρn−s+1, ρn−s+2, . . . , ρn], future road curvatures
[ρn+1, ρn+2, . . . , ρn+s], and historical steering wheel angles
[δn−s+1, δn−s+2, . . . , δn]. The outputs are future steering
wheel angles [δn+1, δn+2, . . . , δn+s]. It is worth noting that
s donates the number of step, and it means we want to use
standard RNN (or LSTM, GRU) to forecast s steps into the
future, based on s steps inputs. The proposed human-like
driver model is based on multivariate multi-step standard
RNN, LSTM, and GRU.

The first feature of this driver model is that it is modeled
directly using the data-driven method based on drivers’ steer-
ing angles, which maximizes the retention of human driver
characteristics, i.e. the model has human-like characteristics.
The second feature is that this driver model can utilize both
historical information and future information. This is because
the steering wheel angles of the drivers on curves can be
regarded as sequential data. RNN has unique advantages in
modeling sequential data and it has the ability to memo-
rize long-term dependencies. Before modeling, the vehicle
speed, steering wheel angle, and road curvature collected
from human drivers are transformed into sequential data, see
Section VI for details.

1) STANDARD RECURRENT NEURAL NETWORK
As illustrated in Figure 11, the input sequence of the stan-
dard RNN network is x = (x1, x2, . . . , xn), hidden vector
sequence h = (h1, h2, . . . , hn), and output vector sequence
o = (o1, o2, . . . , on).
The standard RNN hidden layer function is mathematically

formulated as follows:

hn = σ (Whxxn +Whhhn−1 + bh). (13)
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FIGURE 11. Structure of standard RNN.

FIGURE 12. Structure of long short term memory neural networks.

And the output is produced by:

on = Wohhn + bo, (14)

where W∗(∗ = hx, hh, oh) represents the weight matrix
between each layer, and b∗ = (h, o) donates the bias vector.
σ (·) denotes the standard logistics sigmoid function:

σ (·) =
1

1+ e−x
. (15)

The standard RNN computes activations for each time-step
which makes them extremely deep and may lead to vanishing
or exploding gradients.

2) LONG SHORT TERM MEMORY
LSTM is widely applied because it reduces the vanishing
and exploding gradient problems and can learn longer term
dependencies. The structure of LSTM is shown in Figure 12.

To capture the information from the inputs, the relationship
between the input gate in, forget gate fn and output gate on as
follows:

in = σ (Wixxn +Wihhn−1 +Wiccn−1 + bi), (16)

fn = σ (Wfxxn +Wfhhn−1 +Wfccn−1 + bf ), (17)

on = σ (Woxxn +Wohhn−1 +Woccn−1 + bo), (18)

c̃n = tanh(Wcxxn +Wchhn−1 + bc), (19)

cn = in � c̃n + fn � cn−1, (20)

hn = on � tanh(cn), (21)

where W∗(∗ = ix, ih, ic, fx, fh, fc, ox, oh, oc, cx, ch) donates
the weight matrix, b∗(∗ = i, f , o, c) the bias vector, � the

FIGURE 13. Structure of gated recurrent unit neural networks.

scalar product of two vectors, and tanh(·) hyperbolic tangent
function:

tanh(x) =
ex − e−x

ex + e−x
. (22)

The use of these gates allows LSTM to determine whether
to keep existing memory or weigh new information over
existing memory, which is a feature that is not present in
standard RNN.

3) GATED RECURRENT UNIT
RNN with gated recurrent units (GRU) can be viewed as a
light-weight version of LSTM [44].

Similar to the LSTM unit, the GRU also has gating units
(reset gate rn and update gate zn) that modulate the flow
of information inside the unit, however, without having a
separate memory cell:

rn = σ (Wrxxn +Wrhhn−1 + br ), (23)

zn = σ (Wzxxn +Wzhhn−1 + bz), (24)

h̃n = tanh(Wh̃xxn +Wh̃hhn−1(rn � hn−1)+ bh̃), (25)

hn = (1− zn)� hn−1 + zn � h̃n, (26)

where W∗(∗ = rx, rh, zx, zh, h̃x, h̃h) donates the weight
matrix, and b∗(∗ = r, z, h̃) the bias vector. The activation
of GRU hn is a linear interpolation between the previous
activation hn−1 and the candidate activation h̃n, controlled by
the update gate zn.

