
Received June 6, 2019, accepted July 17, 2019, date of publication July 24, 2019, date of current version August 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930753

Efficient Similarity Search on
Quasi-Metric Graphs
TIANMING ZHANG1, YUNJUN GAO 1,3, (Member, IEEE), LU CHEN2,
GUANLIN CHEN1,3, AND SHILIANG PU4
1College of Computer Science, Zhejiang University, Hangzhou 310027, China
2Department of Computer Science, Aalborg University, 9100 Aalborg, Denmark
3Zhejiang University City College, Hangzhou 310015, China
4Hangzhou Hikvision Digital Technology Company Ltd., Hangzhou 310052, China

Corresponding author: Yunjun Gao (gaoyj@zju.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant No. 2018YFB1004003, the 973 Program of
China under Grant No. 2015CB352502, the NSFC under Grants No. 61522208, the NSF-Zhejiang Joint Fund under Grant No. U1609217,
the Science & Technology Development Project of Hangzhou (China) under Grant No. 20162013A08, and the ZJU-Hikvision Joint Project.

ABSTRACT Similarity search in metric spaces finds similar objects to a given object, which has received
much attention as it is able to support various data types and flexible similarity metrics. In real-life
applications, metric spaces might be combined with graphs, resulting in geo-social network, citation graph,
social image graph, to name but a few. In this paper, we introduce a new notion called quasi-metric
graph that connects metric data using a graph, and formulate similarity search on quasi-metric graphs
based on the combined similarity metric considering both the metric data similarity and graph similarity.
We propose two simple efficient approaches, the best-first method and the breadth-first method, which
traverse the quasi-metric graph following the best-first and the breadth-first paradigms, respectively, and
utilize the triangle inequality to prune unnecessary evaluation. Extensive experiments with three real datasets
demonstrate, compared with several baseline methods, the effectiveness and efficiency of our proposed
methods.

INDEX TERMS Algorithm, graph, metric space, query processing, similarity search.

I. INTRODUCTION
Given a query object q and an object set SO, a similarity
query in metric spaces finds objects from SO similar to q
under a certain similarity metric. Considering that metric
spaces can support a wide range of data types and similarity
metrics, metric similarity queries are useful in GIS, informa-
tion retrieval, multimedia recommendation, etc. In real-life
applications, metric spaces might be combined with graphs,
i.e., the relationships between objects in a metric space can be
modeled as a graph, resulting in geo-social network, citation
graph, social media graph, to name but a few. Motivated by
this, we introduce a new notion called quasi-metric graph
(see Definition 1 for details) that connects metric data using a
graph and investigate similarity search (including range query
and k nearest neighbor (kNN) search) on quasi-metric graphs.
Here, we need to consider the metric data similarity and the

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Asif Naeem.

graph similarity simultaneously. In the following, we give
three representative examples.
Application 1 (Geo-Social Network): As illustrated in

Fig. 1(a), a static geo-social network is an undirected graph
where each vertex denotes a user and each edge indi-
cates that two connected users are friends. The geo-social
network allows users to capture their geographic loca-
tions and share them in the social network via an oper-
ation called check-in. Here, similarity search can help a
user to find candidates who take part in an event. In this
case, candidates are friends nearest to the query user,
i.e., both the social and the geographic distances are
considered.
Application 2 (Citation Graph): As depicted in Fig. 1(b),

a static citation graph is a directed graph in which each vertex
represents a publication and each edge means a citation from
the current publication to another. Here, similarity search
can help users to find related publications to a specified
one. In this case, both the similarity (e.g., Jaccard distance,
tf-idf) between the features of the publications and the

101496 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-3816-8450

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 1. Example of quasi-metric graphs.

shortest path distance in the citation graph are considered
for finding related publications.
Application 3 (Social Image Graph): As shown in

Fig. 1(c), a static social image graph is an undirected graph
where each vertex denotes an image and each edge indicates
that two connected images are tagged or commented by
the same user. Nowadays, the rapid growth of social image
websites (e.g., Flickr, Instagram) allows improved image
searching to use social information. Here, similarity search
can help users to find the images that they might be interested
in. In this case, both the similarity (e.g., Lp-norm, SIFT)
between the features of images and the social distances are
considered for image recommendation.

Most of the existing efforts on similarity search only con-
sider metric spaces [1]–[3] or traditional graphs [4], [5], sep-
arately. Nevertheless, they are inefficient to support combined
quasi-metric graphs, which is also demonstrated in our exper-
iments. Recently, attribute graphs were introduced [6]–[9],
which differ from quasi-metric graphs as follows: (i) Vertices
in an attribute graphmay have any type of attribute data, while
vertices in a quasi-metric graph only associate with metric
data, where the triangle inequality can be employed to accel-
erate the search. (ii) Existing approaches on attribute graphs
either transform attributes into parts of graphs (e.g., an edge
is added if two vertices have the same attributes [8], [9])
or utilize a probability model for query processing, which
cannot be used to solve our studied problem, because we
utilize a combined similarity metric (i.e., considering both
metric data similarity and graph similarity) with a parameter
to control the weights of metric data similarity and graph
similarity. In addition, some studies aim at handling specific
quasi-metric graphs, e.g., geo-social network, citation graph,
and social image graph. Nonetheless, the algorithms designed
for those particular graphs cannot tackle generic quasi-metric
graphs.

A naïve solution for similarity search on quasi-metric
graphs is to compute the metric data similarity and graph
similarity between all the vertices in the graph and the query
vertex. Unfortunately, it is inefficient due to a huge amount
of superfluous metric data and graph similarity computation.
To support efficient similarity search on quasi-metric graphs,
two challenges have to be addressed. The first challenge is
how to reduce the number of metric data similarity compu-
tations. Distance computation is one of the most expensive

operations in metric spaces that we would like to avoid.
As a result, we present several filtering techniques based
on the triangle inequality. The second challenge is how to
reduce the number of graph similarity computations. The
graph similarity can be calculated as the shortest path distance
with the time complexity O(|V |2) (|V | denotes the number of
vertices in the graph), which is costly. To avoid unnecessary
graph similarity computations, we traverse the graph in a
best-first or breadth-first paradigm, so that we could obtain
all the needed graph similarities by traversing graph only once
(i.e., only one shortest path distance computation is needed).
In brief, the key contributions of this paper are summarized
as follows:

• We introduce the notion so-called quasi-metric graph
that connects metric data using a graph and explore
similarity search on quasi-metric graphs with a simple
but effective combined similarity metric.

• We propose two efficient approaches that follow the
best-first and breadth-first paradigms to answer simi-
larity search on quasi-metric graphs, in which several
filtering techniques are developed based on the triangle
inequality to boost search.

• We conduct extensive experiments using three real
datasets, compared with three baseline algorithms,
to verify the effectiveness and efficiency of our proposed
algorithms.

The rest of the paper is organized as follows. Section II
reviews related work. Section III formalizes our problem, and
presents several pruning and validating lemmas. Section IV
elaborates three baseline methods. Section V proposes two
efficient approaches for supporting similarity search on
quasi-metric graphs. Considerable experimental results and
our findings are reported in Section VI. Finally, Section VII
concludes the paper with some directions for future work.

II. RELATED WORK
In this section, we overview the existing work on similarity
search in metric spaces and on graphs, respectively.

A. SIMILARITY SEARCH IN METRIC SPACES
Similarity search (including range query and k nearest
neighbor (kNN) retrieval) in metric spaces has been sur-
veyed well in the literature [1]–[3]. More specifically,

VOLUME 7, 2019 101497

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

two broad categories of metric indexes exist that aim
to accelerate similarity search in metric spaces, namely,
compact partitioning methods and pivot-based approaches.
The former methods partition the space as compact as
possible, they try to prune unqualified partitions during
search. BST [10], [11], GHT [12], [13], SAT [14], M-tree
family [15]–[17], D-index [18], eDindex [19], LC fam-
ily [20]–[22], and BP [23] all belong to this category. Meth-
ods of the other category store precomputed distances from
every object in the database to a set of pivots, they uti-
lize the distances and triangle inequality to prune unqual-
ified objects during search. BKT [24], AESA [25], [26],
EP [27], FQT [28], VPT [29], [30], and Omni-family [31]
all belong to this category. Recently, hybrid methods that
combine compact partitioning with the use of pivots have
presented. The PM-tree [32] utilizes cut-regions defined by
pivots to improve query processing on the M-tree. The
M-Index [33] generalizes the iDistance technique for metric
spaces, which compacts the objects by using precomputed
distances to their closest pivots. The SPB-tree [34] integrates
the pivot-mapping method with the space-filling curve tech-
nique to further improve efficiency.

Since the shortest path distance (i.e., the graph distance)
on the graph with non-negative edge weights satisfies the
triangle inequality but does not meet symmetry when the
graph is directed, the quasi-metric graph using the com-
bined similarity metric (containing metric data similarity and
graph similarity) can be regarded as a general quasi-metric
space [35]. Note that, techniques in general metric spaces are
usually based on the triangle inequality and thus can be used
for quasi-metric graphs. However, the above similarity search
algorithms designed for metric spaces still need combined
similarity computations (including metric data similarity and
graph similarity computations) for unpruned objects, incur-
ring lots of unnecessary graph similarity computations, which
is also confirmed by our experiments.

B. SIMILARITY SEARCH ON GRAPHS
Many measurements are presented to define the similar-
ity between two vertices in graphs, e.g., the shortest path
distance [36]–[38], SimRank [39], [40], Personalized PageR-
ank (PPR) [41], [42], to name just a few. The shortest path
distance is an intuitive graph distance to measure how close
one vertex is to another. SimRank is a measurement that says
two objects are considered to be similar if they are referenced
by similar objects. PPR utilizes random walk to estimate
each vertex’s similarity score w.r.t. a query vertex. For sake
of simplicity, we utilize the shortest path distance to define
graph similarity in this paper, while other similarity metrics
would be investigated as a direction of our future work.

