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ABSTRACT Localization is the basic feature of wireless sensor networks (WSN) and estimating the
time difference of arrival (TDoA), and angle of arrival (AoA) is the most used schemes for localization.
Underwater wireless sensor network (UWSN) is extensively used for data collection in an underwater
environment for both military and civilian applications. Nevertheless, efficient and accurate localization
algorithms are essential for the UWSN because of the dynamical property of the underwater surrounding.
Also, data management, collection, and processing for WSNs have become a more active topic nowadays
in computer science, such as database system and data mining. The objective of deploying the WSNs
applications is to collect the real-time data, which has very challenging due to the capacity of communication
and high data generated byWSNs. For this purpose, the time and location are the basic aspects when a sensor
collects data, especially for the case of location-aware data. Many researchers have studied the underwater
sensor nodes localization and they have considered the sensor location where the data is collected and most
of them focused on the fixed sensor nodes. In this research work, energy efficient and accurate localization
schemes are presented named as distance-based and angle-based schemes for the underwater environment
with relatively less energy consumption and mean estimation errors (MEEs). The proposed schemes mainly
focus on the localization of underwater nodes and especially on the MEEs in localization. The extensive
simulation is performed to compare the proposed schemes with other counterpart schemes. The results show
that the proposed schemes outperform other counterpart schemes in terms ofMEEs of localization and energy
consumption.

INDEX TERMS Underwater wireless sensor networks (UWSNs), underwater localization, underwater
acoustic sensor networks (UASNs).

I. INTRODUCTION
Water has covered 70% of the land surface; basically, water is
an infrequent substance that characterizes just 0.05 % of the
land entire mass. However, water always plays an important
role in the appearance of life on earth and especially for
the living organism. The earth would be considered as a
dead planet without the existence of water. The Underwa-
ter environment is still not well explored and researched
for the betterment of human being life. Nowadays under-
water communication technology has become an impor-
tant part of our daily life and attracted more attention due
to its broad applications in underwater. Those applications
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include control systems, environmental monitoring, navi-
gation and many more. Underwater Acoustic Sensor Net-
works (UASN) knowledge delivers novel openings to
discover the underwater environment and as a consequence
it expands our understanding of the environmental problems
that we face in daily life, such as climate changes, animals
life in oceans and the continuous changes in the inhabitants
of coral reefs [1]. UASN function is prevalent expertise for
the wide range of applications such as tsunami forewarning,
naval surveillance, ocean monitoring, oil platform monitor-
ing, and climate monitoring. For the achievement of these
applications different type of sensors are used in UASN, such
as Autonomous Underwater Vehicle (AUV) and Unmanned
Underwater Vehicle (UUV). To collect data from these sensor
and vehicles surface beacons and ships are used [2]. However,
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FIGURE 1. Network architectures of UASNs.

the harsh characteristics of the ocean environment, which
include limited bandwidth, high propagation delay, spread-
ing, etc., make the underwater localization more challenging
task. Figure 1 represents the network architecture classifica-
tion of UASNs.

A different number of applications manage the sensed data
based on Underwater Wireless Sensor Networks (UWSNs)
with various requirements. The sensor node can be found in
different states such as standing, dynamic or hybrid, which
sends the data by a connected wireless network. Currently,
WSNs and several other technologies have offered Global
Positioning System (GPS) and Radio Frequency (RF) for the
terrestrial localization. However, in underwater RF signals
attenuate highly and the frequency for RF signals which are
appropriate for UWSNs are ranging from 30Hz − 300 Hz.
Also, it’s a requirement that the power of transmission is high
or the size of the antenna is large. The features of Underwater
Sensor Networks (USNs) are basically diverse from that of
Terrestrial Sensor Networks (TSN). Acoustic channels in
underwater are considered by the harsh physical layer sur-
roundings with rigorous limitations of bandwidth. Similarly,
the optical signals in an underwater environment also suffer
from scattering and high attenuation [3]–[5]. As a result,
these both technologies are not desirable for underwater com-
munication. But, fortuitously acoustics waves are the most
promising mode of communication for UWSNs. Acoustic
frequency is lower, which is lying between 10 Hz− 1 MHz,
provide a small bandwidth but a long wavelength. The fol-
lowing Table 1 present an approximate time-scale unit for
recording various type of waves.