C. PERFORMANCE INDEX
The models’ prediction performances are evaluated by root
mean squared error (RMSE) and mean absolute percentage
error (MAPE) [45]:

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)2, (27)

MAPE =
1
n

n∑
i=1

|
ŷi − yi
yi
| × 100%. (28)

RMSE measures residual error, which gives a global idea
of the difference between the observed and modelled values.
MAPE has the advantage of being scale-independent, and
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TABLE 6. Hyperparameter settings.

therefore are frequently used to compare forecast perfor-
mance between different scaled datasets.

VIII. RESULT AND DISCUSSION
Three different RNN driver models (standard RNN, LSTM,
and GRU) are proposed in this study to establish the
human-like driver model of experienced drivers based on
field test data.

A. HYPERPARAMETER SETTINGS
The length of experimental road R1, R2, R3, and R4 are
707m, 318m, 167m, and 533m, separately. Since the lengths
of the four roads in the field test are different, this will result
in different lengths of the sequence data. In order to make
the length of the sequence data obtained from different roads
the same, the ‘‘pad_sequences()’’ function in the ‘‘Keras’’ are
used to pad variable length sequences.

Standard RNN, LSTM, and GRU models are all com-
posed of 1 input layer, 2 hidden layers, and 1 output layer.
We designed two different configuration architectures. First
architecture has 50 nodes in each hidden layer whereas
the second architecture has 100 nodes in each hidden layer.
According to the process method illustrated in Section VII,
the obtained vehicle speeds, vehicle positions, road curvature,
and steering wheel angles are transformed into sequence
data. The inputs of driver models are historical speeds, his-
torical road curvatures, future road curvatures, and histori-
cal steering wheel angles, as well as the outputs are future
steering wheel angles. Before training, min-max normaliza-
tion is applied to scale the feature data linearly between
0 and 1. Based on back propagation through time, standard
RNN, LSTM, and GRU models are trained by Adam opti-
mizer. Besides, the learning rate is 0.001, and the number of
epoch is 1000. All the hyperparameter settings are illustrated
in Table 6.

In Table 6, s donates the number of historical step and
three values (5, 10, and 15) of s are set for the comparison of
prediction performances. It is worth noting that the distance
between two neighboring virtual landmark is 1 m, when the

TABLE 7. Prediction performances of the standard RNN, LSTM, and GRU
models in validation period.

value of s is 5 (or 10, 15), it means we want to use standard
RNN, LSTM, and GRU to forecast outputs of the last 5 m (or
10 m, 15 m), based on inputs of the first 5 m (or 10 m, 15 m).
We have implemented the human-like driver model via deep
learning library ‘‘Keras’’ (2.2.2) with ‘‘Tensorflow’’ (1.9.0)
as back end and the programming language is Python 3.5.

B. RESULT
We use field test data of the first 14 participants for training,
4 participants for validation, and the remaining 2 participants
for testing the generalization ability of the human-like driver
model.

1) PREDICTION PERFORMANCES IN VALIDATION PERIOD
We design two kinds of hidden layer neurons of each model:
the first kind has two hidden layers, the number of nodes are
50, which is denoted as h50 × h50; the second kind also has
two hidden layers, but the number of nodes are 100, which
is denoted as h100 × h100. The prediction performances of
the standard RNN, LSTM, and GRU models are illustrated
in Table 7. The algorithm with the best performance and the
one with the second best performance are marked in bold and
italics, respectively.

