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ABSTRACT 3D model retrieval is becoming a hot research topic due to its wide applications such as
computer-aided design, digital entertainment, and virtual reality. For this challenging task, feature learning
and similarity measure are two critical problems. However, existing approaches usually learn discriminative
visual features and develop a complex graph matching strategy to measure the similarity independently.
In this paper, we propose an unsupervised method which can embed similarity measure into the feature
space. The proposed method utilizes both similarity and dissimilarity information to better leverage the
unsupervised problem and estimates the labels which are further used for metric learning. With the learned
metric, we project the original features to more discriminative feature space and efficiently measure the
similarity among models under the new feature space. We conduct extensive evaluations of three popular and
challenging datasets. The experimental results demonstrate the superiority and effectiveness of the proposed
method, competing against the state of the arts.

INDEX TERMS 3D model retrieval, unsupervised learning, metric learning.

I. INTRODUCTION
With the development of 3D model acquisition and printing
technology, there is an explosive growth of 3D models. Due
to the huge and ever-increasing 3D data, advanced pattern
recognition techniques are becoming fundamental to process
these data for many practical problems, for example, digital
entertainment, CAD, medical diagnosis and 3D scene under-
standing [1]–[3]. Due to the success of the 2D image/video
retrieval task [4]–[8], 3D model retrieval has attracted more
attention and multiple approaches for this task have been
developed [9]–[13].

A. MOTIVATION AND OVERVIEW
Given a query model, 3D model retrieval aims to find the
relevant models from the 3D model dataset. The exist-
ing works on 3D model retrieval can be roughly grouped
into two paradigms, model-based methods and view-based
methods. In model-based methods, each 3D model is
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represented by the volume or the point set. These meth-
ods mainly extract the graphical features, such as surface
distributions [14], voxel-based features [15], shape descrip-
tors [16] and Fourier descriptors [17], to represent the
3D model, which can preserve the spatial structure and
geometry information of 3D model. The limitation of these
methods is that the performance is seriously restricted by
the low-quality of models and expensive computation. Fur-
thermore, it is very difficult to represent the model with
these methods when only visual appearance of the model is
available.

Recently, extensive works have been done on view-based
3D model retrieval. Benefiting from the deep neural net-
works, a lot of works [18]–[21] utilize the deep structures to
describe the multi-view characteristics of 3D models. In par-
ticular, Multi-View Convolutional Neural Networks [18]
employed the max-pooling operation for multiple views to
generate themodel level descriptor. To explore the correlation
of multiple views, Feng et al. [20] utilized the group based
module to exploit the group level descriptors.Wang et al. [19]
recurrently clustered the views into different sets according to
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FIGURE 1. Framework of our proposed method. Given the features of query and gallery, we first construct the graph including graph initialization and
graph refinement. Graph initialization measures the similarities among models in original feature space and graph refinement utilizes the k-reciprocal
information to pull the similar galleries and push the dissimilar galleries for the query. Then, the label estimation procedure uses the similar neighbors
and dissimilar neighbors to estimate the positive and negative labels. The metric learning utilizes the label information and the features to learn the
projected metric. This metric projects the original features into a new space, which contribute to further refinement. The procedures of graph refinement,
label estimation, and metric learning repeat until obtaining stable results.

the similarity of the views and pooled the features in each
set to learn the representation of models. These methods
highly depend on a large number of labeled samples to ensure
the model can learn useful patterns rather than overfitting
the data. However, large-scale labeled 3D data are always
difficult to obtain for most real applications.

To alleviate the aforementioned problem, multiple
researchers have been engaged into the unsupervisedmethods
for this task [22]–[27]. These approaches mainly focus on the
similarity measure which can be grouped into distance-based
methods [23], statistic-based methods [22], [25] and graph-
based methods [24], [26], [27]. The distance-based methods
usually directly measure the set-to-set distance in the original
feature space, which may reduce the time computation while
resulting in low performances. The statistic-based methods
learn the statistical model for view representation, which
can improve the performance compared against the distance-
based methods. The graph-based methods usually formulate
the multiple views in a graph structure, where each view is
treated as the vertex of the graph. They explicitly leverage
the multi-view information of 3D models to solve the many-
to-many distance measure, which can enrich model represen-
tation and enhance the similarity measure while resulting in
high computational complexity.