There aremany previous studies on addressing the problem
of shortest path distance computation. A landmark-based
method [38] for shortest path distance estimation preselects a
subset of vertices as landmarks and precomputes the shortest
path distances between each vertex in the graph and those
landmarks, and thus, the shortest path distance between a pair

of vertices can be estimated by combining the precomputed
distances. Pruned landmark labeling (PLL) [36] is one of up-
to-date exact algorithms. PLL precomputes distance labels
for all vertices by performing pruned breadth-first search
from every vertex, and then, a shortest path distance query
for any pair of vertices can be exactly computed using the
distance labels. Nevertheless, either aforementioned algo-
rithms designed for shortest path distance computation or
top-k algorithms [4], [5] designed for similarity search on
traditional graphs cannot be directly applied for our studied
problem, because the metric data similarities between ver-
tices are ignored.

Recently, attributed graphs are proposed [6]–[9], in which
every vertex has a set of attributes. They differ from
quasi-metric graphs. Specifically, vertices in an attribute
graph can have any type of attribute data, whereas vertices in
a quasi-metric graph associate with metric data where the tri-
angle inequality can be utilized to accelerate the search. Most
existing efforts on attributed graphs either transform the
attributes into parts of graphs (e.g., building an additional
edge to connect two vertices that have the same attributes [9],
and then weighting the edge between two vertices by using
the attribute similarity [43]) or use a probability model [7] to
model an attribute graph. However, in this paper, we utilize a
combined similarity metric, and thus, existing methods used
for attribute graphs cannot solve our problem.

In addition, studies on specific quasi-metric graphs [8],
[44]–[47], such as geo-social network [44], [45], citation
graph [46], and social media graph [47], have also been
investigated. Nonetheless, they are designed for particular
quasi-metric graphs, i.e., techniques used to improve search
utilize the characteristics of the specific quasi-metric graphs,
and hence, they cannot be applied for the general case.

III. PROBLEM FORMULATION
In this section, we first present the definition of quasi-metric
graph, and then, we formalize the range query and kNN
search based on the quasi-metric graph. Finally, we present
several pruning and validating lemmas to accelerate similarity
search on the quasi-metric graph. Table 1 summarizes the
symbols frequently used throughout this paper.

A. QUASI-METRIC GRAPH
Before defining quasi-metric graph, we first review metric
space and graph, respectively.

Metric space [35]. A metric space is denoted as a tuple
(M , dM), in which M is an object domain and dM is a metric
distance function to measure similarity between two objects
in M . The metric distance function dM has four proper-
ties: (1) symmetry: dM (q, o) = dM (o, q); (2) non-negativity:
dM (q, o) ≥ 0; (3) identity: dM (q, o) = 0 iff q = o; and (4)
triangle inequality: dM (q, o) ≤ dM (q, p)+ dM (p, o).
Quasi-metric [35] is similar to metric, the only difference

between a metric and a quasi-metric is that a quasi-metric
does not possess the symmetry axiom (in the case d(q, o) 6=
d(o, q) is allowed).

101498 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 2. Illustration of pruning quasi-metric graph.

TABLE 1. Symbols and description.

Graph.A graph is denoted asG(V ,E,w), where V is a set
of vertices, E is a set of edges, and w is an edge weight func-
tion denoted as w : E → R+. In particular, w(e) represents
the weight of an edge e, and w(e) is equal to 1 for unweighted
graphs. In this paper, we assume that the graph is static andwe
use the shortest path distance dG(u, v) to measure graph sim-
ilarity between two vertices u and v in the graph. If vertices
u and v are disconnected in the graph, then dG(u, v) = ∞.
Let Ps(u, v) = {u, e1, t1, e2, t2, · · · , em, tm, em+1, v} be the

shortest path between u and v, where {u, t1, t2, · · · , tm, v} and
{e1, e2, · · · , em, em+1} are the sequenced vertices and edges
respectively in the shortest path, then dG(u, v) =

∑m+1
i=1 w(ei).

Note that, dG(u, v) satisfies all the properties defined in the
metric space except for symmetry when the graph is directed,
and hence, it is a quasi-metric [35] distance.

By combining themetric space and the graph, we introduce
the quasi-metric graph as follows.
Definition 1 (Quasi-Metric Graph): A quasi-metric graph

is denoted as MG(V ,Mv,E,w), where V is a set of vertices,
Mv = {v.data | ∀v ∈ V } is a set of vertex-specificmetric data,
i.e., each vertex v in V associates with metric data v.data, E
is a set of edges, and w is an edge weight function. We define a
combined distance d(u, v) = α×dG(u, v)+(1−α)×dM (u, v)
to measure the similarity between two vertices u and v in
the quasi-metric graph, the parameter α (0 < α < 1) is
employed to control the weights between graph similarity
and metric data similarity. Obviously, the combined distance
d(u, v) is a quasi-metric distance, since dM (u, v) is a met-
ric distance and dG(u, v) is a quasi-metric distance. Thus,
the sum of their linear varieties must be the quasi-metric
distance.
Example 1: Consider a quasi-metric graph example

MG(V ,Mv,E,w), i.e., a geo-social network, in Fig. 2(a),
where V = {v1, v2, · · · , v9} denotes a set of users, E =
{e1, e2, · · · , e8} represents a set of friendships between the
users, w(e) is equal to 1 for any edge e ∈ E, and metric
data v.data associated with each vertex v denotes the corre-
sponding location of v (e.g., v2.data = (1, 1)). Here, L2-norm
is used as dM to measure the distance between locations of
users, and the shortest path distance is used as dG to measure
the relationship between users.

B. SIMILARITY SEARCH ON QUASI-METRIC GRAPHS
Based on the quasi-metric graph, we formally define simi-
larity search, including range query and k nearest neighbor
(kNN) query, as stated below.
Definition 2 (Range Query on Quasi-Metric Graph):

Given a quasi-metric graph MG(V ,Mv,E,w), a query vertex
q, and a search radius r, a range query on quasi-metric graph
finds the vertices v in V that are within the distance r to q,
i.e., RQ(q, r) = {v | (v ∈ V) ∧ (d(q, v) ≤ r)}.

VOLUME 7, 2019 101499

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

Definition 3 (kNN Query on Quasi-Metric Graph): Given
a quasi-metric graphMG(V ,Mv,E,w), a query vertex q, and
an integer k, a kNN query on the quasi-metric graph finds k
vertices in V that are most similar to q, sorted in ascending
order of their combined distances w.r.t. q, i.e., kNNQ(q, k) =
{U | (U ⊆ V) ∧|U | = k∧(∀u ∈ U ,∀v ∈ (V−U), d(q, u) ≤
d(q, v))} as well as let U = {v1, v2, · · · , vk}, ∀vi ∈ U, and
∀vj ∈ U, if i > j, then d(q, vi) ≥ d(q, vj).

Consider the example depicted in Fig. 2(a). Suppose α is
equal to 0.5, a range query on the quasi-metric graph MG
retrieves the vertices whose distances to a query vertex v5 are
within 2, i.e., RQ(v5, 2) = {v1, v2}. A 2NN (k = 2) query on
the quasi-metric graph MG returns 2 vertices most similar to
the query vertex v5, i.e., kNNQ(v5, 2) = {v2, v1}. It is worth
noting that, a kNN query can be regarded as a range query if
the combined distance from a query vertex q to its k-th nearest
neighbor, denoted as NDk , is known in advance.

C. PRUNING QUASI-METRIC GRAPH
Considering that distance calculation in metric spaces are
usually complex, the pivot mapping technique is employed
to avoid unnecessary distance computations.
Pivot Mapping: Given a pivot set P = {p1, p2, · · · , pl},

the objects in a metric space can be mapped to data
points in a l-dimensional vector space using P. Specifically,
an object v in the metric space is mapped to a point φ(v) =
〈dM (v, p1), dM (v, p2), · · · , dM (v, pl)〉 in the l-dimensional
vector space.

Consider the example in Fig. 2 again, where L2-norm is
used as dM . If P = {v1, v6}, the original metric space (as
illustrated in Fig. 2(a)) is mapped to a two-dimensional vector
space (as shown in Fig. 2(b)), in which the x-axis denotes
dM (vi, v1) and the y-axis represents dM (vi, v6) for any vertex
vi. For instance, object v5 is mapped to point 〈2, 4〉.
Based on the pivot mapping technique, the lower and upper

bounds of dM can be derived as follows.
Definition 4 (Lower and Upper Bounds): Given a pivot

set P, the upper bound udM (u, v) of metric distance dM (u, v)
is set as min{dM (u, pi) + dM (pi, v) | pi ∈ P}, and the lower
bound ldM (u, v) is set as max{|dM (u, pi) − dM (v, pi)| | pi ∈
P}.

Back to the example depicted in Fig. 2(a), where P =
{v1, v6}. According to Definition 4, udM (v5, v4) =

√
5 + 2

and ldM (v5, v4) =
√
29 − 4 with dM (v5, v4) =

√
5. Based

on the lower and upper bounds of dM , corresponding pruning
and validating lemma is developed below.
Lemma 1: Given a range query with a query vertex q and

a search radius r, a vertex v can be pruned if α × dG(q, v)+
(1− α)× ldM (q, v) > r, and the vertex v can be validated if
α × dG(q, v)+ (1− α)× udM (q, v) ≤ r.

Proof: Based on the triangle inequality, |dM (q, pi) −
dM (v, pi)| ≤ dM (q, v) ≤ dM (q, pi) + dM (pi, v). Therefore,
udM (q, v) = min{dM (q, pi)+ dM (pi, v) | pi ∈ P} ≥ dM (q, v),
and ldM (q, v) = max{|dM (q, pi) − dM (v, pi)| | pi ∈ P} ≤
dM (q, v). If α × dG(q, v) + (1 − α) × ldM (q, v) > r , then
d(q, v) = α × dG(q, v) + (1 − α) × dM (q, v) ≥ α ×

dG(q, v) + (1 − α) × ldM (q, v) > r , and thus, v can be
pruned. If α × dG(q, v) + (1 − α) × udM (q, v) ≤ r , then
d(q, v) = α×dG(q, v)+ (1−α)×dM (q, v) ≤ α×dG(q, v)+
(1− α)× udM (q, v) ≤ r , and hence, v can be validated. The
proof completes.