Furthermore, during the last decade, we have observed a
keen improvement in UWSNs. UWSNs introduce a lot of

TABLE 1. Estimated time-scale units for recording various kinds of waves.

applications, some of them are warning system (tsunami and
earthquake), underwater military surveillance, ocean explo-
ration, navigation, ecological application (biological water
quality), pollution control, etc., [6]. But the variable speed
of sound in underwater and the motion of sensor nodes
because of the shipping activities and water current produce
a unique set of problems and challenges for localization in an
underwater environment. More challenges in an underwater
environment include node deployment, variation in signal
strength, time synchronization, sound speed variation, acous-
tic wave characteristics, etc. There are still a lot of issues in
USN like energy efficiency, localization and routing proto-
cols which required to be solved. Localization of nodes is
important because detected data is only meaningful when we
localize a sensor node [7]–[9]. Many localization techniques
are proposed for WSNs but these cannot be applied directly
to UWSNs because of its varying characteristics formWSNs.

USNs field has seen a keen interest in approaching wireless
communication network through Distributed Antenna Sys-
tems (DAS). This disagree from the shared Central Antenna
System (CAS), in that various antennas are spread out all over
a WSN and plugged in by some external links, whichever
wiring or in the case of UANs an exterior link which links up
sensor nodes through radio [10], [11]. DAS rewards in term
of coverage area, outage performance, throughput, and other
characteristics are well studied. The impression of fusing data
from various antennas in the wireless network to empower
nearest instantaneous locationmeasurement for vastly mobile
sensor network factors such as gliders, quickly travelingAUV
and other non-confined sensor nodes in comparatively sparse
sensor networks. A DAS may be positioned indoors (iDAS)
or outdoors (oDAS). It can also be employed by utilizing inac-
tive feeders and splitters or sometimes the vigorous repeater
amplifiers can be involved to control the sufferers of the
feeder. In networks where equalization is utilized, it may be
suitable to acquaint hold spread in the area of overlapped
coverage, allow quality development through the diversity
of time.

In the ocean, anchor nodes are deployed to accumulate
information from sensor nodes in 2D underwater sensor net-
work environment. These anchored nodes utilize acoustic
links to connect with each other or with underwater sinks.
The sinks are accountable to collect all the information from
the sensor nodes and transfer this information to the offshore
BS station through the surface station. Therefore, the sinks
are provided which is accompanied by vertical and horizontal
transceivers. The vertical transceiver is utilized to transfer
data to BS station and the horizontal transceiver is communi-
cating with the nodes for the collection of data and supply
commands to those sensor nodes. Because the underwater
environment is deep, so vertical transceiver has enough range
[12]. The links on the surface which is equipped with the
acoustic transceivers having the ability to control the parallel
communication through themultiple sinks in underwater. The
surface sinks then communicate with the offshore sinks by the
extensive range RF transmitters.
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Generally, the localization algorithms are grouped into
two categories such as Rang-based and Range-free algo-
rithms [13]. In range-based algorithm sensor nodes use angle
or distance information and anchor sensor nodes for local-
ization. For the achievement of this information, Time of
Arrival (ToA), Time Difference of Arrival (TDoA), Angle of
Arrival (AoA) and Received Signal Strength Indicator (RSSI)
can be used. Also, range-free localization uses the con-
nectivity information for the localization of sensor nodes.
Range-free localization doesn’t need angle or distance esti-
mation to the sensor nodes. Several algorithms are presented,
where a mobile sensor node e.g. AUV work as a impart
sensor node for the collection of information from the other
sensor nodes [14], [15]. In such techniques, mobile sensor
nodes use a particular trajectory named as ‘‘tour-path’’ to
travel through the network. During the traveling time, it stops
at some particular positions named as ‘‘tour-point’’ for the
collection of collected information from the sensor nodes
in their vicinity. These schemes are capable to minimize
the energy ingestion. The systems turn out to be inefficient
in case of large scale sensor networks, where the mobile
sensor node trajectories are big; consequently, operational
costs and data-gathering latency are increasing. Furthermore,
the restraint of the onboard energy incomes, themobile sensor
node functional time is not unlimited, resultantly the cov-
erage area is reducing. Operational issues which are con-
fronted by mobile sensor node can be considered if various
mobile sensor nodes are utilized in the network, where every
mobile node travel the network on a specific trajectory. The
mobile sensor nodes may organize in a constant inter-
connection to stay with each other’s, which enable a
multi-hop communication through the reporting area. How-
ever, the achievement of constant communication between
the AUVs is difficult because of the inconstant nature of
underwater surrounding and the mobility of AUVs.