In light of the above discussions, we develop the unsu-
pervised feature learning with graph embedding (FLGE) for
view-based 3D model retrieval. We aim to embed the sim-
ilarity measure information into the feature space to learn
more discriminative features and reduce the complexity of
similarity measure simultaneously. Specifically, we utilize
the view-level descriptor to initialize the graph and combine
the visual similarity and contextual information to refine
the graph. Subsequently, we develop a novel algorithm to
estimate the label in an unsupervised manner and use the esti-
mated labels to construct the metric learning. After learning
the projected metric, we can update the features and conduct
graph again. This procedure can be implemented iteratively to
improve the projected metric. Finally, we utilize the projected

features to measure the similarities among the query model
and the gallery models and get the final retrieval results. Our
framework is summarized in Fig. 1.

B. CONTRIBUTIONS
The main contributions of this paper are summarized as
follows:
• This paper proposes a novel framework to embed the
graph information of similarity measure into the feature
space, which can enhance the distinctiveness of features
from different categories.

• We propose an original label estimation algorithm to
estimate the relative labels in an unsupervised man-
ner. The proposed algorithm adopts both similarity and
dissimilarity information to estimate the positive and
negative labels for metric learning.

• We conduct extensive experiments on three popular
3D model datasets. The experimental results demon-
strate the superiority of this method compared against
the state of the arts.

The remainder of this paper is organized as follows.
In Section II, we introduce the related works on unsuper-
vised view-based 3D model retrieval. Section III presents
the proposed approach in details. Experimental results are
introduced in Section IV. Finally, we conclude the paper
in Section V.

II. RELATED WORK
Unsupervised learning has been widely studied in the
machine learning community. For model retrieval, the ways
for measuring the similarity between models in an unsu-
pervised manner can be classified into three categories,
which are distance-based methods, statistic-based methods
and graph matching-based methods.

A. DISTANCE-BASED METHODS
For 3D model retrieval, distance-based methods usually first
select the representative view of each model for model
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representation and then do set-to-set similarity measure. They
directly measure the similarity between pairwise models in
terms of specific distance metrics [28]. The Euclidean dis-
tance [29] and the Hausdorff distance (HAUS) [30] are two
commonly used metrics for 3D model retrieval. For example,
Gao et al. [31] proposed to learn a view-level Mahalanobis
distance to estimate the HAUS between pairwise models.
Specifically, the two commonly-used distances are defined
as follows:
• Nearest Neighbor (NN) [23]: This NN-based method
leverages the minimal distance of all view pairs across
two models for similarity measure. It can be calculated
as follows:

NN (V1,V2) = min
v∈V1,u∈V2

d(v,u) (1)

• Hausdorff Distance (HAUS) [23]: The distance between
characteristic views from one model and the closest
view from the other model is determined and the HUAS
distance is calculated as the maximum of all distances
from one characteristic view of one model to the closest
view in the other model, which is formulated as follows:

HAUS (V1,V2) = max
{
maxv∈V1

{
minu∈V2 d(v, u)

}
maxv∈V2

{
minu∈V1 d(v, u)

}}
(2)

where V1 and V2 are the characteristic view sets of the
two compared models and the d(v, u) is the Euclidean
distance between two views.

The benefit of the distance-based methods is that it is very
efficient to solve the retrieval problem. However, since the
existing distance-based methods usually computed the dis-
tance between twomodels in the original feature space, which
can not discover the latent context to enhance the similarity
measure.

B. STATISTIC-BASED METHODS
This kind of methods learns a statistical model for each
category of 3D models to infer the comparability between the
query model and individual category.
• Adaptive view clustering (AVC) [22] selects the optimal
2D characteristic views of a 3D model based on the
adaptive clustering algorithm and then utilizes a prob-
abilistic Bayesian method for 3D model retrieval.

• Camera Constraint Free View (CCFV) [25] removes
the constraint of the setting of the static camera array
for view capture. All the views of one model are first
grouped to generate view clusters and then the posi-
tive matching and negative matching models are trained
using positive and negative matched samples.

Generally speaking, the statistic-based methods consider
the feature distribution of multi-view images and utilize the
statistical models for 3D model learning and inference to
augment the discrimination. Compared against the distance-
based methods, these methods get superior performance
while spending more time on characteristic views selection
by view clustering.