Consider a range query with r = 2 and q = v5 on the
quasi-metric graph shown in Fig. 2(a), where P = {v1, v6}
and α = 0.5. Vertices v3 and v6 to v9 can be discarded (i.e.,
v3, v6 ∼ v9 are excluded from RQ(v5, 2)) by Lemma 1, since
α × dG(v5, vi) + (1 − α) × ldM (v5, vi) > 2(6 ≤ i ≤ 9 or
i = 3). Vertex v1 can be validated (i.e., v1 is certainly included
in RQ(v5, 2)) by Lemma 1, as α × dG(v5, v1) + (1 − α) ×
udM (v5, v1) = 2.
Note that, the distances dM (v, pi) from all the vertices v

in the quasi-metric graph to the pivots pi can be precom-
puted and stored. Consequently, if we compute the distances
dM (q, pi)(pi ∈ P) once, the lower and upper bound distances
(i.e., ldM (v, q) and udM (v, q)) from all the vertices v to the
query vertex q can be obtained without any further metric
distance computation. Nonetheless, for the vertices that can-
not be pruned or validated using Lemma 1, we still need to
compute their corresponding metric distances to the query
vertex q for further verification.
Since the combined distance function d = α × dG +

(1 − α) × dM used for the quasi-metric graph is quasi-
metric, it satisfies the triangle inequality. Hence, the whole
quasi-metric graph can be mapped to data points in the vector
space.

As an example, the quasi-metric graph in Fig. 2(a) with
P = {v1, v6} and α = 0.5 can be mapped to data points
as depicted in Fig. 2(c) (e.g., vertex v5 can be mapped to
point 〈2, 5〉). In addition, Definition 4 is also applied by
replacing dM with d . Based on the lower and upper bounds of
d , corresponding pruning and validating lemma is presented
below.
Lemma 2: Given a range query with a query vertex q and

a search radius r, a vertex v can be pruned if ld(q, v) > r,
and v can be validated if ud(q, v) ≤ r. Here, ld(q, v) and
ud(q, v) represent the lower bound and the upper bound of
the combined distance d(q, v), respectively.

Proof: Since the combined distance d(u, v) is a
quasi-metric distance, it satisfies triangle inequality. Hence,
|d(q, pi)−d(v, pi)| ≤ d(q, v) ≤ d(q, pi)+d(pi, v). Therefore,
ud(q, v) = min{d(q, pi) + d(pi, v) | pi ∈ P} ≥ d(q, v), and
ld(q, v) = max{|d(q, pi) − d(v, pi)| | pi ∈ P} ≤ d(q, v).
If ld(q, v) > r , then d(q, v) > r , and thus, v can be pruned.
If ud(q, v) ≤ r , then d(q, v) ≤ r , and hence, v can be
validated. The proof completes.
Again consider a range query with r = 2 and q = v5

on the quasi-metric graph in Fig. 2(a), where P = {v1, v6}
and α = 0.5. Vertices v6 through v9 located outside the red
dashed rectangle in Fig. 2(c) can be pruned by Lemma 2 as
ld(v5, vi) > 2(6 ≤ i ≤ 9), and vertex v1 can be validated by
Lemma 2 due to ud(v5, v1) = 2.
The difference between Lemma 1 and Lemma 2 is that,

both the metric distance and the graph distance are computed

101500 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

TABLE 2. PLL index for the quasi-metric graph in Fig. 2(a).

and stored together for Lemma 2, while the metric and graph
distances are calculated separately for Lemma 1.

IV. BASELINE METHODS
To address similarity search on quasi-metric graphs, simi-
larity query approaches on graphs or in metric spaces can
be adapted accordingly. In the following, we elaborate three
baseline methods, namely, Pruned Landmark Labeling based
method, M-tree based method, and SPB-tree based method.

A. PRUNED LANDMARK LABELING BASED METHOD
Pruned Landmark Labeling (PLL) [36] is the state-of-the-art
method to compute the shortest path distance. It provides two
functions Landmark_ub and Landmark for computing the
upper bound and the exact shortest path distance, respectively.
Specifically, PLL precomputes a distance label for every ver-
tex v, denoted as L(v), by performing a pruned breadth-first
search from each vertex. L(v) is a set of pairs (u, δuv), where
u is a vertex and δuv is the shortest path distance from u to v.
A shortest path distance query between vertices s and t can
be computed as min{δsw + δwt | (w, δsw) ∈ L(s), (w, δwt) ∈
L(t)}. For example, Table 2 shows the PLL index for the
quasi-metric graph in Fig. 2(a), then, dG(v5, v6) =min{δv5v1+
δv1v6 , δv5v2 + δv2v6} = 6.
To address similarity search on quasi-metric graphs,

a pruned landmark labeling based method is developed.
It traverses every vertex in the quasi-metric graph in sequel.
For every vertex v, the method first computes the upper
bound of the shortest path distance between a query vertex q
and the vertex v by invoking function Landmark_ub. Next,
the method validates v using the upper bound of the combined
distance by Lemma 2. If v cannot be validated, the method
needs to compute the exact shortest path distance from q to
v using function Landmark, and then, it prunes or validates
v via Lemma 1. If v still cannot be pruned or validated,
the metric distance between q and v should be computed for
the final verification. The pruned landmark labeling based
method includes PLL based Range query Algorithm (LRA)
and PLL based kNN query Algorithm (LNA).
Algorithm 1 presents the pseudo-code of LRA. It takes

as inputs a query vertex q, a search radius r , a parameter
α, and a quasi-metric graph MG(V ,Mv,E,w), and outputs
the result set RQ(q, r) of a range query. LRA traverses the

Algorithm 1 PLL Based Range Query Algorithm (LRA)
Input: a query vertex q, a search radius r , a quasi-metric
graph MG(V ,Mv,E,w), a parameter α
Output: the result set RQ(q, r) of a range query
1: for each vertex v ∈ V do
2: udG(q, v) = Landmark_ub(q, v)
3: if α × udG(q, v) + (1 − α) × udM (q, v) ≤ r then //

Validated by Lemma 2
4: insert v into RQ(q, r)
5: else // v cannot be validated by Lemma 2
6: dG(q, v) = Landmark(q, v)
7: if α× dG(q, v)+ (1− α)× udM (q, v) ≤ r then //

Validated by Lemma 1
8: insert v into RQ(q, r)
9: else if α × dG(q, v) + (1 − α) × ldM (q, v) ≤ r

then // Pruned by Lemma 1
10: compute dM (q, v)
11: if α×dG(q, v)+ (1−α)×dM (q, v) ≤ r then
12: insert v into RQ(q, r)
13: return RQ(q, r)

whole quasi-metric graph until all answer vertices are found
(lines 1-12). For every vertex v in V , the algorithm first
calls Landmark_ub function to compute the upper bound
udG(q, v) of the shortest path distance between query vertex
q and vertex v. If α × udG(q, v) + (1 − α) × udM (q, v) ≤
r , the vertex v is inserted into the result set RQ(q, r) by
Lemma 2 (lines 3-4); otherwise, LRA invokes Landmark
function to compute the exact shortest path distance dG(q, v)
(lines 5-6). If α × dG(q, v) + (1 − α) × udM (q, v) ≤ r ,
the vertex v is added to the result set RQ(q, r) by Lemma 1
(lines 7-8); otherwise, if α×dG(q, v)+(1−α)×ldM (q, v) ≤ r ,
LRA computes dM (q, v), and inserts v into the result set if
d(q, v) ≤ r by Lemma 1 (lines 9-12). Finally, the result set
RQ(q, r) is returned (line 13).
For LNA, as NDk is not known in advance for kNN query,

kNN query is more complex than range query. The differ-
ences between LNA and LRA are as follows. (i) LNA first set
the current k-th NN distance curNDk to infinity, and update
the value during the search until it reaches NDk (i.e., kNN
vertices are found). (ii) LNA cannot validate vertices, because
the search radius curNDk is decreasing during the search,
i.e., lines 2-4 and lines 7-8 of Algorithm 1 do not work for
LNA. (iii) LNA uses (1 − α) × ldM (q, v) ≤ curNDk to
prune before invoking Landmark function for computing the
shortest path distance.

B. M-TREE BASED METHOD
Since the distance used for a quasi-metric graph is quasi-
metric, it also satisfies the triangle inequality, and the metric
indexes can be directly employed to tackle similarity search
on quasi-metric graphs. M-tree [16] is a typical metric index
belonging to the compact partitioning methods, which exploit
the ball partitioning technique. Let E .v be the center vertex

VOLUME 7, 2019 101501

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 3. Example of M-tree.

of a partition region E , and E .r be the covering radius of E ,
then the set of vertices u (∈ V) in the partition region E ,
obtained via ball partitioning, is defined as {u | (u ∈ V) ∧
(d(u,E .v) ≤ E .r)}.
Example 2: Fig. 3 shows an example of M-tree to index the

quasi-metric graph in Fig. 2(a). An intermediate (i.e., a non-
leaf) entry (i.e., partition region) E in a root node (e.g., N0)
or a non-leaf node (e.g., N1,N2) records: (i) A center vertex
E .v that is a selected vertex in the subtree STE of E . (ii) A
covering radius E .r which is the maximal distance between
the center vertex E .v and any vertex in its subtree STE .
(iii) A parent distance E .PD that equals the distance from E .v
to the center vertex of its parent entry. Since a root entry E
(e.g., E2) has no parent entry, E .PD = ∞. (iv) An identifier
E .ptr pointing to the root node of its subtree STE . In contrast,
a leaf entry (i.e., vertex) v in a leaf node (e.g., N3,N6) records:
(i) A vertex vj which stores the detailed information of v.
(ii) An identifier vid representing v’s identifier. (iii) A parent
distance v.PD that equals the distance from v to the center
vertex of v’s parent entry.