The minimum value of RMSE is 0.0599, and it belongs to
LSTMwith h100×h100 hidden structure.When the number of
nodes is 100, the prediction performances of standard RNN,
LSTM and GRU are generally better than those when the
number of hidden layers’ nodes is 50. For the comparison of
standard RNN, LSTM, and GRU, it can be seen that LSTM
gives us themost control-ability and thus, better results. How-
ever, LSTM has more complexity and operating cost than
GRU and standard RNN. GRU is the light-weight version
of LSTM, it can balance both forecasting performance and
running cost. It is also worth noting that with the increase of
s, RMSEs of the three RNN models decrease gradually. For
MAPE, the minimum value is 1.3641%, and the maximum
value is 5.4038%. Overall, the prediction accuracy of the
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FIGURE 14. Comparison of prediction results of standard RNN, LSTM, and
GRU.

three RNN-based human-like driver models is very high.
The high prediction accuracy indicates that the RNN-based
driver models are very similar to the human driver’s driving
behavior. Combining with the comparisons of DTW results
between preview-based driver models and human drivers,
it can be concluded that the steering wheel angles of the
human-like driver models proposed in this paper are closer
to the actual steering wheel angles of the human drivers on
curved roads.

2) PREDICTION PERFORMANCES IN TESTING PERIOD
The last 2 participants’ driving data are used for testing
the generalization ability of human-like driver model. The
experienced drivers’ steering wheel angles on the four curved
road are regarded as ground truth. Figure 14 illustrates one
piece of the prediction results of three RNN-based driver
models.

In Figure 14, the specified speed is 50 km/h, the historical
step s is 10 and the configuration architectures is h100 ×
h100, and the ground truth is the steering wheel angles of
driver J19 on experimental road R4. Generally speaking,
the predicted results of the three RNN-based driver models
are very close to ground truth. However, from the two local
enlarged drawings, the steering wheel angles predicted by
LSTM model are the closest to those of human drivers.

In order to further study the humanoid degree of
RNN-based models, we also use DTW to compare the simi-
larities of steering wheel angles in Figure 14. The similarity
between the ground truth and the standard RNNDTWGT ,RNN
(GT is donated for ground truth) is 0.0946. The similari-
ties between the ground truth and the LSTM DTWGT ,LSTM ,
as well as GRU DTWGT ,GRU are 0.0228 and 0.0726,
respectively.

Figure 15 shows the prediction performances of the of the
standard RNN, LSTM, and GRU driver models, and the con-
figuration architectures of all the three models are h100×h100.
Similar to the prediction performance in validation period,

the prediction results of LSTM model are the closest to the
ground truth. However, compared with validation period,
RMSE and MAPE increase slightly in test period. So far,
the RNN-based driver model demonstrates very high pre-
diction accuracy. This means that the RNN-based driver

FIGURE 15. Prediction performances of the of the standard RNN, LSTM,
and GRU driver models.

models proposed in this paper not only have strong
generalization performance, but also achieve the goal of
human-like. Another point to note is that, the LSTM model
is the best performing model. In short, the LSTM-based
human-like driver model can generate steering wheel angles
that are very similar to human drivers on curves, enabling
human-like driving experience.

IX. CONCLUSION
In this study, three preview-based driver models (including
single-point preview, two-point preview, and multi-point pre-
view driver models) were simulated in PreScan+Simulink
with a 2-dof vehicle model. To find the most similar
pair of steering wheel angles between simulation results
and experienced drivers, DTW was introduced. The cal-
culation results showed that there were big differences
between preview-based models and experienced drivers, and
preview-based driver models were difficult to reflect different
driving habits and driving characteristics of different human
drivers. For making AVs behave more like human drivers,
we proposed a human-like driver with recurrent neural net-
works. Twenty experienced drivers took part in the field test
and the experimental vehicle was equipped with GPS/INS
and MSW. The experienced drivers’ steering wheel angles,
vehicle locations, vehicle speeds, and road curvatures were
collected on four two-lane curved roads under four specified
speeds.