C. GRAPH-BASED METHODS
Recently, graph matching was widely leveraged for this task
because the multi-view image set of a 3D model conveys the
spatial context, which will benefit 3D model retrieval. Differ-
ent from the aforementioned methods, graph matching-based
methods explicitly leverage multi-view information to solve
the many-to-many distance measure. Essentially, it aims
to construct a graph structure by discovering the salient
features of individual view images and/or the visual/spatial
relationship between pairwise/high-order view images.
Gao et al. [32] addressed this task by constructing multiple
hyper-graphs for a set of 3D models based on 2D views.
This method can explore the higher-order relationship among
3D models. A graph-based characteristic view set extraction
and matching method for 3D model retrieval was proposed
in [33]. They used the graph clustering method for view
grouping and the random-walk algorithm was applied for
constructing a view-graph model. In [34], different features
were treated as different models to generate multiple graphs
and they addressed the feature fusion task by learning the
optimized weights of each graph. Zhang et al. [35] treated
the distortions of view-specific samples as nonlinear noisy
mappings of an intact representation of the same object in
a latent space, and took into account the non-linearity in
estimating the unconformity of view-specific measurements
of dissimilarity or similarity. Generally speaking, there are
three representative methods:
• Weighted Bipartite Graph Matching (WBGM) [24] first
selected the characteristic view of each model by group-
ing its views into clusters, and used the clusters as the
representative view. Each representative view is pro-
vided with an initial weight based on the appearance
of the selected view and the initial weights are further
updated based on the relationship among these repre-
sentative views. Two groups of views are formulated
as two subsets of the weighted bipartite graph and the
Hungarian algorithm can be implemented to achieve
the optimal matching and similarity measure between
pairwise 3D models.

• Multi-Modal Clique-Graph Matching (MCG) [26]
replaced individual nodes of the classic graph by one
clique, which consists of K nearest neighbors in the
specific feature subspace and can convey the local struc-
tural attributes in a star model. In the graph, the hyper-
edges that link pairwise cliques and an image-set-based
clique/edge-wise similarity measure are proposed to
address the issue of the set-to-set distance measure,
which can preserve the structure characteristics of the
graph.

• Hierarchical Graph Structure Learning (HGS) [27]
proposed an unsupervised hierarchical graph structure
learning method for multi-view 3D model retrieval.
It designed two strategies to construct a single-view
graph and decomposed the complicated multi-view
graph-based similarity measure into multiple single-
view graph-based similarity measures to avoid the
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difficulty in definition and computation by using the
hierarchical structure.

The graph-based methods always perform better with the
ability of leveraging themulti-view information and the latent
context for 3D model. However, these methods are also time-
consuming because of constructing the graph and processing
the graph matching procedure.

III. PROPOSED APPROACH
In this section, we first overview the framework of FLGE and
then the details of each step will be illustrated.

A. OVERVIEW
Given a probe 3D model p and the gallery set with N
3D models G = {gi|i = 1, 2, . . . ,N }, the original distance
between twomodel p and gi can bemeasured byMahalanobis
distance,

dM (p, gi) = (vp − vgi )
TM (vp − vgi ) (3)

where vp and vgi represent the appearance feature of p and
gi, respectively, and M is a positive semi-definite matrix,
which aims to enhance the feature representation of 3Dmodel
and consequently improves the retrieval performance. In this
paper, we propose a novel framework to learn the projected
metric, which consists of three modules as follows:
• Graph Construction. This module aims to discover the
correlation among multiple 3Dmodels and construct the
rank graph of the 3D models in the dataset. It contains
two parts, graph initialization and graph refinement.

• Label Estimation. This module uses the constructed
rank graph to estimate labels. Differing from existing
methods, which learn the metric with the ground truth
labels, we propose to estimate the positive and negative
labels in an unsupervised manner.

• Metric Learning. This module utilizes the estimated
labels and adopts the metric learning strategy to learn
the projected metric. Subsequently, we can use the learnt
metric to update the rank graph construction, which can
iteratively improve the metric further.