Based on the M-tree, a new lemma is developed to prune
unnecessary entries in the M-tree, as stated below.
Lemma 3: Given an M-tree, a range query with a query

vertex q and a search radius r, for a non-leaf entry E in the
M-tree, if d(q,E .v) > E .r+ r, any vertex u in E cannot be in
the final result set RQ(q, r), and thus, E can be pruned safely.

Proof: For any vertex u in a non-leaf entry E ,
if d(q,E .v) > E .r + r, then d(q, u) ≥ d(q,E .v) −
d(u,E .v) > E .r+r−d(u,E .v) due to the triangle inequality.
According to the definition of M-tree, d(u,E .v) ≤ E .r , and
hence, d(q, u) > r . Therefore, any vertex u in E cannot be in
the final result set RQ(q, r), i.e., E can be pruned away safely,
which competes the proof.
Consider the example in Fig. 3, for a range query with q =

v2 and r = 2, E5 and E6 can be pruned by Lemma 3, because
d(v2,E5.v) = 5 > E5.r+2 and d(v2,E6.v) = 3.8 > E6.r+2.
To avoid unnecessary distance computations, we can utilize
the triangle inequality with the parent distances stored in the
M-tree to prune unqualified entries, as stated in Lemma 4.
Lemma 4: Given an M-tree and let EP be the parent entry

of entry E , a range query with a query vertex q and a search
radius r, for the entry E in the M-tree, if |d(q,EP.v) −
E .PD| > E .r + r, then any vertex v in the entry E cannot be

Algorithm 2M-Tree Based Range Query Algorithm (MRA)
Input: a query vertex q, a search radius r , a param-

eter α, an M-tree M build on the quasi-metric graph
MG(V ,Mv,E,w)
Output: the result set RQ(q, r) of a range query
1: push all root entries ofM into a queue H
2: while H 6= ∅ do
3: pop the top entry E from H
4: if E points to a non-leaf node then
5: for each subentry ES in E do
6: if |d(q,E .v) − ES .PD| ≤ ES .r + r then //

Pruned by Lemma 4
7: if d(q,ES .v) ≤ ES .r + r then // Pruned

by Lemma 3
8: push ES into H
9: else // E points to a leaf node
10: for each subentry ES in E do
11: if |d(q,E .v)−ES .PD| ≤ r then // Pruned by

Lemma 4
12: compute d(q,ES) = α×dG(q,ES)+ (1−

α)× dM (q,ES)
13: if d(q,ES) ≤ r then
14: insert ES into RQ(q, r)
15: return RQ(q, r)

in the final result set RQ(q, r), and hence, E can be pruned
safely.

Proof: According to the triangle inequality, d(q,E .v) ≥
|d(q,EP.v) − d(E .v,EP.v)| = |d(q,EP.v) − E .PD|. Thus,
if |d(q,EP.v)− E .PD| > E .r + r , then d(q,E .v) > E .r + r .
Consequently, any vertex v in the entry E cannot be in the
final result set RQ(q, r), i.e., E can be discarded by Lemma 3.
The proof completes.
Note that, if E is a leaf entry, then E .r = 0. Take Fig. 3 as

an example again. For a range query with q = v2 and r = 1.5,
E6 can be pruned without computing d(v2,E6.v) by Lemma 4,
since |d(v2,E2.v)− E6.PD| > E6.r + 1.5.
Based on Lemma 3 and Lemma 4, we present M-tree

based Range query Algorithm (MRA) and M-tree based
kNN query Algorithm (MNA). Algorithm 2 depicts the
pseudo-code of MRA. It takes as inputs a query vertex q,

101502 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 4. Example of SPB-tree.

a search radius r , an M-tree M build on the quasi-metric
graph MG(V ,Mv,E,w), and a parameter α, and outputs the
result set RQ(q, r). Initially, MRA pushes all the root entries
of M into a queue H (line 1). Thereafter, a while-loop is
performed until H is empty (lines 2-14). In each iteration,
the algorithm first pops the top entry E fromH (line 3). Next,
if E points to a non-leaf node, it inserts the subentries ES
that cannot be pruned by Lemma 3 and Lemma 4 into H
(lines 4-8). Otherwise, if E points to a leaf node, it prunes
subentries (i.e., vertices) ES by Lemma 4 (lines 9-11). For
the unpruned subentries ES , MRA computes the combined
distance d(q,ES) (line 12). If d(q,ES) ≤ r , ES is inserted
into RQ(q, r) (lines 13-14). Finally, the algorithm returns the
result set RQ(q, r) (line 15).
The differences between MNA and MRA are as follows.

(i) MNA uses a current k-th NN distance curNDk for pruning,
and updates the corresponding value using unpruned vertices.
(ii) MNA visits the entries E in the M-tree in ascending order
of their minimal distances to the query vertex q (denoted as
MIND(q,E)). Thus, E can be safely pruned ifMIND(q,E) ≥
curNDk , i.e., for MNA, H is a priority queue, in which all
entries E are sorted in ascending order ofMIND(q,E).

C. SPB-TREE BASED METHOD
SPB-tree [34] is the state-of-the-art metric index belonging
to the hybrid methods, which combines compact partitioning
with the use of pivots. The SPB-tree can be directly built on
the quasi-metric graph to answer similarity search.

The SPB-tree utilizes the two-stage mapping, i.e., pivot
mapping (as discussed in Section III-C) and space-filling
curve (SFC) mapping, to map vertices in the vector space
to SFC values (i.e., integers) in a one-dimensional space
while maintaining spatial proximity. Then, a B+-tree with the
minimum bounding box (MBB) information is used to index
the SFC values.
Example 3: Fig. 4 depicts an example of SPB-tree, where

Fig. 4(a) illustrates an SPB-tree to index the quasi-metric
graph in Fig. 2(a) and Fig. 4(b) shows the space-filling curve
(SFC) mapping after the pivot mapping depicted in Fig. 2(c).
For instance, φ(v5) = 〈2, 5〉 after the pivot mapping, and
SFC(φ(v5)) = 29 after the SFC (i.e., Hilbert curve)mapping.

An SPB-tree shown in Fig. 4(a) contains three parts, i.e., the
pivot table that stores selected vertices (e.g., v1 and v6) to
map a metric space to a vector space, the B+-tree, and the
RAF which is sorted to store the vertices in ascending order
of SFC values as they appear in the B+-tree. Note that, each
leaf entry E in a leaf node (e.g., N3, N4, N5, and N6) of the
B+-tree records (i) the SFC value E .key, and (ii) an identifier
E .ptr to the actual object in the RAF. Each non-leaf entry E
in the root or an intermediate node (e.g., N0, N1, and N2) of
the B+-tree records (i) theminimal SFC value key E .key in its
subtree, (ii) an identifier E .ptr to the root node of its subtree,
and (iii) the SFC values min and max for 〈a1, a2, . . . , al〉
and 〈b1, b2, . . . , bl〉 to represent the minimum bounding box
E .MBB = {[ai, bi] | 1 ≤ i ≤ l}. Here, E .MBB is the
axis aligned minimum bounding box to include all φ(v) with
SFC(φ(v)) ∈ E , e.g., the non-leaf entry E6 uses min (= 60)
and max (= 61) to denote the M6 of N6.
Definition 5 (Lower Bound Distance of Entry): Given a

pivot set P, the lower bound distance ld(E , v) between
a vertex v and a non-leaf entry E is set as max{ai −
d(v, pi), d(v, pi) − bi | pi ∈ P}. Here, ai and bi can be
obtained by E .MBB.

Consider the example depicted in Fig. 4, where P =
{v1, v6}. According to Definition 5, ld(E6, v5) = 4 as
E6.MBB = {[6, 6], [0, 1]}. Based on the newly defined lower
bound distance, we develop Lemma 5 to prune unnecessary
entries.
Lemma 5: Given an SPB-tree, a range query with a query

vertex q and a search radius r, for a non-leaf entry E in the
SPB-tree, if ld(E , q) > r, then E can be pruned safely.

Proof: ∀ u ∈ E , we can get that ai ≤ d(u, pi) ≤
bi. According to Definition 4, ld(u, q) = max{|d(u, pi) −
d(q, pi)| | pi ∈ P} ≤ d(u, q)(u ∈ E). Hence, ld(E , q) =
max{ai−d(q, pi), d(q, pi)−bi | pi ∈ P} ≤ d(u, q) (∀u ∈ E).
If ld(E , q) > r , then d(u, q) > r for any u ∈ E , and thus, E
can be pruned safely.
Back to the example illustrated in Fig. 4. For a range query

with q = v5 and r = 2, the non-leaf entry E6 can be pruned
by Lemma 5, because ld(E6, v5) = 4 > 2.

Based on the SPB-tree, we propose SPB-tree based Range
query Algorithm (SRA) and SPB-tree based kNN query

VOLUME 7, 2019 101503

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

Algorithm 3 SPB-Tree Based Range Query Algorithm
(SRA)
Input: a query vertex q, a search radius r , a param-

eter α, an SPB-tree S build on the quasi-metric graph
MG(V ,Mv,E,w)
Output: the result set RQ(q, r) of a range query
1: push all root entries of S into a queue H
2: while H 6= ∅ do
3: pop the top entry E from H
4: if E points to a non-leaf node then
5: for each subentry ES in E do
6: if ld(ES , q) ≤ r then // Pruned by Lemma 5
7: push ES into H
8: else //E points to a leaf node
9: for each subentry ES in E do

10: if ud(ES , q) ≤ r then // Validated by
Lemma 2

11: insert ES into RQ(q, r)
12: if ld(ES , q) ≤ r then // Pruned by Lemma 2
13: compute d(ES , q) = α×dG(ES , q)+ (1−

α)× dM (ES , q)
14: if d(ES , q) ≤ r then
15: insert ES into RQ(q, r)
16: return RQ(q, r)

Algorithm (SNA). Algorithm 3 depicts the pseudo-code of
SRA. It takes as inputs a query vertex q, a search radius r ,
a parameter α, and an SPB-tree S build on the quasi-metric
graph MG(V ,Mv,E,w), and outputs the result set RQ(q, r)
of a range query. First of all, SRA pushes all the root entries
of S into a queue H (line 1). Thereafter, a while-loop is
performed until H is empty (lines 2-15). In every iteration,
the algorithm first pops the top entry E from H . Next, if E
points to a non-leaf node, it inserts the subentries ES that
cannot be pruned by Lemma 5 into H (lines 4-7). Otherwise,
if E points to a leaf node, SRA validates or prunes subentries
(i.e., vertices) ES by Lemma 2, and inserts the unpruned
subentries ES into the result setRQ(q, r) if d(q,ES) ≤ r (lines
8-15). Finally, the algorithm returns RQ(q, r) (line 16).