Furthermore, an autonomous data collection approach is
presented in [16], [17], which analyze the planning path prob-
lem for an AUV to collect data from an USN. They equipped
sensor nodes with acoustic modems which provide a range
limited and noisy communication. AUV is deployed in such
a way that maximizes the collected data while minimizing
the fuel expenses or traveling time. In this case, the commu-
nication constrained data collection is more practical with an
AUV. Also, in [18], [19] a clustered based AUV aided data
collection scheme is presented for UWSN. The scheme con-
sists of three phases such as Discovery, Clustering and Data
Collection. During the discovery phase of AUV, the neighbor
sensor data is interchanged and then collected, which is used
in the clustering to find the members and cluster heads. In this
case, the tour of AUV is organized that all the cluster heads
are visited while decreasing AUV tour length. For the sensor
clustering and to cover the sensor heads with the shortest tour,
an optimal technique is proposed to find the global optimal
solution and then an efficient technique is proposed to achieve
the near optimal solution in a lower computational time.

The scheme is applicable in both connected and disconnected
wireless networks.

A data mining inWSNs is basically the action of extracting
the application-oriented and patterns with a possible accuracy
from a rapid, continuous and non-ending flow of data stream
from a sensor network. In such conditions, the overall data
cannot be saved and required quick processing [20], [21].
Therefore, data mining has to be faster for the processing
of arriving high-speed data. Conventional data mining tech-
niques are utilized to manage static data. For this purpose,
use the multistep and multi-scan algorithms to analyze the
data-sets of static data. Consequently, the conventional data
mining algorithms are not applicable for managing the high
dimensionality, high quantity, and distributed nature data
which is generated by WSNs.

Based on the motivation, we aim to design two effi-
cient localization schemes for USNs, named as distance
and angle-based measurements. The proposed schemes first
localize the sensor nodes in underwater. After the localization
of nodes, the most important task is to measure the MEEs
in localization and detection of targets in the underwater
environment. The whole localization process is divided into
two basic parts: sensor nodes localization and the measure-
ment of MEEs in localization. Simulation results show that
the localization algorithms can greatly reduce the MEEs in
localization, consequently reducing the communication cost
and present a high level of accuracy.

The rest of the paper is structured as follows. In Section II,
related work is described, background information, including
various localization algorithms in an underwater environment
and communication technologies for UWSNs. In Section III,
the proposed localization schemes are presented. Further,
in Section IV, the performance of the proposed schemes are
evaluated through several simulations. Finally, in Section V,
the proposed schemes are concluded and recommended some
future works.

II. RELATED WORK
As discussed in the above section, GPS-free sensor node
localization scheme is required due to the deficiency of GPS
signals in an underwater environment. Most of these schemes
required ranging measurements between the communicating
sensor nodes in the shape of TDoA, ToA, AoA, and RSSI
or at least the alignment of two methods. In recent years
localization of sensor nodes in underwater has attracted more
attention. In almost all the proposed localization schemes,
a pre-defined reference sensor node is required. Because
without the deployment of reference nodes, localization is
almost impossible [22]. But a major hindrance and drawback
of this scheme is the requirement of multiple reference sen-
sor nodes in a large and wide network. Therefore, in most
underwater fields it is not practicable to place multiple ref-
erence sensor nodes because of energy consumption, com-
munication cost, and other requirements. In [23], the authors
consider a UASN that consists of multiple sensor nodes
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placed at the network field. For the reduction of the network
cost, the sensor node has limited computational capability
and lower-complexity with energy constrained. Due to the
dynamical nature of underwater, the sensor nodes continu-
ously move with the water current and shipping activities.
Therefore, due to these issues, the localization process should
be finished in a short duration, otherwise, if the sensor nodes
travel from one location to another, the estimated locations
will become absolute. Hence, it is important to organize
energy efficient and fast localization algorithm to give a
real-time localization in a resource-constrained sensor net-
work. As a result of the continuous sensor nodes mobility,
some sensor nodes may roam out of the network operational
field, which resultantly increments the problems of network
sustentation and recycling.

Underwater localization faces an extensive and variable
propagation delay problems. The acoustic waves propagation
in underwater is nearly 1.5 × 103m/s, which is five orders
lesser than the radio speed in the air which is 3 × 108m/s.
Also, in underwater the wave speed is altered by various
factors such as brininess, temperature, ocean deepness, which
is calculated below [24]:

V1 = 1449.2+ 4.6T + 0.055T 2
+ 0.00209T 3

+ (1.34− 0.01T )(S−35)+ 0.06D (1)

V2 = 1449+ 4.6T + 0.055T 2
+ 0.003T 3

+ (1.39− 0.012T )(S−35)+ 0.017D (2)