B. GRAPH CONSTRUCTION
1) GRAPH INITIALIZATION
Each 3D model is represented by a set of multi-view
2D images. Given the features of paired 3D models,
Vi and Vj, we utilize the set-to-set distance to measure the
similarity of pairwise models and utilize the similarities to
construct the rank graph. Unlike those methods that equally
treat all views of each model, we adopt the regularized affine
hull (RAH) [36] to reduce the impact of noise views and
suppress unnecessary components for the final model rep-
resentation. For model Vi, its representation with RAH is
defined as following:

V R
i =


s∑
j=1

βjvi,j|
s∑
j=1

βj = 1, ‖β‖l2 ≤ δ

 (4)

where s is the view number and ‖·‖l2 is the l2 norm.
Equation (4) transforms the original set of view-level features
to a single feature vector with the learnt coefficients. The
distance between twomodels under this feature space isDR =
dM (V R

i ,V
R
j ). The final distance between model Vi and model

Vj is formulated in a log-logistic form:

D(Vi,Vj) = log(1+ eDR ) (5)

Subsequently, according to (5), we can sort the distances
for each model and obtain the initial rank graph of the
model p, which is denoted as R0(p,G) = {g1, g2, . . . , gN },
where dM (p, gi) < dM (p, gi+1).

2) GRAPH REFINEMENT
Only using visual features to conduct graph may restrict the
overall performance, as each 3D model could differ signifi-
cantly from other models even belonging to the same class.
Inspired by the works [37], [38], the contextual information
of neighbors can enhance the similarity measure and benefit
verifying the rank graph. In this part, we utilize the informa-
tion of k-reciprocal nearest neighbors R(p, k1) to refine the
graph, which can be defined as,

R1(p, k1) =
{
gi|(gi ∈ R0(p, k1)) ∧ (p ∈ R0(gi, k1))

}
(6)

where R0 is the initialized rank graph. As the k-reciprocal
neighbors are from the k-nearest neighbors and due to the
variations in poses and views, the positive samples may be
out of the k-nearest neighbors. To enhance the neighbors,
we incrementally add the k1 additional neighbors of each
candidate in R1(p, k1) into a more robust set R2(p, k1):

R2(p, k1)← R1(p, k1) ∪ R1(q,
1
2
k1),

s.t.

∣∣∣∣R1(p, k1) ∩ R1(q, 12k1)
∣∣∣∣ ≥ 1

2

∣∣∣∣R1(q, 12k1)
∣∣∣∣ ,

∀q ∈ R1(p, k1) (7)

Then, we consider R2(p, k1) as contextual knowledge to
re-calculate the distance between p and gi. If two models
are similar, their k-reciprocal nearest neighbor sets overlap
with each other, i.e. there are some shared samples in the
sets. More shared samples, more similar the two models are.
The new distance between p and gi can be calculated by the
Jaccard metric of their k-reciprocal sets as dJ (p, gi) = 1 −∣∣R2(p,k1)∩R2(gi,k1)∣∣
|R2(p,k1)∪R2(gi,k1)|

, where |·| denotes the number of candidates
in the set and we adopt Jaccard distance to recalculate the
similarity between p and gi. Subsequently, we use dJ (·, ·) to
obtain the final rank graph R∗. We evaluate this parameter k1
in the Section IV.

C. LABEL ESTIMATION
In this subsection, we discover the pair-label information
between the query model and its rank graph by using the
k-reciprocal information of the query model. We denote
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the k+2 as the top-k neighbors and k−2 as the bottom-k sam-
ples. To simplify the parameter setting, we define

∣∣k+2 ∣∣ =∣∣k−2 ∣∣ = k2.

1) POSITIVE LABEL ESTIMATION
In this part, we utilize the neighbor information of the query
model to estimate whether the pairwise models belong to the
same class. Generally speaking, if neighbors for each query
model are accurate, which means the top neighbors are from
the same categories, we can directly use the top-k neighbors
of the query as the positive samples:

y+(p, q) =

{
1, if q ∈ R∗(p, k+2 )
0, others

(8)

or define a threshold θ to select confident positive samples:

y+(p, q) =

{
1, if D(p, q) < θ

0, others
(9)