The differences between SNA and SRA are as follows.
(i) SNA uses a current k-th NN distance curNDk for pruning,
and updates the corresponding value using unpruned vertices.
(ii) SNA visits entries E in the SPB-tree in ascending order
of their lower bound distances ld(E , q) to the query vertex
q, i.e., for SNA, all the entries E in the queue H are sorted
in ascending order of ld(E , q). (iii) SNA cannot validate the
vertices since the search radius curNDk is decreasing during
the search, i.e., lines 10-11 of Algorithm 3 do not work for
SNA.

D. DISCUSSION
In this subsection, we analyze query processing costs for all
baseline methods/algorithms.

In general, shortest path distance computation and met-
ric distance computation are main operations in query

processing, and thus, their costs dominate the query cost.
For pruned landmark labeling based method, it needs to
traverse the whole quasi-metric graph to find the final result.
As analyzed in [36], each shortest path distance computa-
tion between a pair of vertices s and t can be answered
in O(|LBP(s)| + |LBP(t)|) time using the bit-parallel labels
technique. Here, LBP(s) (resp. LBP(t)) denotes bit-parallel
labels of s (resp. t), and |LBP(s)| (resp. |LBP(t)|) represents the
corresponding cardinality. Hence, in total, Landmark func-
tion or Landmark_ub function used to compute the shortest
path distance takesO(|V |×(|LBP(s)|+|LBP(t)|)) time. For an
unpruned vertex u, pruned landmark labeling based method
calculates the metric distance between vertices q and u. Let
|Vu| be the number of unpruned vertices and f (m) be the cost
of metric distance computation, pruned landmark labeling
based method needs O(|Vu| × f (m)) time for metric distance
computation. Thus, the total cost for pruned landmark label-
ing based method is O(|V | × (|LBP(s)| + |LBP(t)|) + |Vu| ×
f (m)).
For M-tree based method and SPB-tree based method, they

can prune unqualified vertices using Lemmas 2 through 5.
For every unpruned vertex u, M-tree based or SPB-tree based
method first needs to traverse the M-tree or the SPB-tree to
locate the vertex u, which takes log(|V |) time. Next, shortest
path distance and metric distance between u and a query
vertex q are evaluated, and the corresponding time complex-
ities are O(|E| + |V |log|V |) and f (m), respectively. Hence,
the total cost for M-tree based or SPB-tree based method is
O(|Vu|log|V | × (|E| + |V |log|V | + f (m))). Clearly, the cost
of M-tree based or SPB-tree based method is more expensive
than pruned landmark labeling based method, due to the high
cost for computing the shortest path distances (i.e., traversing
the entire quasi-metric graph to compute every shortest path
distance). In addition, the SPB-tree achieves better pruning
ability than theM-tree, and hence, the SPB-tree basedmethod
is more efficient, which is also verified in Section VI.

V. GRAPH TRAVERSING METHODS
In this section, we propose two simple but efficient meth-
ods for answering similarity search on quasi-metric graphs,
i.e., best-first method and breadth-first method. These meth-
ods visit the vertices in ascending order of the shortest path
distances w.r.t. a query vertex q in order to terminate com-
putation earlier and utilize the triangle inequality to filter
unnecessary verification.

A. BEST-FIRST METHOD
To avoid traversing the whole quasi-metric graph multiple
times (i.e., every shortest path distance computation needs
to traverse the quasi-metric graph once) and avoid the index
construction cost, we propose a simple yet robust best-first
traversal method. It visits the vertices in ascending order of
their shortest path distances to a query vertex q, i.e., the
smaller the shortest path distance from the query vertex q
to a vertex v is, the earlier verification that whether v is an

101504 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

Algorithm 4 Best-First Range Query Algorithm (BeRA)
Input: a query vertex q, a search radius r , a quasi-metric
graph MG(V ,Mv,E,w), a parameter α
Output: the result set RQ(q, r) of a range query
1: for each vertex v ∈ V do
2: v.flag = false; dG(q, v) = ∞
3: q.flag = true; dG(q, q) = 0
4: push q into a queue H1
5: while H1 6= ∅ do
6: pop the top vertex v from H1
7: for each adjacent vertex u of v do
8: if u.flag = false and dG(q, v)+w(v, u) < dG(q, u)

then
9: dG(q, u) = dG(q, v)+ w(v, u)

10: push u into a priority queue H2 sorted in
ascending order of the current shortest path distance
dG(q, u)

11: if H2 6= ∅ then
12: pop vertex s from H2; push s into H1; and set

s.flag = true
13: if α × dG(q, s) ≤ r then
14: if α× dG(q, s)+ (1− α)× udM (q, s) ≤ r then //

Validated by Lemma 1
15: insert v into RQ(q, r)
16: else if α×dG(q, s)+ (1−α)× ldM (q, s) ≤ r then

// Pruned by Lemma 1
17: compute dM (q, s)
18: if α× dG(q, s)+ (1−α)× dM (q, s) ≤ r then
19: insert v into RQ(q, r)
20: else // Earlier termination by Lemma 7
21: return RQ(q, r)
22: return RQ(q, r)

answer vertex is made. Moreover, Lemma 1 can be employed
to prune or validate vertices.

The best-first method includes Best-first Range query
Algorithm (BeRA) and Best-first kNN query Algorithm
(BeNA).

Algorithm 4 presents the pseudo-code of BeRA. It takes
as inputs a query vertex q, a search radius r , a parameter α,
and a quasi-metric graph MG(V ,Mv,E,w), and outputs the
result set RQ(q, r). To begin with, for each vertex v in V ,
BeRA initializes variables dG(q, v) and v.flag that denotes
whether exact dG(q, v) has been computed, and pushes q into
a queue H1 (lines 1-4). Thereafter, a while-loop is performed
(lines 5-21). In each iteration, BeRA first pops the top vertex
v from H1, and for every v’s adjacent vertex u whose exact
dG(q, u) has not been calculated, BeRA updates its current
dG(q, u) and pushes uwith the updated dG(q, u) into a priority
queue H2, in which vertices are sorted in ascending order of
their current shortest path distances (line 6-10). Next, BeRA
pops the top vertex s with the minimum dG(q, s) from H2,
pushes s into H1 for further traversal, and sets s.flag to true
because the exact dG(q, s) is computed (line 11-12). In the

Algorithm 5 Breadth-First Range Query Algorithm (BrRA)
Input: a query vertex q, a search radius r , a quasi-metric
graph MG(V ,Mv,E,w), a parameter α
Output: the result set RQ(q, r) of a range query
1: for each vertex v ∈ V do
2: v.visit = false; dG(q, v) = ∞
3: q.visit = true; dG(q, q) = 0
4: push q into a queue H
5: while H 6= ∅ do
6: pop the top vertex v from H
7: for each adjacent vertex u of v do
8: if u.visit = false then
9: dG(q, u) = dG(q, v)+ 1; u.visit = true

10: push u into the queue H
11: if α × dG(q, u) ≤ r then
12: if α×dG(q, u)+ (1−α)×udM (q, u) ≤ r

then // Validated by Lemma 1
13: insert v into RQ(q, r)
14: else if α×dG(q, u)+(1−α)×ldM (q, u) ≤

r then // Pruned by Lemma 1
15: compute dM (q, u)
16: if α×dG(q, u)+(1−α)×dM (q, u) ≤ r

then
17: insert v into RQ(q, r)
18: else// Earlier termination by Lemma 7
19: return RQ(q, r)
20: return RQ(q, r)

sequel, if α × dG(q, s) ≤ r , BeRA proceeds to verify vertex
s. If α × dG(q, s) + (1 − α) × udM (q, s) ≤ r , s is added to
the result set RQ(q, r) by Lemma 1 (lines 14-15). Otherwise,
if α × dG(q, s) + (1 − α) × ldM (q, s) ≤ r , BeRA computes
dM (q, s) and inserts s into the result set RQ(q, r) if d(q, s) ≤ r
by Lemma 1 (lines 16-19). Once α × dG(q, s) > r , BeRA
stops, and returns the result set RQ(q, r) due to the earlier
termination condition presented by Lemma 7 in Section V-C
(lines 20-21). Finally, after the whole iteration terminates,
the algorithm returns the final result set RQ(q, r) (line 22).

The differences between BeNA and BeRA are that,
(i) BeNA uses a current k-th NN distance curNDk instead
of r as the search radius for pruning, and updates its cor-
responding value using unpruned vertices; and (ii) BeNA
cannot validate the vertices as the current k-th NN distance
curNDk is decreasing during the search, i.e., lines 14-15 of
Algorithm 4 do not work for BeNA.
Example 4: Fig. 5 illustrates an example of graph travers-

ing method on the quasi-metric graph MG(V ,Mv,E,w)
depicted in Fig. 5(a), where V = {v1, v2, · · · , v8}, E =
{e1, e2, · · · , e9}, and w(ei) is equal to 1 for any edge ei
(1 ≤ i ≤ 9). Suppose a pivot set P is {v7, v8}, and metric
distance function is L1-norm. The distances dM (vi, pi) from
all vertices vi in the quasi-metric graph to the pivots pi (∈ P)
can be precomputed and stored, as shown in Fig. 5(b). Given
a range query with q = v1 and r = 1, and set α as 0.5.

VOLUME 7, 2019 101505

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 5. Example of graph traversing methods.