Then, by setting virtual landmarks along the separation line
of each experimental road, all the driving data we collected
were transformed into sequential data with a uniform format.
Based on multivariate multi-step standard RNN, LSTM, and
GRU, the human-like driver model was established directly
by experienced drivers’ driving data.We designed two hidden
layer neurons with one was 50 and the other was 100.We also
selected three historical steps (s = 5, 10, 15) to compare the
prediction performances of different RNN-basedmodels. The
inputs of human-like driver models were historical speeds,
historical road curvatures, future road curvatures, and histor-
ical steering wheel angles, as well as the outputs were future
steering wheel angles.
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Through comparing the prediction results with RMSE,
MAPE, and DTW, it shows that LSTM driver model has
the best prediction performance in validation period. What’s
more, the last 2 participants’ driving data are used for testing
the generalization ability of the human-like driver model.
The calculation results of performance index show that,
the human-like driver model established in this paper can
generate human-like steering wheel angles on curved roads.

Driver model is a expression of driving behavior, but we
know that human driving behavior is complicated, uncer-
tain, and has personalized differences. From the analysis
and comparison results in this paper, it can be seen that
preview-based driver models are difficult to describe differ-
ent human drivers with different driving styles. Compared
with physical model, the driver model built using data-driven
methods (e.g. RNN-based approaches in this study) may be
more suitable for human-like implementation.

The human-like driver model on free curved roads is a
basic model, and it needs to work with other algorithms in
more complex traffic scenarios. On the one hand, the human-
like driver model in this paper mainly involves the gen-
eration of human-like steering wheel angles, and does not
control the vehicle speed. For example, when AVs are in
car-following scenario, the human-like driver model needs to
be used with speed control model. On the other hand, if AVs
want to change lanes, the human-like driver model needs to
be improved with the combination of other lane-changing
algorithms. In this way, the human-like driver model will
make AVs drive on curves really like human drivers.

REFERENCES
[1] L. Xu and G. Mcardle, ‘‘Internet of too many things in smart transport:

The problem, the side effects and the solution,’’ IEEE Access, vol. 6,
pp. 62840–62848, 2018.

[2] W. Qu, J. Xu, Y. Ge, X. Sun, and K. Zhang, ‘‘Development and validation
of a questionnaire to assess public receptivity toward autonomous vehicles
and its relation with the traffic safety climate in china,’’ Accident Anal.
Prevention, vol. 128, pp. 78–86, Jul. 2019.

[3] L. M. Hulse, H. Xie, and E. R. Galea, ‘‘Perceptions of autonomous
vehicles: Relationships with road users, risk, gender and age,’’ Saf. Sci.,
vol. 102, pp. 1–13, Feb. 2018.

[4] A. Li, H. Jiang, J. Zhou, and X. Zhou, ‘‘Learning human-like trajectory
planning on urban two-lane curved roads from experienced drivers,’’ IEEE
Access, vol. 7, pp. 65828–65838, 2019.

[5] M. Scheutz, ‘‘The need for moral competency in autonomous agent
architectures,’’ in Fundamental Issues of Artificial Intelligence,
V. C. Müller, Ed. Cham, Switzerland: Springer, 2016, pp. 517–527.

[6] C. You, J. Lu, and P. Tsiotras, ‘‘Nonlinear driver parameter estimation and
driver steering behavior analysis for ADAS using field test data,’’ IEEE
Trans. Human-Mach. Syst., vol. 47, no. 5, pp. 686–699, Oct. 2017.

[7] C. Macadam, ‘‘An optimal preview control for linear systems,’’
ASME J. Dyn. Syst., Meas. Control, vol. 102, pp. 188–190, Sep. 1980.

[8] M. Plöchl and E. Johannes, ‘‘Driver models in automobile dynamics
application,’’ Veh. Syst. Dyn., vol. 45, no. 7, pp. 699–741, 2007.

[9] D. J. Cole, A. J. Pick, and A. M. C. Odhams, ‘‘Predictive and linear
quadratic methods for potential application to modelling driver steering
control,’’ Vehicle Syst. Dyn., vol. 44, no. 3, pp. 259–284, 2006.

[10] S. Schnelle, J. Wang, H.-J. Su, and R. Jagacinski, ‘‘A personalizable driver
steering model capable of predicting driver behaviors in vehicle collision
avoidance maneuvers,’’ IEEE Trans. Human-Mach. Syst., vol. 47, no. 5,
pp. 625–635, Oct. 2017.