Actually, there always exist several false positive results in
top-k neighbors for query model. If only selecting the top k
samples as positive, it will result in too many false positive
samples with big k and few positive samples with small k .
Meanwhile, it is difficult to define a suitable global thresh-
old to meet all query samples, if we used threshold θ to
select samples. To suppress the negative samples with both
top-k neighbors and threshold, we introduce a data-driven
mechanism to automatically define the threshold to select
the positive samples in the top-k neighbors. We use both
visual similarityR0 and contextual informationR∗ to estimate
positive labels. Furthermore, it will be unreasonable if we
treat all positive labels equally, i.e. y+(p, q) = 1. Therefore,
we design a soft label with theGaussian kernel for the positive
labels. Specifically, we modify (8) and (9) as follows,

y+(p, q)=


e−D(p,q), if q ∈ R0(p, k+2 ) ∩ R∗(p, k+2 ),

D(p, q) < θ

0, others

(10)

where θ = 1∣∣k+2 ∣∣
∑∣∣k+2 ∣∣

i=1 dM (p, gi). This setting aims to select

positive samples as many as possible and limiting the hard
negative samples with the adaptive threshold.

2) NEGATIVE LABEL ESTIMATION
In this part, we describe how to estimate the negative pairs.
According to the previous description, the similar models
have similar top-k neighbors. Intuitively, if p is similar to q,
the bottom-k samples of q dissimilar to the p. If we only use
the bottom-k samples of the querymodel as she negative sam-
ples, it will result in easy negative labels because they are far
away from the query sample and may have less contribution
for metric learning to distinguish the hard negative samples.
According to this assumption, we estimate the negative label
by using both bottom-k information of the query itself and the

bottom-k samples of the similar model gi for query, which is
defined as:

y−(p, q) =

{
−1, if q ∈ R∗(p, k−2 ) ∪ R∗(gi, k

−

2 )
0, others

(11)

where gi ∈ R∗(p, k
+

2 ).

D. METRIC LEARNING
Given the estimated positive pairs and negative pairs in the
above subsection, we could design the loss function to learn
the discriminative metric and enhance the retrieval task as
many supervised works do. Specifically, the log loss function
can be designed as follows:

JM (v̄i, v̄j) = log(1+ eyij(DM (v̄i,v̄j)−µ)) (12)

whereµ is a constant positive bias and is the average distance
between all sample pairs to consider that DM has a lower
bound of zero. yij is the label value for sample i and j. Under
the matrix M , the DM represents the distance between Vi
and Vj, which is denoted byDM (v̄i, v̄j) = (v̄i− v̄j)TM (v̄i− v̄j).
To simplify the similarity computation, we adopt the first-
order statistics v̄i of model Vi and v̄j of model Vj, which
show the averaged position of the sample set in the high
dimensional space, to represent each view set and use them
for metric learning.

The logistic function provides a soft margin to separate the
two classes, we can obtain the probabilistic metric learning
problem by:

min
M

E(M ) = min
M

n∑
i=1

m∑
j=1

ωijJM (v̄i, v̄j), s.t. M � 0. (13)

where ωij is the parameter to handle the imbalanced positive
and negative pairs, which is defined by 1

Npos
, if y(i, j) > 0

and 1
Nneg

, if y(i, j) < 0. The Npos and Nneg are the num-
ber of positive and negative sample pairs. Subsequently,
we can use the existing accelerated proximal gradient
algorithms [39]–[41] to solve (13) and get the optimal M .
As shown in [39], we are able to decomposeM asM = PPT .
In this way, P is a projection metric and can translate the
Mahalanobis distance betweenmodel p andmodel gi (defined
in (3)) to Euclidean distance as follows,

dP(p, gi) =
∥∥∥PT vp − PT vgi∥∥∥22 (14)

After learning P, we can recalculate the similarity measure
between two models by using Eq. 14 and update the graph
construction to select high-confidence pairs. Subsequently,
we could utilize the pairs to learn new P to update the graph.
By iteratively repeating the whole procedure, the updated
rank graph could produce more reliable results, and the
previous learnt metric could be further improved. Finally,
a stable rank graph and a discriminative distance metric can
be achieved after a few iterations.
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FIGURE 2. Samples with different views from (a) NTU, (b) MVRED, and (c) ETH.

IV. EXPERIMENT
In this section, we detail the information about the datasets,
evaluation criteria, experimental settings and the competing
methods. Finally, we illustrate the experimental results and
discussion.

A. DATASET
Three popular 3D model datasets are utilized for evaluation,
including NTU [42], MV-RED [2] and ETH [43], some
samples of which are shown in Fig. 2. The three datasets are
briefly introduced as follows:
• NTU [42]: The NTU dataset contains 549 models
of 47 categories from the World Wide Web pages which
are all free downloaded via the Internet. All of the
models were converted into Wavefront file format and
saved as Obj document format and each object includes
60 different view samples.