Initially, BeRA pushes a query vertex v1 with its correspond-
ing shortest path distance into a queue H1, resulting in H1 =

{〈v1, 0〉}. Then, BeRA performs a while-loop to traverse the
quasi-metric graph from the vertex v1 in best-first manner.
Loop 1: As H1 6= ∅, BeRA pops the top vertex v1 from H1,

updates dG(v1, v2) = 1 and dG(v1, v3) = 1 as v2 and v3 are
two adjacent vertices of v1, and pushes 〈v2, 1〉 and 〈v3, 1〉 into
a priority queue H2, after which H2 = {〈v2, 1〉, 〈v3, 1〉}. Next,
it pops 〈v2, 1〉 from H2, i.e., the exact shortest path distance
between v1 and v2 is computed. Since α × dG(v1, v2) =
0.5 < r, v2 is pushed into H1. In the sequel, BeRA computes
d(v1, v2) = 0.7 because Lemma 1 cannot validate or prune
v2, and inserts v2 into the result set RQ(v1, 1). After Loop
1, we can get that H1 = {〈v2, 1〉}, H2 = {〈v3, 1〉}, and
RQ(v1, 1) = {v2}.
Loops 2–4: The processing is similar as Loop 1. After that,

we can get that H1 = {〈v5, 2〉}, H2 = ∅, and RQ(v1, 1) =
{v2, v3}.
Loop 5: As H1 6= ∅, BeRA pops 〈v5, 2〉 from H1, and

updates dG(v1, v6) = 3 since v6 is the adjacent vertex of v5.
Thereafter,BeRA pushes 〈v6, 3〉 intoH2 and then pops 〈v6, 3〉
fromH2. As α×dG(v1, v6) = 1.5 > r,BeRA stops traversing
the quasi-metric graph due to the earlier termination condi-
tion, and returns the final result set RQ(v1, 1) = {v2, v3}.

B. BREADTH-FIRST METHOD
Best-first method can be applied to both weighted and
unweighted quasi-metric graphs. Nonetheless, for the
unweighted quasi-metric graph, a more efficient way for sim-
ilarity search is breadth-first traversal from the query vertex.
This is because, for the best-first method, only one vertex
is verified in every iteration, whereas for the breadth-first
method, the shortest path distances between the query vertex
and all the traversed vertices are obtained due to the property
of the unweighted graph, and thus, all the traversed vertices
can be verified in each iteration, which boosts the search.

The breadth-first method contains Breadth-first Range
query Algorithm (BrRA) and Breadth-first kNN query Algo-
rithm (BrNA). Algorithm 5 depicts the pseudo-code ofBrRA.
Initially, for each vertex v in V , it initializes dG(q, v) and
v.visit that denotes whether v has been visited (lines 1-3), and

pushes a query vertex q into a queue H (line 4). Thereafter,
a while-loop is performed (lines 5-19). In every iteration,
BrRA first pops the top vertex v from H . Next, for every v’s
adjacent vertex u that has not been traversed, BrRA computes
the exact dG(q, u), sets u.visit as true, and pushes u into the
queue H for further evaluation (line 7-10). Then, if α ×
dG(q, u) ≤ r ,BrRA proceeds to verify u. If α×dG(q, u)+(1−
α) × udM (q, u) ≤ r , u is added to the result set RQ(q, r) by
Lemma 1 (lines 12-13). Otherwise, if α×dG(q, u)+(1−α)×
ldM (q, u) ≤ r , BrRA computes dM (q, u), and inserts u into
the result set RQ(q, r) if d(q, u) ≤ r by Lemma 1 (lines 14-
17). Once α×dG(q, u) > r ,BrRA stops, and returns the result
set RQ(q, r) according to Lemma 7 proposed in Section V-C
(lines 18-19). Finally, BrRA returns the result set RQ(q, r)
(line 20).

The difference between BrNA and BrRA is similar as that
between BeNA and BeRA and thus omitted.
Example 5: Back to Example 4, we illustrate BrRA using

a range query with q = v1 and r = 1. Similar as Example 4,
BrRA first pushes v1 into H, after which H = {〈v1, 0〉}.
Thereafter, it starts a while-loop to traverse the quasi-metric
graph following the breadth-first fashion.
Loop 1:BrRA first pops the top vertex v1 fromH. Then, for

two unvisited adjacent vertices v2 and v3 of v1, the algorithm
computes dG(v1, v2) = 1 and dG(v1, v3) = 1, and pushes v2
and v3 into H. Since d(v1, v2) = 0.7 < r and d(v1, v3) =
0.7 < r, v2 and v3 are added to the result set RQ(v1, 1). After
the loop, we can get that H = {〈v2, 1〉, 〈v3, 1〉}, RQ(v1, 1) =
{v2, v3}.
Loops 2–4: The processing is similar as Loop 1 and hence

skipped.
Loop 5: BrRA pops the top vertex v5 from H, and then,

it computes dG(v6, v1) = 3 for the adjacent vertex v6.
As α × dG(v1, v6) = 1.5 > r, BrRA stops travers-
ing the quasi-metric graph, and returns the final result set
RQ(v1, 1) = {v2, v3}.

C. DISCUSSION
In this subsection, we first clarify the advantage of both
best-first method and breadth-first method, compared with
baseline methods/algorithms, and then, we analyze their cor-
rectness and time complexities.

101506 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 6. Range query performance vs. r .

Although baseline algorithms construct offline indexes that
can be used to prune unqualified vertices, they still need
to compute shortest path distances between all unpruned
vertices and the query vertex during the search as men-
tioned in Section IV-D, which is costly due to traversing the
quasi-metric graph multiple times. Using the best-first and
breadth-first traversal paradigms, all the shortest path dis-
tances can be computed by traversing the quasi-metric graph
only once. In addition, in most cases, both best-first method
and breadth-first method traverse part of the graph due to the
early termination condition. For instance, in Example 4 and
Example 5, the search space is bounded by the red dashed
rectangle in Fig. 5(c), resulting in better search performance
as to be verified in Section VI-B.

To prove the correctness of best-first method and
breadth-first method, we present two lemmas, as stated below.
Lemma 6: Given a quasi-metric graph MG(V ,Mv,E,w)

and a query vertex q, the best-first method can compute exact
dG(q, u) when u is popped from a queue H2.

Proof: Let Ps = {q, e1, t1, · · · , tm−1, em, u} be the
current shortest path when u is popped from H2, then,
t1, · · · , tm−1 must be the vertices that have been popped
from H2, and u is the vertex with the minimal dG(q, u).
By contradiction, assume that Ps is not the exact short-
est path. Thus, there exists an exact shortest path P′s

containing vertices that have not been popped from H2.
Let P′s = {q, e

′

1, t
′

1, · · · , s, · · · , t
′

m−1, em, u}, s be the first
vertex that has not been popped from H2, and d ′G(q, u)
be the corresponding exact shortest path distance. Hence,
dG(q, s) ≤ d ′G(q, u) < dG(q, u), indicating that s is
the vertex with the minimal dG(q, s), which contradicts
that u is the vertex with the minimal dG(q, u). The proof
completes.
Lemma 7: Given a quasi-metric graph MG(V ,Mv,E,w),

a parameter α, and a range query with a query vertex q
and a search radius r, best-first and breadth-first methods
can terminate and return the exact result RQ(q, r) if α ×
dG(q, u) > r, in which u is the visited vertex.

Proof: Since vertices are visited in ascending order of
their shortest path distances w.r.t. a query vertex q, we have
dG(q, v) ≥ dG(q, u) for any vertex v that has not been visited.
Thus, if α × dG(q, u) > r , then α × dG(q, v) > r . Conse-
quently, d(q, v) ≥ α × dG(q, v) > r , i.e., all the unvisited
vertices cannot be in the final result set RQ(q, r), and then,
best-first and breadth-first methods can stop and return the
final right result RQ(q, r). The proof completes.

Note that, Lemma 7 is also applicable for kNN search by
replacing r with curNDk . Obviously, Lemma 1, Lemma 6,
and Lemma 7 guarantee the correctness of best-first and
breadth-first methods.

VOLUME 7, 2019 101507

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 7. kNN query performance vs. k .

Next, we present the time complexities of best-first method
and breadth-first method, respectively.

The best-first method maintains two queues. One is
used for graph traversal, and the other is a priority queue
that is utilized to compute the shortest path distance. The
best-first method traverses the vertices in ascending order
of their shortest path distances w.r.t. the query vertex,
in order to take advantage of shortest path distance prun-
ing. This is similar as Dijkstra algorithm. Thus, in the
worst case (i.e., all the vertices need to be evaluated),
the time complexity of best-first method is O(|E| + |V | ×
(log|V | + f (m))), where f (m) is the cost for metric distance
computation.

The breadth-first method only maintains one queue that
is used for graph traversal, and the shortest path distance
between a vertex v and the query vertex is evaluated once
the vertex v is visited. Thus, in the worst case, the cost for
computing shortest path distances between all the vertices and
the query vertex isO(|E|+|V |), and the total time complexity
of breadth-first method is O(|E| + |V | × (1+ f (m))).

VI. EXPERIMENTAL EVALUATION
In this section, we present a comprehensive experimental
evaluation. Inwhat follows, we first introduce experiment set-
tings, and then, we evaluate the efficiency and effectiveness
of our methods.

A. EXPERIMENT SETTINGS
We employ three real datasets, viz., Gowalla,1 Flickr,2

and Citation.3 Gowalla contains locations, in which
L2-norm is utilized to compute the metric distance. Two
locations are connected if they are shared by the same user.
Flickr includes images, where every image is associated with
282-dimensional features, and L2-norm is used to compare
image features. If two images are tagged by the same user,
an edge is added between them. Citation provides a compre-
hensive list of research papers, in which every paper is associ-
ated with a set of keywords, and Jaccard distance is employed
to measure the corresponding metric similarity. Two papers
are connected if one cites another. Table 3 summarizes the
statistics of the real datasets used in our experiments.

We study the performance of the algorithms when varying
the parameters shown in Table 4, where the bold denotes the
defaults, and d+ is the maximal distance between any two
vertices. In every experiment, we change one parameter, and
set the others to their default values. The main performance
metrics include query time, the number of shortest path
distance computations (graphdists for short), and the num-
ber of metric distance computations (metricdists for short).