[11] C. C. MacAdam and G. E. Johnson, ‘‘Application of elementary neural
networks and preview sensors for representing Driver steering control
behaviour,’’ Veh. Syst. Dyn., vol. 25, no. 1, pp. 3–30, 1996.

[12] A. El Hajjaji andM.Ouladsine, ‘‘Modeling human vehicle driving by fuzzy
logic for standardized iso double lane change maneuver,’’ in Proc. IEEE
10th Int. Workshop Robot Hum. Interact. Commun. (ROMAN), Sep. 2001,
pp. 499–503.

[13] J. Krumm, ‘‘A Markov model for driver turn prediction,’’ in Proc. Soc.
Automot. Eng. SAE World Congr., Apr. 2008.

[14] Y. Park, J. H. Yang, and S. Lim, ‘‘Development of complexity index
and predictions of accident risks for mixed autonomous driving lev-
els,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2018,
pp. 1181–1188.

[15] F. Petitjean, A. Ketterlin, and P. Gançarski, ‘‘A global averagingmethod for
dynamic time warping, with applications to clustering,’’ Pattern Recognit.,
vol. 44, no. 3, pp. 678–693, Mar. 2011.

[16] C. J. Nash, D. J. Cole, and R. S. Bigler, ‘‘A review of human sensory
dynamics for application to models of driver steering and speed control,’’
Biological, vol. 110, pp. 91–116, Jun. 2016.

[17] J. Cao, H. Lu, K. Guo, and J. Zhang, ‘‘A driver modeling based on the
preview-follower theory and the jerky dynamics,’’ Math. Problems Eng.,
vol. 2013, Nov. 2013, Art. no. 952106.

[18] D. D. Salvucci and R. Gray, ‘‘A two-point visual control model of steer-
ing,’’ Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[19] R. S. Sharp, D. Casanova, and P. Symonds, ‘‘A mathematical model for
driver steering control, with design, tuning and performance results,’’ Veh.
Syst. Dyn., vol. 33, no. 5, pp. 289–326, 2000.

[20] L.-K. Chen and A. G. Ulsoy, ‘‘Identification of a driver steering model,
and model uncertainty, from driving simulator data,’’ J. Dyn. Syst., Meas.,
Control, vol. 123, no. 4, pp. 623–629, 2001.

[21] J. Steen, H. J. Damveld, R. Happee, M. M. van Paassen, and M. Mulder,
‘‘A review of visual driver models for system identification purposes,’’ in
Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2011, pp. 2093–2100.

[22] Y. W. Chai, Y. Abe, Y. Kano, and M. Abe, ‘‘A study on adaptation of SBW
parameters to individual driver’s steer characteristics for improved driver–
vehicle system performance,’’ Vehicle Syst. Dyn., vol. 44, pp. 874–882,
Apr. 2006.

[23] J. Ishio, H. Ichikawa, Y. Kano, and M. Abe, ‘‘Vehicle-handling quality
evaluation through model-based driver steering behaviour,’’ Vehicle Syst.
Dyn., vol. 46, no. S1, pp. 549–560, 2008.

[24] L. Chong, M. M. Abbas, A. M. Flintsch, and B. Higgs, ‘‘A rule-based
neural network approach to model driver naturalistic behavior in traffic,’’
Transp. Res. C, Emerg. Technol., vol. 32, pp. 207–223, Jul. 2013.

[25] D. F. Llorca, V. Milanes, I. P. Alonso, M. Gavilan, I. G. Daza, J. Perez,
and M. Á. Sotelo, ‘‘Autonomous pedestrian collision avoidance using a
fuzzy steering controller,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2,
pp. 390–401, Jun. 2011.

[26] Y. Lin, P. Tang, W. J. Zhang, and Q. Yu, ‘‘Artificial neural network
modelling of driver handling behaviour in a driver-vehicle-environment
system,’’ Int. J. Vehicle Des., vol. 37, no. 1, pp. 24–45, 2005.