• MV-RED [2]: The MV-RED consists of 505 objects
from 60 categories. Each object was recorded simul-
taneously by three cameras from three directions. For
data acquisition, Camera-45 and Camera-60 captured
36 RGB images every 10 degree by uniformly rotat-
ing the table controlled by a step motor respectively.
One RGB image in the top-down view is captured by
Camera-90. Therefore, each object owns 73 images.

• ETH [43]: The ETH dataset contains 8 categories with
80 objects. Each object has 41 different views spaced
evenly over the upper viewing hemisphere, and all the
positions for cameras are determined by subdividing the
faces of an octahedron to the third recursion level.

B. EVALUATION CRITERIA
For the evaluation of each dataset, each 3D model is selected
once as the query for retrieval. To evaluate the performance
of 3D model retrieval, we employ seven popular criteria,
including AUC, NN, FT, ST, F-Measure, DCG and ANMRR.
• Precision-Recall Curve [44] is able to comprehensively
demonstrate the retrieval performance, which illustrates

the precision and recall measures by changing the
threshold for distinguishing relevance and irrelevance
in model retrieval. The area under curve (AUC) of
PR-curve can be calculated for quantitative evaluation.

• Nearest Neighbor (NN) is defined to evaluates the
retrieval accuracy of the nearest neighbor returned
result.

• First Tier (FT) is used to compute the recall of the top
κ results, where κ is the number of the most relevant
objects for the query.

• Second Tier (ST) is defined as the recall of the top 2κ
results.

• F-measure (F) jointly evaluates the precision and the
recall of top relevant results. It considers the top
20 returned results for each query.

• Discounted Cumulative Gain (DCG) [22] discounts the
value of relevant results according to their ranked posi-
tion, which assigns relevant results at the top ranking
positions with higher weights because of the supposition
that the user considers lower results less.

• Average Normalized Modified Retrieval Rank
(ANMRR) [45] evaluates the ranking performance by
considering the ranking order and uses the ranking infor-
mation of relevant objects among the retrieved objects to
measure the retrieval result. The lower ANMRR value
indicates the better performance.

C. EXPERIMENT SETTING AND COMPETING METHODS
For feature representation of individual view image,
we adopted the AlexNet model [46], which was pre-trained
on the ImageNet dataset, to extract the visual feature. All
view images were first resized to 256x256. We utilized the
output of the second last fully-connected layers as the visual
representation, which generated a 4096 dimensional vector
for each view. Totally, seven baseline methods (including
two distance-based method, Nearest Neighbor (NN) [23] and
Hausdorff Distance (HAUS) [23], and two statistical-based
methods, Adaptive view clustering (AVC) [22] and Camera
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Constraint Free View (CCFV) [25], and three graph-based
methods,Weighted Bipartite GraphMatching (WBGM) [24],
Multi-Modal Clique-Graph Matching (MCG) [26] and
Hierarchical Graph Structure Learning (HGS) [27] were
implemented for comparison. The competing methods are
addressed in the section of related work.

D. EXPERIMENTAL RESULTS AND DISCUSSION
Extensive experiments were conducted to evaluate the effec-
tiveness of the proposed method on NTU, MVRED and
ETH. We first analyze the sensitivity of our method to four
important hyper-parameters, i.e., the view number s in (4),
the neighbor number k1 for graph refinement, k2 for label
estimation, and the iteration number T . By default, we vary
the value of one parameter and keep the others fixed. Then,
we evaluate the performance with different modules in our
framework. Furthermore, we visualize the visual feature
before and after our method. Finally, we compare our method
against the state-of-the-arts.

1) PARAMETER ANALYSIS
a: SENSITIVITY ANALYSIS ON VIEW NUMBER
For most real applications, it is always expected that
3D model retrieval is conducted with as few view images
as possible. Therefore, we evaluate the retrieval performance
by varying the number of views used on MVRED, which is
most challenging 3D dataset for real applications. To further
verify the robustness of our method, we compare it with other
representative methods. Specially, we tune the view number
from 10 to 70 with the step size of 10. We averaged 10 ran-
dom trials with respect to the specific view number. From
the comparison results shown in Fig. 3, we have following
observations:
• All methods can get consistent improvements by
increasing the view numbers, which is reasonable since
more views can convey more appearances and structural
characteristics of 3D models. We use all views of each
3D model in the remaining experiments.