V3 = 1449.2+ 4.6T − 0.055T 2
+ 0.00029T 3

+ (1.34− 0.01T )(S−35)+ 0.016D (3)

V4 = 1448.96+ 4.591T − 0.05304T 2
+0.0002374T 3

+ (1.34− 0.0102T )(S−35)+ 0.0163D

+ 1.675× 10−7D2
− 7.139× 10−13TD3 (4)

V5 = 1492.9+ 3(T − 10)4.6T − 0.006(T − 10−2)

− 0.04(T − 18)2 + (S−35)(1.39− 0.01T )+D/16

(5)

where V is the speed of an acoustic wave in m/s, T is the
temperature in degree Celsius, S is the salinity of water in
parts per thousand and D is water deepness in a meter. From
the analysis, it is assumed that the water temperature and
salinity are constant. Using the above equations, we can get
different acoustic waves speed. Unluckily, near rivers or in
coastal areas, generally, these premise is not valid making the
speed of acoustic waves variable.

In [25], the authors presented two schemes for tar-
get localization in underwater, named as Nonlinear
Weighted Least Squares-based Underwater Target Local-
ization (NWLS-UTL) and Space-Alternating Generalized
Expectation Maximization-based Underwater Target Local-
ization (SAGE-UTL). These algorithms perform the local-
ization of target using the data gathered by a distributed star
receiver network. The network is considered is one of the
main receiver and various normal receivers. The correspond-
ing network is considered to be anchored in underwater depth

and an iso-gradient SSP is also assumed. As the temperature
and salinity mostly not remain constant, therefore, the iso-
gradient SSP supposition is sensible for the underwater field.
The authors consider time delay as an explicit function w.r.t
the target localization with the iso-gradient SSP. All the
receivers are not time-synchronized, so it is problematic for
all the receivers in the underwater environment to keep all the
clock time-synchronized. Moreover, a closed-loop problem
(where the estimation of distance is served as a response
variable) is investigated for underwater target localization
[26], which deem the moving and high noise physical charac-
teristics of the underwater field. Accordant with the control
theory, proportional integral reckoner is made for sensor
nodes to collect the distance information via indirect estima-
tions. The authors presented a consensus-based unscented KF
algorithm along with distance information for the collection
of target information.

Furthermore, [27]–[29] investigated the TDoA and ToA
localization algorithms. A closed form solution is considered
by constructing a connection between the unknown source
location and hybrid estimations and to discover the most
suitable sensor nodes association, respectively. Both of them
consider the Cramer-Rao Lower Bound (CRLB), which can
narrate the accuracy of localization, is the lowest bound of
any unbiased estimator. The MEE matrix is derived under
the small error condition. But it is impossible to achieve its
true value in real. Therefore, a closed structure localization
scheme is considered and utilizing its error covariance matrix
to estimate the CRLB. An optimization problem is developed
to find which nodes association should be used and they
converted this non-convex problem into convex by relaxing
the condition of constraint.

Based on the accurate sound travel time, a Self-
Localization scheme with precise Sound Travel Time Solu-
tion (SL-STTS) is presented for the superficial underwater
field. SL-STTS is considered as a time-synchronization free
algorithm. The fluctuating precision is dependent on the exact
estimation of time and it is approachable in a microsec-
ond (ms) resolution with transceivers in the lowest part of
the sea. The position of the transceiver is already defined
in advance. Basically, the two-way travel time (TWTT)
between the transponder andAUV is divided into the one-way
travel time (OWTT), which is the acoustic wave propagation
delay from the transceivers to AUV or vice versa. The AoA
and AUV orientation for acoustic waves from the transpon-
ders are examined to estimate the OWTT. Unfortunately,
the error estimation of OWTT in millisecond (ms) induce
the error of distance measurement in meters (m), which
directly affect the accuracy of localization. Therefore, it is
necessary to work on a better sound travel time solution
for localization. A Levenberg-Marquardt algorithm (LMA)
is presented in [30], to improve distance measurements. The
time-synchronization free algorithm is demonstrated which
save energy for two-way packet trade-off and a sound travel
time solution is demonstrated which meliorate the localiza-
tion and ranging precision.
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A localization algorithm under anchor node uncertainty
for UASNs is presented [31], which deals with the sensor
node localization issues in the existence of uncertainty in
the anchor position. The network environment is prone to
inauspicious the effects of water current, as a result, cause
the non-negligible mobility of the anchor in underwater. If an
anchor node has uncertainty, then it is more challenging
to do localization in a well-organized manner. The under-
water environment ray-bending property is considered for
the accurate location measurements, because of the sound
speed in underwater. Ray equations are applied to sit the
way followed by the acoustic rays in underwater. Maximum
likelihood (MML) is utilized to measure the location of the
target sensor node with the uncertainty in anchor locations.
It is compared with the other schemes; those have precise
information about the anchor node location. CRLB is also
derived for the target location estimation with anchor node
uncertainty. Basically, USNs is a combination of a variable of
sensor nodes which are designed to jointly monitor oceanic
operations. For the achievement of these objectives, sensor
nodes self-organize to autonomous networks that can accom-
modate the description of an underwater environment. The
most important objectives for USNs are its relative ease of
outfit and lower expenses, as they do not require cabling
underwater and without intervening with shipping opera-
tions. The distinct characteristics of USNs have demanded
a modern review of many issues related to localization
operations. Often tend to intensify, motion-induced Doppler
shift, multi-path interference, propagation delays, and limited
bandwidth, etc., provide many antecedently proposed results
inaccurate.