1Gowalla is available at https://snap.stanford.edu/data/loc-gowalla.html.
2Flickr is available at https://www.flickr.com/.
3Citation is available at https://cn.aminer.org/citation.

101508 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 8. 30NN (k = 30) query performance vs. α.

TABLE 3. Statistics of the datasets used.

TABLE 4. Parameter settings.

Each measurement we report is the average of 50 queries.
All the algorithms are implemented in C++, and all the
experiments run on an Intel Xeon E312xx(Sandy Bridge)
2.10GHz virtual machine with 60GB RAM.

B. EFFICIENCY OF OUR METHODS
1) RANGE QUERY PERFORMANCE
The first set of experiments evaluates the performance
of BeRA and BrRA for supporting range queries on
quasi-metric graphs, comparedwith three baseline algorithms
(i.e., LRA, MRA, SRA). Fig. 6 depicts the query results

under various r values. Note that, values of MRA and SRA
are missed on Citation and Flickr, because indexes cannot
be built due to the large cardinality of the graphs. The first
observation is that, BeRA and BrRA outperform baseline
algorithms in term of query time, the number of metric dis-
tance computations, and the number of shortest path distance
computations. The reason is that, BeRA and BrRA traverse
the quasi-metric graph only once (i.e., graphdists = 1)
while baseline algorithms traverse the graph multiple times
for computing shortest path distances of unpruned vertices.
The second observation is that, among three baseline algo-
rithms, the query time of MRA and SRA is more than LRA.
This is because, even though the number of shortest path
distance computations of MRA and SRA is fewer than that of
LRA, the shortest path distance computations for MRA and
SRA are more costly than LRA as discussed in Section IV-
D. In addition, the number of metric distance computations
of LRA is fewer. The third observation is that, BrRA per-
forms better than BeRA. This is because, BrRA verifies
vertices as long as they are visited, resulting in obtaining
the final result earlier. As expected, the query time of BeRA
and BrRA first ascends and then tends to be stable as r
increases, This is because, more vertices cannot be pruned
or verified with the growth of r , incurring more distance
computations. Note that, on Citation and Flickr, the query
time of BeRA and BrRA increases dramatically when r is

VOLUME 7, 2019 101509

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

FIGURE 9. 30NN (k = 30) query performance vs. the number |P| of pivots.

greater than 16%, because, when r ≥ 16%, large number of
vertices need further verification. Accordingly, the number
of metric distance computations sharply grows as shown
in Fig. 6(h) and Fig. 6(i).

2) kNN SEARCH PERFORMANCE
The second set of experiments verifies the performance of
BeNA andBrNA for supporting kNN queries, compared with
three baseline algorithms (i.e., LNA, MNA, SNA). Fig. 7
shows the results under different k values. As analyzed above
for range queries,BeNA andBrNA outperform baseline algo-
rithms, and BrNA performs better than BeNA. For example,
on Flickr, the query time of BrNA is 6 times fewer than that
of BeNA, and is 25 times fewer than that of LNA, when k is
set as 50. In addition, the query costs of BeNA, BrNA, and
baseline algorithms increasewith the growth of k due to larger
search space.

3) EFFECT OF α
The third set of experiments studies the impact of param-
eter α on kNN (k = 30) queries. Note that, the results
of range queries have similar performance and hence are
omitted. Fig. 8 plots the results. It is observed that, the query
costs of BeNA and BrNA drop dramatically while that of
LNA increases as α ascends. The reason is that, for LNA,
the larger α is, the weaker the pruning ability becomes,

incurring more distance computations, as illustrated
in Figs. 8(d) through 8(i). For BeNA and BrNA, as α grows,
the weight of graph similarity dG(u, v) increases, and there-
fore, the pruning power of BeNA or BrNA becomes stronger,
resulting in better query performance.

4) EFFECT OF THE NUMBER OF PIVOTS |P|
The last set of experiments aims to explore the impact of the
number |P| of pivots on kNN (k = 30) queries. We vary the
number |P| of pivots from 1 to 9, and Fig. 9 depicts the results.
The first observation is that, for LNA, the query costs are not
sensitive to |P|. This is because, the pruning power of LNA
is weak although the number of pivots grows. The second
observation is that, for BeNA and BrNA, the query time first
drops and then stays stable or increases as the number of
pivots ascends. The reason is that, both the costs and the abil-
ities for pruning or validating vertices grow with more pivots.
The third observation is that, the number of metric distance
computations drops when the number of pivots grows. This
is because, using more pivots, the lower and upper bounds
(defined in Definition 4) are tighter and thus the pruning
power is stronger.

C. EFFECTIVENESS OF OUR METHODS
To evaluate the effectiveness of our methods, we select ran-
domly 100 query papers from Citation dataset, and for each

101510 VOLUME 7, 2019

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

TABLE 5. Quality of the result.

query paper, we merge three 50NN query result sets in the
cases when α = 0.25, α = 0.5, and α = 0.75 (i.e.,
using combined similarity metric), (ii) α = 0 (i.e., only
considering metric data similarity), and (iii) α = 1 (i.e., only
considering graph similarity), resulting in an answer set SA.
Then, we assign every query paper with the merged answer
set SA to a group of users U = {ui | 1 ≤ i ≤ 9} by using
the crowdsourcing strategy, and every user ui selects 50NN
answers (i.e., user-wanted answers) Sui for each query paper.
Based on these, the quality of the returned result set Sr can be
measured as 1

|U |

∑
ui∈U

|Sui∩Sr |
|Sr |

. Table 5 reports the quality of
the result set returned by our methods under α = 0, α = 0.25,
α = 0.5, α = 0.75, and α = 1, respectively. It is observed
that, the quality of the result sets under α = 1 and α = 0
is much lower than that of the result sets under α = 0.25,
α = 0.5, and α = 0.75, meaning that the combined similarity
metric achieves high result quality. This confirms that consid-
ering both graph similarity and metric data similarity in node
similarity search is significant and effectiveness. In addition,
our approach ismuchmore flexible, and thus, users can obtain
preferred results by tuning parameter α. It is recommended
that, α = 0.5 is a good choice when considering both graph
similarity and metric data similarity, because it achieves the
highest quality of the result as shown in Table 5.
In summary, our proposed methods (i.e., best-first method

and breadth-first method) are significantly faster than three
baseline approaches in answering similarity search on
quasi-metric graphs, and there is no need for them to build
any complicated indexes.

VII. CONCLUSION
In order to support similarity search on graphs (e.g.,
geo-social network, citation graph, social image graph, etc.)
based on both metric data similarity and graph similarity,
we introduce the new notion of quasi-metric graph and study
similarity search (including range query and kNN search)
on quasi-metric graphs. We propose three baseline meth-
ods and present two simple but efficient methods, i.e., best-
first method and breadth-first method, which traverse the
quasi-metric graph following the best-first paradigm and
the breadth-first paradigm, respectively. In addition, sev-
eral pruning and validating techniques are developed to
avoid unnecessary evaluation. Extensive experiments using
three real datasets verify the effectiveness and efficiency
of our methods. Compared with three baseline methods,
both best-first method and breadth-first method support more

efficient similarity search without constructing complicated
graph indexes or metric indexes. In the future, we plan to
extend our algorithms to various distributed environments
such as Pregel and Spark. Another possible direction for
future work is to utilize other similarity metrics (e.g., Sim-
Rank, PPR, etc.) to measure the similarity between vertices
in the graph.

REFERENCES
[1] E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquín, ‘‘Search-

ing in metric spaces,’’ ACM Comput. Surv., vol. 33, no. 3, pp. 273–321,
2001.

[2] G. R. Hjaltason and H. Samet, ‘‘Index-driven similarity search in metric
spaces,’’ ACM Trans. Database Syst., vol. 28, no. 4, pp. 517–580, 2003.

[3] H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Mateo, CA, USA: Morgan Kaufmann, 2006.

[4] S. Khemmarat and L. Gao, ‘‘Fast top-k path-based relevance query on
massive graphs,’’ in Proc. ICDE, Mar./Apr. 2014, pp. 316–327.

[5] Y. Wu, R. Jin, and X. Zhang, ‘‘Efficient and exact local search for random
walk based top-k proximity query in large graphs,’’ IEEE Trans. Knowl.
Data Eng., vol. 28, no. 5, pp. 1160–1174, May 2016.

[6] A. Silva, W. Meira, Jr., and M. J. Zaki, ‘‘Mining attribute-structure corre-
lated patterns in large attributed graphs,’’ Proc. VLDB Endowment, vol. 5,
no. 5, pp. 466–477, 2012.

[7] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, ‘‘A model-based approach
to attributed graph clustering,’’ in Proc. SIGMOD, 2012, pp. 505–516.

[8] Y. Zhou, H. Cheng, and J. X. Yu, ‘‘Graph clustering based on struc-
tural/attribute similarities,’’ Proc. VLDB Endowment, vol. 2, no. 1,
pp. 718–729, Aug. 2009.

[9] Y. Zhou, H. Cheng, and J. X. Yu, ‘‘Clustering large attributed graphs:
An efficient incremental approach,’’ in Proc. ICDM, Dec. 2010,
pp. 689–698.

[10] I. Kalantari and G. McDonald, ‘‘A data structure and an algorithm for
the nearest point problem,’’ IEEE Trans. Softw. Eng., vol. SE-9, no. 5,
pp. 631–634, Sep. 1983.

[11] H. Noltemeier, K. Verbarg, and C. Zirkelbach, ‘‘Monotonous bisector*
trees—A tool for efficient partitioning of complex scenes of geometric
objects,’’ in Data Structures and Efficient Algorithms. Berlin, Germany:
Springer, 1992, pp. 186–203.

[12] S. Brin, ‘‘Near neighbor search in large metric spaces,’’ in Proc. VLDB,
1995, pp. 574–584.

[13] J. K. Uhlmann, ‘‘Satisfying general proximity / similarity queries with
metric trees,’’ Inf. Process. Lett., vol. 40, no. 4, pp. 175–179, 1991.