[27] Y. Cao, J. Cao, F. Yu, and Z. Luo, ‘‘A new vehicle path-following strategy of
the steering driver model using general predictive control method,’’ Proc.
Inst. Mech. Eng., C, J. Mech. Eng. Sci., vol. 232, no. 24, pp. 4578–4587,
2018.

[28] S. M. Erlien, S. Fujita, and J. C. Gerdes, ‘‘Shared steering control using
safe envelopes for obstacle avoidance and vehicle stability,’’ IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 2, pp. 441–451, Feb. 2016.

[29] A. Y. Ungoren and H. Peng, ‘‘An adaptive lateral preview driver model,’’
Vehicle Syst. Dyn., vol. 43, no. 4, pp. 245–259, 2005.

[30] S. D. Keen and D. J. Cole, ‘‘Application of time-variant predictive control
to modelling driver steering skill,’’ Vehicle Syst. Dyn., vol. 49, no. 4,
pp. 527–559, 2011.

[31] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Müller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, ‘‘End to end learning for self-driving cars,’’ Apr. 2016,
arXiv:1604.07316. [Online]. Available: https://arxiv.org/abs/1604.07316

[32] L. Chi andY.Mu, ‘‘Deep steering: Learning end-to-end drivingmodel from
spatial and temporal visual cues,’’ Aug. 2017, arXiv:1708.03798. [Online].
Available: https://arxiv.org/abs/1708.03798

[33] L. Cardamone, D. Loiacono, and P. L. Lanzi, ‘‘Learning drivers for TORCS
through imitation using supervised methods,’’ in Proc. IEEE Symp. Com-
put. Intell. Games, Sep. 2009, pp. 148–155.

[34] Y. Jia, J. Wu, M. Ben-Akiva, R. Seshadri, and Y. Du, ‘‘Rainfall-integrated
traffic speed prediction using deep learning method,’’ IET Intell. Transport
Syst., vol. 11, no. 9, pp. 531–536, Nov. 2017.

[35] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

VOLUME 7, 2019 98105



A. Li et al.: Implementation of Human-Like Driver Model Based on RNNs

[36] X. Huang, J. Sun, and J. Sun, ‘‘A car-following model considering asym-
metric driving behavior based on long short-term memory neural net-
works,’’ Transp. Res. C, Emerg. Technol., vol. 95, pp. 346–362, Oct. 2018.

[37] J. Zhao, Y. Gao, Y. Qu, H. Yin, Y. Liu, and H. Sun, ‘‘Travel time prediction:
Based on gated recurrent unit method and data fusion,’’ IEEE Access,
vol. 6, pp. 70463–70472, 2018.

[38] H. Jiang, K. Shi, J. Cai, and L. Chen, ‘‘Trajectory planning and optimisa-
tion method for intelligent vehicle lane changing emergently,’’ IET Intell.
Transp. Syst., vol. 12, no. 10, pp. 1336–1344, 2018.

[39] A. M. C. Odhams and D. J. Cole, ‘‘Application of linear preview control
to modelling human steering control,’’ Proc. Inst. Mech. Eng., D, J. Auto-
mobile Eng., vol. 223, no. 7, pp. 835–853, 2009.

[40] G. Markkula, O. Benderius, and M. Wahde, ‘‘Comparing and validating
models of driver steering behaviour in collision avoidance and vehicle
stabilisation,’’ Vehicle Syst. Dyn., vol. 52, no. 12, pp. 1658–1680, 2014.

[41] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, ‘‘Acceler-
ating dynamic time warping subsequence search with GPUs and FPGAs,’’
in Proc. IEEE Int. Conf. Data Mining, Dec. 2010, pp. 1001–1006.

[42] O. Lappi, E. Lehtonen, J. Pekkanen, and T. Itkonen, ‘‘Beyond the tangent
point: Gaze targets in naturalistic driving,’’ J. Vis., vol. 13, pp. 1–18,
Nov. 2013.

[43] O. Lappi, ‘‘Future path and tangent point models in the visual control of
locomotion in curve driving,’’ J. Vis., vol. 14, no. 12, pp. 1–22, Oct. 2014.