A Variety of underwater localization schemes have been
presented by researchers, some of them are already discussed
in the above sections. Most of them focused on the local-
ization of sensor nodes and target localization or sometimes
on the time synchronization of sensor nodes in underwater.
Similarly, some schemes focused on the dynamic nature
and the movement of sensor nodes in underwater which is
basically caused by the dynamic nature of the ocean field.
But, unfortunately still underwater localization faces a lot of
challenges and need to be researched in a precise manner.
The most important task is the precision and efficiency in
the localization schemes. Therefore, this paper addresses the
solution of underwater localization using different schemes.
In the proposed schemes the authors not only focused on
the simple underwater localization or only on the target
localization in an underwater environment. In the proposed
distance and angle-based measurements, the authors first
localize the underwater target nodes and then find the MEEs
in localization. The purpose of the above approaches is to
present a more accurate and efficient scheme for underwater
localization and estimation of mean errors in localization.
To the best of our knowledge, the proposed underwater
localization schemes (distance and angle-based) are novel
and more accurate as compared to the previous localization
schemes.

III. PROPOSED METHODS
This section presents the proposed schemes for localization
in an underwater environment, which is initially computed
to accomplish underwater target localization. After the local-
ization of target, MEE is estimated. It is based on the existing
distance and angle-based measurements. The estimation of
the MEE is performed by first localizing a sensor node, and
then estimate the MEE in localization of a target.

A. DISTANCE-BASED MEASUREMENT
In an underwater environment, the sensor data is typically
interpreted with the location of a sensor node, such as target
tracking, physical condition monitoring or reporting of an
event. As mentioned before, underwater localization is more
challenging as compared to the terrestrial because the RF
signals attenuate highly in underwater, resultantly GPS is also
not feasible for underwater. Different localization schemes
presented a variety of techniques for localization which con-
sider a variety of factors such as device capabilities, the prop-
agation speed of the signal, energy, etc. Most localization
schemes consider the location of a sensor node in the network
field, and the nodes whose position is known is referred to as
anchor sensor node. An approach for target localization basis
on the estimation of TDoA in an inhomogeneous underwater
field is presented in [32]. Due to the inhomogeneity of the
underwater environment, the waves in underwater travel over
a curved path. Resultantly, making the TDoA localization
more challenging as compared to the terrestrial localization.
In this approach, a TDoA based localization is considered
utilizing the iterative algorithm. The approach is converging
to the CRLB, outperform the line-of-sight (LoS) TDoA by
considering the localization of an asynchronous target and
accuracy of localization.

Related algorithms with distance-based measurements can
be found in [33], a systemwhich estimates the TDoA between
different arriving signals from underwater beacons. The time
synchronization of beacons with the receivers is not required
for the proposed system allowing propagation termination
prejudice in underwater. Therefore, the TDoA estimation is
associated with the beacon sensor node position. The demon-
stration of the problem leads to a set of hyperbolic equa-
tions and the theoretical position of the node is then at the
crossing of this set of hyperbolas. Though, the comprehensive
cross-correlation betwixt the signals is a typical method for
finding the TDoA. Underwater field brings together numer-
ous distortions in amplitude and received wave phase due
to the reflections reverberation. Another alternative scheme
to estimate the TDoA, comprising in the exploration of the
primary portion of received signals to determine a serial
of comparable zero-crossing periods for the identification
of their establishment and measuring the time difference
between them. The technique is implemented in a config-
urable system-on-chip, bonding to an embedded ARM pro-
cessor, a custom design digital signal processor setup [34].
The scheme has been studied in a tank and in open field.
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The scheme is able to compute in real-time 2D of an under-
water acoustic spreader, and merging the various directions,
subsequent from the comparative motion between the loca-
tion of the acoustic sources.