• Our method can consistently outperform the compet-
ing methods in terms of all evaluation criteria. When
increasing the view number from 10 to 70, our method
can achieve the gain of 12.1%, 6.1%, 14.8%, 6.7%,
4.9% in terms of AUC, FT, ST, F-measure, DCG and
the decline of 4.6% in terms of ANMRR. In particular,
our method with 40 views can outperform the second
best method with the gain of 6.0%, 5.5%, 3.8%, 4.4%,
3.6% in terms of AUC, FT, ST, F-measure, DCG and the
decline of 5.7% in terms of ANMRR, respectively.

b: SENSITIVITY ANALYSIS ON NEIGHBOR NUMBER
The impacts of the neighbor numbers k1 and k2 were evalu-
ated on the MVRED dataset. The results are shown in Fig. 4.
We tune k1 and k2 from 5 to 30. We empirically set k2 to
20 when we varied k1 and then tuned k2 by fixing k1 with
the optimal value. As shown in Fig. 4 (a), the performance
is improved by increasing k1 and the best result is obtained

FIGURE 3. Comparison by varying view numbers on MVRED. (a) AUC,
(b) FT, (c) ST, (d) F-Measure, (e) DCG, and (f) ANMRR.

FIGURE 4. Performance by varying the neighbor numbers k1 (a) and k2
(b) on MVRED.

when k1 = 10. We observed that the performance decreased
when assigning a large value to k1 after the peak arrived. Since
there will be more negative samples in the neighbor set, too
many neighbors will have negative influence on similarity
measure. The similar observation can be found for k2, as illus-
trated in Fig. 4 (b). According to the above observation,
the best results can be obtained by setting k1 = 10 and
k2 = 20. In all experiments, we used 10 as the neighbor
size to construct the rank graph and used 20 as the neighbor
size to predict the positive and negative labels.
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FIGURE 5. Comparison by varying the iteration numbers on (a) NTU, (b) MVRED, and (c) ETH.

TABLE 1. Methods comparison on MVRED dataset. Baseline: Use NN to
measure the similarity between pairwise view sets. GI: Graph
initialization. GR: Graph refinement. LM: Label estimation
and metric learning.

c: SENSITIVITY ANALYSIS ON ITERATION NUMBER
After learning the projected metric, we can use (3) to update
the initial rank graph and learn the projected metric itera-
tively. We varied the iteration number from 1 to 8. The per-
formances on NTU, MVRED and ETH are shown in Fig. 5.
From the results we can observe that the performances can
be improved by iteration. Specifically, we can get 98.8%
on ETH, 83.0% on MVRED and 77.0% on NTU in terms
of NN. Moreover, we can achieve stable results only after
a few iterations. Therefore, this method is robust to achieve
high performances. Considering the performance and com-
putational cost, we utilized T=3 in our experiments.

2) ABLATION EXPERIMENT ON DIFFERENT MODULES
To investigate the effectiveness of the proposed method,
we conduct ablation studies on MVRED (Tab. 1). Firstly,
we show the effect of graph initialization module. As shown
in Tab. 1, ‘‘Ours w/GI’’ outperforms the baseline method
and obtain the gain of 2.4%, 6.2%, 3.9%, 3.3%, 5.4%, 6.2%
in terms of NN, FT, ST, F-measure, DCG, AUC and the
decline of 5.6% in terms of ANMRR. Next, we evaluate the
effect of the label estimation and metric learning. As reported
in Tab. 1, ‘‘Ours w/GI+LM’’ improves the performance of
‘‘Ours w/GI’’, which demonstrates the effectiveness of label
estimation and metric learning. We also evaluate the perfor-
mance of graph refinement by adding the graph refinement
module after the graph initialization (Ours w/GI+GR). ‘‘Ours
w/GI+GR’’ consistently improves results over baseline and
‘‘Ours w/GI’’. For example, ‘‘Ours w/GI+GR’’ obtains the
gain of 4.7%, 4.7%, 4.7%, 2.7%, 4.9% in terms of FT, ST,

FIGURE 6. Visualization of features on ETH (a) (b), MVRED (c) (d),
and NTU (e) (f).