[44] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio, ‘‘Drawing
and recognizing Chinese characters with recurrent neural network,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 849–862, Apr. 2018.

[45] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov,
T. A. Janovsky, and V. A. Kamaev, ‘‘A survey of forecast error measures,’’
World Appl. Sci. J., vol. 24, no. 24, pp. 171–176, 2013.

AOXUE LI received the B.S. and M.S. degrees
in vehicle engineering from Jiangsu University,
Zhenjiang, China, in 2013 and 2016, respectively,
where he is currently pursuing the Ph.D. degree
in vehicle engineering. Since August 2018, he has
been a Visiting Scholar with the Department of
Mechanical Engineering, Michigan State Univer-
sity, East Lansing, MI, USA. His research interests
include the autonomous vehicle, intelligent trans-
portation system, and ADAS technologies.

HAOBIN JIANG received the B.S. degree in agri-
cultural mechanization from Nanjing Agricultural
University, Nanjing, China, in 1991, and the M.S.
and Ph.D. degrees in vehicle engineering from
Jiangsu University, Zhenjiang, China, in 1994 and
2000, respectively.

From 1994 to 1995, he was a Research Assistant
with the Laboratory of Power and Energy, Fac-
ulty of Biological Resources, Mie University, Mie,
Japan. He joined Jiangsu University, Zhenjiang,

China, in 1994, where he is currently a Professor of vehicle engineering. He is
the Steering Technology Committee Member of the Society of Automotive
Engineering of China, the Steering Technology Committee Member of the
National Technical Committee of Auto Standardization, China, and the
StandingDirector of the Society of Automotive Engineering of Jiangsu. He is
also the Dean of the School of Automotive and Traffic Engineering, Jiangsu
University. His research interests include vehicle dynamic performance anal-
ysis and electrical control technology, active safety control techniques and
theories of road vehicles, and intelligent transportation technology.

JIE ZHOU received the B.S. degree in vehicle
engineering from Jiangsu University, Zhenjiang,
China, in 2016, where she is currently pursuing
theM.S. degree with the Department of Traffic and
Transportation Engineering. Her research interests
include the autonomous vehicle and intelligent
transportation systems.

XINCHEN ZHOU received the B.S. degree
in vehicle engineering from Jiangsu Univer-
sity, Zhenjiang, China, in 2017, where he is
currently pursuing the M.S. degree with the
Department of Vehicle Engineering. His research
interests include automatic parking and intelligent
automobile.

98106 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	PREVIEW-BASED DRIVER MODEL
	SINGLE-POINT PREVIEW DRIVER MODEL
	TWO-POINT PREVIEW DRIVER MODEL
	MULTI-POINT PREVIEW DRIVER MODEL

	SIMULATION
	CONSTRUCTION OF SIMULATION
	PARAMETERS OF THE THREE PREVIEW-BASED DRIVER MODELS
	DYNAMIC TIME WARPING

	FIELD TEST
	PARTICIPANTS
	EXPERIMENTAL VEHICLE AND EXPERIMENTAL EQUIPMENTS
	TEST FIELDS
	PROCEDURE

	DATA PROCESSING AND COMPARISON RESULTS
	CALCULATE VEHICLE POSITION
	CALCULATE STEERING WHEEL ANGLE
	PREVIEW MODELS VERSUS EXPERIENCED DRIVERS

	HUMAN-LIKE DRIVER MODEL
	GAZE POSITIONS OF HUMAN DRIVERS
	MODEL ESTABLISHMENT
	STANDARD RECURRENT NEURAL NETWORK
	LONG SHORT TERM MEMORY
	GATED RECURRENT UNIT

	PERFORMANCE INDEX

	RESULT AND DISCUSSION
	HYPERPARAMETER SETTINGS
	RESULT
	PREDICTION PERFORMANCES IN VALIDATION PERIOD
	PREDICTION PERFORMANCES IN TESTING PERIOD


	CONCLUSION
	REFERENCES
	Biographies
	AOXUE LI
	HAOBIN JIANG
	JIE ZHOU
	XINCHEN ZHOU