A matching scheme which basis on a metric named
as Hausdorff distance [35] as an expense function to be
decreased, in order to accomplish localization. The data set
for this localization was gathered at the time of DGA cru-
sade in ALMA 2015. The localization was performed at
the southern beach of France in a shallow water field. The
acoustic information was estimated over a 10m vertical linear
array which is comprised of total 64 hydrophones. The 2D
localization, in-depth and range is accomplished by coordi-
nating the shape of TDoA, between the respectively discov-
ered succession. Different variants of Hausdorff distance are
utilized, independently in every hydrophone and then joined
to increase the precision of localization by minimizing the
uncertainty both in range and depth.

The proposed scheme for localization which is based on
distance measurement is applied in such a way that first of all
an 80 m× 80 m area is considered for the network field. The
80 m× 80 m area is the field in which the underwater sensor
nodes can ramble freely. At the first case, the area is limited
only up to 80 m×80 m, later on, in the next coming sections,
the scheme is also applied in a large field to check the dis-
tance effect on localization and accuracy of localization. Four
anchor nodes are considered which are positioned at the four
apexes of the localization network field. A number of mobile
nodes are selected, here for the first case, only 10 number
of mobile nodes are selected. The mobile nodes are moving
in the 80 m × 80 m network field. For the measurement of
MEEs, a nonuniform position of a sensor node is selected.
After the setting of random position for a sensor node, various
iterations are applied, but for the case, first, only a limited
number of iterations are considered. For this case, six number
of iterations are considered and the MEEs are calculated. The
reason of why choosing only six iterations is that, because the
MEEs are mostly ranging in between those six iterations see
Figure 2. For the measurement of distance betwixt the mobile
sensor node and beacon node, the beacon sensor nodes are
interconnected to the comparative antenna. In our previous
study [36], a Doppler speed estimation is applied, assumingN
number of active antenna nodes such as xn, yn, and zn, where
n = 1, 2, 3...N and vector:

2(k) =
[
x(k), x́(k), y(k), ý(k), z(k), ź(k)

]
(6)

Zero mean Gaussian additive noise for the active node s at
locations xs, ys and zs is:

2(k)

= Argθ (k)min
1

2(cσt )2

N∑
n=2

[
cδt̂n,1(k)− (dsn(k)− ds1(k))

]2
+

1
σ 2
v

N∑
n=1

(
v̂n(k)−

√
x (́k)

2
+y(́k)2 + z(́k)2Vn(k)

)2

(7)

Here Vn(k) is:

Vn(k) =
(
x(k)− xn
rn(k)

+
y(k)− yn
rn(k)

+
z(k)− zn
rn(k)

)
(8)

and rn(k) is:

rn(k)=
√(

x(k)− xn
)2
+
(
y(k)− yn

)2
+
(
z(k)− zn

)2 (9)

Here σv is the estimation error (EE) standard deviation of
Doppler speed, v(k) is the process noise, k is the time instant,
τ is the discrete model sampling interval and dsn is the actual
distance from sensor node s to n.

In the case of two sensor nodes, equation (9) will become:
xs, and ys, the rn(k) become:

rn(k) =
√(

x(k)− xn)2 + (y(k)− yn
)2 (10)

As seen in Figure 2, the process is repeated many times
but only six iterations are selected in the proposed scheme,
because the MEEs are mostly ranging in between those itera-
tions. The fluctuation of MEEs is from 2.7499m to 3.4789m,
as the MEE is reduced highly as compared to the previous
schemes, see Table 2.

TABLE 2. MEEs in distance-based measurement.

B. ANGLE-BASED MEASUREMENT
Recent research in the field of underwater localization has
shown the possibility of applying angle-based measurements.
The paper [37] utilizes a scheme for the robust approximation
of the AoA of an acoustic source. This scheme measures the
directional angles of a stationary source in an underwater
environment by means of a moving oceanic vehicle which
is dually furnished with two hydrophones. By utilizing the
properties of the acoustic waves in underwater, the equipment
transmits signals sporadically or non-sporadically and contin-
ually. The aim of this method is assuming that an acoustic
source emits a specific signal continually. The process is
composed of three phases; initially, a preceding probability
is estimated by utilizing the state transition model. Secondly,
a Generalized Cross Correlation (GCC) is utilized to obtain
the directional information from the existing acoustic signal.
Finally, a remark is proved by matching the entropy of exist-
ing correlation to prior probability. But the exploration of the
physical features of numerous acoustic sources which basis
on their bands of frequency which is not investigated in the
proposed scheme. Those physical features concentrated on
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FIGURE 2. Mean Estimation Errors (MEEs) of six iterations by employing distance-based measurement.

the robust measurement of the acoustic sources directional
angle with known evidence about the frequency band.