[14] G. Navarro, ‘‘Searching in metric spaces by spatial approximation,’’ VLDB
J., vol. 11, no. 1, pp. 28–46, 2002.

[15] L. Aronovich and I. Spiegler, ‘‘CM-tree: A dynamic clustered index for
similarity search in metric databases,’’ Data Knowl. Eng., vol. 63, no. 3,
pp. 919–946, 2007.

[16] P. Ciaccia, M. Patella, and P. Zezula, ‘‘M-tree: An efficient access method
for similarity search in metric spaces,’’ in Proc. VLDB, 1997, pp. 426–435.

[17] C. Traina, Jr., A. Traina, B. Seeger, and C. Faloutsos, ‘‘Slim-trees: High
performance metric trees minimizing overlap between nodes,’’ in Proc.
EDBT, 2000, pp. 51–65.

[18] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, ‘‘D-index: Distance
searching index for metric data sets,’’ Multimedia Tools Appl., vol. 21,
no. 1, pp. 9–33, 2003.

[19] V. Dohnal, C. Gennaro, and P. Zezula, ‘‘Similarity join in metric spaces
using eD-index,’’ in Proc. DEXA, 2003, pp. 484–493.

VOLUME 7, 2019 101511

T. Zhang et al.: Efficient Similarity Search on Quasi-Metric Graphs

[20] E. Chávez and G. Navarro, ‘‘A compact space decomposition for effective
metric indexing,’’ Pattern Recognit. Lett., vol. 26, no. 9, pp. 1363–1376,
2005.

[21] G. Navarro andN. Reyes, ‘‘Dynamic list of clusters in secondarymemory,’’
in Proc. SISAP, 2014, pp. 94–105.

[22] R. Paredes and N. Reyes, ‘‘Solving similarity joins and range queries in
metric spaces with the list of twin clusters,’’ J. Discrete Algorithms, vol. 7,
no. 1, pp. 18–35, 2009.

[23] J. Almeida, R. da Silva Torres, and N. J. Leite, ‘‘BP-tree: An efficient index
for similarity search in high-dimensional metric spaces,’’ in Proc. CIKM,
2010, pp. 1365–1368.

[24] W. A. Burkhard and R. M. Keller, ‘‘Some approaches to best-match file
searching,’’ Commun. ACM, vol. 16, no. 4, pp. 230–236, 1973.

[25] L. Micó, J. Oncina, and R. C. Carrasco, ‘‘A fast branch & bound nearest
neighbour classifier in metric spaces,’’ Pattern Recognit. Lett., vol. 17,
no. 7, pp. 731–739, 1996.

[26] E. V. Ruiz, ‘‘An algorithm for finding nearest neighbours in (approxi-
mately) constant average time,’’ Pattern Recognit. Lett., vol. 4, no. 3,
pp. 145–157, 1986.

[27] G. Ruiz, F. Santoyo, E. Chávez, K. Figueroa, and E. S. Tellez, ‘‘Extreme
pivots for faster metric indexes,’’ in Proc. SISAP, 2013, pp. 115–126.

[28] R. A. Baeza-Yates, W. Cunto, U.Manber, and S.Wu, ‘‘Proximity matching
using fixed-queries trees,’’ in Proc. 5th Annu. Symp. Combinat. Pattern
Matching (CPM), 1994, pp. 198–212.

[29] T. Bozkaya and Z. M. Özsoyoglu, ‘‘Distance-based indexing for high-
dimensional metric spaces,’’ in Proc. SIGMOD, 1997, pp. 357–368.

[30] P. N. Yianilos, ‘‘Data structures and algorithms for nearest neighbor search
in general metric spaces,’’ in Proc. SODA, 1993, pp. 311–321.

[31] C. Traina, Jr., R. F. Filho, A. J. Traina, M. R. Vieira, and C. Faloutsos,
‘‘The omni-family of all-purpose access methods: A simple and effective
way to make similarity search more efficient,’’ Proc. VLDB J., vol. 16,
no. 4, pp. 483–505, 2007.

[32] T. Skopal, J. Pokorný, and V. Snásel, ‘‘PM-tree: Pivoting metric tree
for similarity search in multimedia databases,’’ in Proc. ADBIS, 2004,
pp. 27–37.

[33] D. Novak, M. Batko, and P. Zezula, ‘‘Metric index: An efficient and
scalable solution for precise and approximate similarity search,’’ Inf. Syst.,
vol. 36, no. 4, pp. 721–733, 2011.

[34] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, ‘‘Efficient metric
indexing for similarity search,’’ in Proc. ICDE, Apr. 2015, pp. 591–602.

[35] P. Zezula, G. Amato, V. Dohnal, andM. Batko, Similarity Search: TheMet-
ric Space Approach. Berlin, Germany: Springer, 2006.

[36] T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,’’ in Proc. SIG-
MOD, 2013, pp. 349–360.

[37] S. Ma, K. Feng, J. Li, H. Wang, G. Cong, and J. Huai, ‘‘Proxies for shortest
path and distance queries,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 7,
pp. 1835–1850, Jul. 2016.

[38] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, ‘‘Fast shortest path
distance estimation in large networks,’’ in Proc. CIKM, 2009, pp. 867–876.

[39] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and J. C. S. Lui, ‘‘Walking in the
cloud: Parallel SimRank at scale,’’ Proc. PVLDB, vol. 9, no. 1, pp. 24–35,
2015.

[40] B. Tian and X. Xiao, ‘‘SLING: A near-optimal index structure for Sim-
Rank,’’ in Proc. SIGMOD, 2016, pp. 1859–1874.

[41] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and M. Onizuka,
‘‘Efficient ad-hoc search for personalized pagerank,’’ in Proc. SIGMOD,
2013, pp. 445–456.

[42] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, ‘‘HubPPR: Effective index-
ing for approximate personalized pagerank,’’ Proc. VLDB Endowment,
vol. 10, no. 3, pp. 205–216, 2016.

[43] J. Neville, M. Adler, and D. Jensen, ‘‘Clustering relational data using
attribute and link information,’’ in Proc. IJCAI, 2003, pp. 689–698.

[44] H. Gao, J. Tang, and H. Liu, ‘‘gSCorr: Modeling geo-social correlations for
new check-ins on location-based social networks,’’ in Proc. CIKM, 2012,
pp. 1582–1586.

[45] J. Shi, N. Mamoulis, D. Wu, and D. W. Cheung, ‘‘Density-based place
clustering in geo-social networks,’’ in Proc. SIGMOD, 2014, pp. 99–110.

[46] W. Lu, J. Janssen, E. Milios, N. Japkowicz, and Y. Zhang, ‘‘Node similarity
in the citation graph,’’ Knowl. Inf. Syst., vol. 11, no. 1, pp. 105–129, 2007.

[47] X. Zhou, L. Chen, Y. Zhang, L. Cao, G. Huang, and C. Wang, ‘‘Online
video recommendation in sharing community,’’ in Proc. SIGMOD, 2015,
pp. 1645–1656.

TIANMING ZHANG received the B.S. and M.S.
degrees in computer science from Northeastern
University, China, in 2012 and 2014, respectively.
She is currently pursuing the Ph.D. degree with the
College of Computer Science, Zhejiang Univer-
sity. Her research interest includes graph databases
especially for parallel (massive) graph processing.

YUNJUN GAO received the Ph.D. degree in com-
puter science from Zhejiang University, China,
in 2008, where he is currently a Professor with the
College of Computer Science. His research inter-
ests include spatial and spatio-temporal databases,
metric and incomplete/uncertain data manage-
ment, graph databases, spatio-textual data process-
ing, and database usability. He is a member of the
ACM.

LU CHEN received the B.S. degree in software
engineering from Southeast University, China,
in 2011, and the Ph.D. degree in computer sci-
ence from Zhejiang University, China, in 2016.
She is currently an Assistant Professor with the
College of Computer Science and Engineering,
Aalborg University, Aalborg. Her research inter-
ests include indexing and querying metric spaces,
heterogeneous graph analysis, and trajectory data
processing.

GUANLIN CHEN is currently a Professor with
the School of Computer and Computing Science,
Zhejiang University City College, China. He is
a member of the Cloud Computing Expert Com-
mittee of China Communications Society and
the Safety Technology Professional Committee of
Zhejiang Computer Information System Security
Association. He is an expert of Hangzhou Industry
and Information Technology. His research inter-
ests include computer networks, information and

network security, and urban management information.

SHILIANG PU received the Ph.D. degree from the
National Academy of Sciences, French. He is cur-
rently the Senior Vice President and also the Dean
of the Research Institute of Hikvision, Hikvision
Digital Technology Company, and is responsible
for the company’s technical research in the field
of artificial intelligence and big data. He was a
recipient of many honors, such as the 19th Qiushi
Excellence Outstanding Youth Award in Zhejiang
Province, Zhejiang, and the Hubei Science and

Technology Progress Award.

101512 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	SIMILARITY SEARCH IN METRIC SPACES
	SIMILARITY SEARCH ON GRAPHS

	PROBLEM FORMULATION
	QUASI-METRIC GRAPH
	SIMILARITY SEARCH ON QUASI-METRIC GRAPHS
	PRUNING QUASI-METRIC GRAPH

	BASELINE METHODS
	PRUNED LANDMARK LABELING BASED METHOD
	M-TREE BASED METHOD
	SPB-TREE BASED METHOD
	DISCUSSION

	GRAPH TRAVERSING METHODS
	BEST-FIRST METHOD
	BREADTH-FIRST METHOD
	DISCUSSION

	EXPERIMENTAL EVALUATION
	EXPERIMENT SETTINGS
	EFFICIENCY OF OUR METHODS
	RANGE QUERY PERFORMANCE
	kNN SEARCH PERFORMANCE
	EFFECT OF
	EFFECT OF THE NUMBER OF PIVOTS |P|

	EFFECTIVENESS OF OUR METHODS

	CONCLUSION
	REFERENCES
	Biographies
	TIANMING ZHANG
	YUNJUN GAO
	LU CHEN
	GUANLIN CHEN
	SHILIANG PU