Furthermore, in [38]–[41] various AoA localization
schemes are applied. A bearing only estimation-based algo-
rithm for a real-time AUV localization is presented which
assume the pre-define depth of beacon. The EKF is based
for the scheme and a State-Space model is used consider-
ing the AUV motion with 2-DOF. Similarly, a scheme for
multiple underwater sources which recognizes and extracts

the acoustic target signals by applying frequency bands. The
Bayesian process is used for the directional information and
EKF for the direction angles developed at different positions.
Moreover, an AoA aided localization scheme for underwater
Ad-hoc networks in space of 2D and 3D is presented which
measure the distance from anchor to sensor nodes by using
multi-hop AoA estimation. When the estimation of distance
is received from at least three or four anchor nodes by the
sensor node, the location of a sensor node can be estimated.
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In this section, the proposed angle-based measurement
scheme is implemented by the following processes. First,
an 80m× 80m area is selected for the network field in which
the mobile nodes can ramble, the same as distance-based
measurement. Four anchor nodes are positioned at the four
apexes of the network field and the number of mobile nodes
is 10 for the network field. A nonuniform location for the
mobile nodes is estimated. After the estimation of random
location for nodes, the Euclidian distance is calculated. The
MEEs is calculated after the computing of derivatives. In this
section, the area is limited up to 80m× 80m and the number
of sensors is up to 10. In the next sections, we will also
present the effect of area and number of sensor nodes on the
accuracy of localization. For angle-based measurement, six
iterations are considered in the first case, because the MEEs
are mostly ranging in between those iterations. Sometimes
jump above the range of these six iterations, but mostly in
between these six iterations. Hence, the angle between sensor
nodes are estimated and the MEEs is calculated. The MEEs
is fluctuating from 91.0353m to 104.9208m as presented
in Figure 3 and iteration results in Table 3. The variation in
the MEEs is basically due to the vigorous property of water
environments such as the water current, shipping activities,
and many other issues. Resultantly, it makes the underwater
localization more challenging, but still, the proposed scheme
present a good level of accuracy as compared to the previous
localization schemes. In [36], for estimating the distances and
angles between nodes, a random position for nodes A and B
are selected, which are placed at positions X1, Y1 and X2, Y2.
By considering the nodes, A and B:

A◦ =
√
X1 + Y1 (11)

and

B◦ =
√
X2 + Y2 (12)

Distance between these sensor nodes are:

AB =
√
(X1 − X2)2 + (Y1 − Y2)2 (13)

To estimate the angle between nodes A and B:

cos θ =
A◦ + B◦ − (AB)2

2A◦B◦
(14)

rewrite the above equation as:

cos θ =
X1X2 + Y1Y2√

X2
1 + Y

2
1

√
X2
2 + Y

2
2

(15)

and the angle θ

θ = cos−1

 X1X2 + Y1Y2√
X2
1 + Y

2
1

√
X2
2 + Y

2
2

 (16)

TABLE 3. MEEs in angle-based measurement.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The experiments for underwater localization were carried
out to bear out the effectiveness of the proposed distance
and angle-based measurements. Basically, two schemes were
applied for the purpose of underwater localization and esti-
mation of MEEs. In both schemes first, the sensor nodes are
localized and then the MEEs are calculated which resultantly
gives a high level of accuracy as compared to the previous
implemented schemes.

In distance-based measurement, the localization process
was performed using the distance estimation between sensor
nodes and the anchor nodes. For this scheme, an area was
specified for the whole network which has a border length
of 80 m × 80 m. In this area, the mobile sensor nodes can
roam freely, because the sensor nodes are dynamic, not at a
specific position. The quantity of mobile nodes is 10 and the
number of anchor nodes is four. The four anchor nodes are
positioned at the four vertices of the network in which every
sensor node can communicate. For the schemes, the distance
calculation error ratio is seated as 0.1m, which means that
the precision of distance calculation is 90%. For instance,
the imprecision of 1m is approximately 0.1m. First, a nonuni-
form location of the sensor nodes is calculated and then the
distances between those sensor nodes are measured. After
the localization of sensor nodes, the process is evaluated by
a number of iterations and the MEEs is measured. Here for
the case, the process is repeated several times, but only six
iterations are considered. Because of the MEEs are mostly
fluctuating among these six iterations which are 2.7499 m
to 3.4789 m as presented in Figure 2 and iteration results
in Table 2. The fluctuation of MEEs is basically due to the
dynamic nature of water, shipping activities and many other
issues, but still the proposed scheme achieve a good level of
accuracy.

For the angle-based measurement the range and number
of sensor nodes are similar to distance-based measurement.
An 80 m × 80 m area for the whole network, 10 number of
mobile nodes and four anchor nodes are selected. The four
anchor nodes are positioned at the four apexes of the network
field. First of all, two random nodes A and B are selected, then
the location and angles between these nodes are estimated.
After localizing the nodes, the MEEs is calculated. Here for
the angle-based measurement, the number of iterations is six.
The process is repeated several times to clarify the MEEs and
achieve good accuracy, but only six iterations are considered.
Because the MEEs is fluctuating among these six iterations.
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FIGURE 3. Mean Estimation Errors (MEEs) of six iterations by employing angle-based measurement.

The fluctuation of MEEs is from 91.0353 m to 104.9208 m.
The fluctuation of MEEs is basically due to the water current
and other obstacles in an underwater environment. TheMEEs
of angle-based measurements are shown in Figure 3 and the
iteration outcomes in Table 3.

To compare the proposed distance and angle based mea-
surements, distance-based measurement is more accurate
and efficient as compare to angle-based measurement. The
MEEs of distance-based is lower as compare to angle-based

measurement. Because due to the water current and obstacle
in underwater making the angle-based measurement more
challenging as compare to distance-based measurement. The
distance-based measurement MEEs is fluctuating between
2.7494 m to 3.4789 m and the angle-based MEEs is fluctuat-
ing between 91.0353m to 104.9206m. The results are shown
in Figure 2, 3 and the comparison is shown in Table 4.

To evaluate the proposed scheme more in term of accuracy
and efficiency, the schemes are also evaluated by varying the
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TABLE 4. Distance and angle-based measurements MEEs comparison.

FIGURE 4. Distance-based measurement with large number of sensor
nodes and cross section area.

FIGURE 5. Angle-based measurement with large number of sensor nodes
and cross section area.

number of mobile nodes and the network field area for the
proposed networks. For the proposed schemes, the number of
sensor nodes is changed from 10 to 50 and the area is changed
from 80m to 120m. Resultantly, distance-basedmeasurement
is less affected as compared to angle-based measurement as
shown in Figure 4 and 5, respectively. The proposed schemes
are most feasible for a smaller number of sensor nodes and
a small area as compared to a large number of sensor nodes
and a large area. So, by varying these factors, directly affect
the efficiency and accuracy.

V. CONCLUSION
In this paper, two localization schemes are presented named
as distance and angle-basedmeasurements. Firstly, the under-
water nodes are localized and then the MEEs are calculated.
For the distance-based measurement, an 80 m× 80 m area is
considered for the whole network field in which the mobile
sensor nodes can ramble. The number of mobile nodes is
10 and the anchor nodes which are positioned at the four
apexes of the network field. To measure MEEs, a random
position of a sensor node is selected. After setting the random
position for the sensor nodes, various iterations are applied,
but for the case, first, only a limited number of iterations
are considered. For this case, six number of iterations are
considered and the MEEs are calculated. Because of the
MEEs are mostly fluctuating among these iterations which
are 2.7499m to 3.4789m as presented in Figure 2 and Table 2.
For the angle-based measurement, the network size is also
80 m × 80 m in which the mobile sensor nodes can ram-
ble. The number of sensor nodes is 10 and four anchor
nodes which are positioned at the four apexes of the square
field. After estimating the angles between sensor nodes,
the MEEs are calculated. Similarly, in angle-based measure-
ment, six number of iterations are applied. In angle-based
measurement, the MEEs are fluctuating from 91.0353m to
104.9208m as shown in Figure 3 and the iteration outcomes
in Table 3. Resultantly, the distance-based measurement is
more accurate as compared to angle-based measurement as
shown in the comparison Table 4. The proposed schemes
are also evaluated for a large number of sensor nodes and
network field. The proposed schemes are not more feasi-
ble for a large number of sensor nodes and area as com-
pared to a smaller area. The MEEs in the case of large
sensor nodes and a large area is shown in Figure 4 and 5.
The proposed schemes are well suitable for an area of
80 m × 80 m. Therefore, the schemes give a high level of
accuracy and present good efficiency as compared to the
previous schemes. In the future, we will try to reduce the
MEEs more and also to implement the RSSI for underwater
localization.
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