F-measure, DCG, AUC and the decline of 4.2% in terms of
ANMRR comparing against without the graph refinement.
Furthermore, when integrating the three modules together,
our method gains more improvement in performance and
‘‘Ours w/GI+GR+LM’’ obtains the gain of 4.8%, 15.1%,
12.2%, 11.3%, 12.4%, 17.3% in terms of NN, FT, ST,
F-measure, DCG, AUC and the decline of 13.1% in terms of
ANMRR comparing against the baseline method.
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FIGURE 7. Comparison against the state of the arts on (a) NTU, (b) MVRED, and (c) ETH.

TABLE 2. Speed comparison on different datasets (s/query).

3) FEATURE VISUALIZATION
We utilized 3280 samples (each view of one 3D model is
treated as a sample) across 8 categories from ETH and the
other 3280 samples of 8 categories from MVRED and NTU
respectively to visualize their visual features before and after
our method by t-SNE [47]. The results are shown in the Fig. 6.
The original feature visualization on ETH,MVREDandNTU
are shown in Fig. 6(a), (c), (e) and the projected features by
the proposed method are shown in Fig. 6(b), (d), (f), respec-
tively. From Fig. 6, we can have following observations:
(1) As shown in Fig. 6(a), the original features are not dis-
criminated very well and a lot of samples from different cat-
egories collide into a mess on ETH, whereas our method can
obviously separate the samples from different classes very
well (Fig. 6(b)). (2) As illustrated in Fig. 6(c)(e), the original
features belonging to same classes are dispersive and those of
different classes are confused. However, our method can still
succeed in separating the samples from different categories
and align them to the corresponding clusters, which can com-
pact the samples belonging to the same class (Fig. 6(d)(f)).
These in-depth results show the effectiveness of our
strategy to embed the graph information into feature
space.

4) COMPARISON AGAINST THE STATE OF THE ARTS
a: RETRIEVAL PERFORMANCE
The comparison against the existing methods are shown
in Fig. 7. Generally, the graph-based methods can outper-
form the distance-based and statistical-based methods on
three dataset, which indicates the graph-based methods use
graph structure and graph matching to learn the model spa-
tial characteristics of 3D models and consequently benefit
similarity measure. Our method achieves competing

performances compared against the three kinds of methods
on all evaluated datasets. Specifically, we can get several
observations:

• Compared with the distance-based methods, the pro-
posed method outperforms NN and HUAS on all
three datasets. Specifically, our method outperforms the
distance-based methods by the gain of 4.8%-21.2%,
19.6%-28.8%, 17.4%-21.8%, 15.9%-24.5% in terms of
NN, FT, ST, F-measure, DCG and the decline of 15.8%-
28.4% in terms of ANMRR on NTU dataset (Fig. 7(a)).
On MVRED (Fig. 7(b)), we observe the gain of 5.2%-
47.7%, 14.8%-87.3%, 14.6%-75.0%, 14.8%-67.1%,
10.6%-72.9% and the decline of 13.7%-37.6% in terms
of ANMRR. On ETH (Fig. 7(c)), we can achieve
the gain of 3.9%-21.5%, 9.6%-51.1%, 5.2%-23.6%,
3.5%-18.6%, 7.1%-39.0% and achieve the decline
of 32.4%-66.7% in terms of ANMRR.

• Compared with the statistical-based methods, our
method can achieve the gain of 9.2%-100.3%, 20.6%-
97.3%, 17.8%-74.4%, 18.1%-75.3%, 17.8%-104.9%
and the decline of 16.1%-35.9% on NTU. On MVRED,
we can achieve the gain of 5.2%-47.7%, 14.8%-87.3%,
14.6%-75.0%, 14.8%-67.1%, 10.6%-72.9% and the
decline of 13.7%-37.6%. On ETH, we can observe the
gain of 3.9%-21.5%, 9.6%-51.1%, 5.2%-23.6%, 3.5%-
18.6%, 7.1%-39.0% and the decline of 32.4%-66.7%,
in terms of NN, FT, ST, F-measure, DCG and ANMRR.

• Compared with the graph-based methods, our method
can outperform them by the gain of 0.1%-6.6%,
2.0%-16.6%, 1.9%-16.6%, 2.8%-14.8%, 0.9%-13.3%
in terms of NN, FT, ST, F-measure, DCG and the
decline of 2.2%-13.6% in terms of ANMRR on
NTU. In Fig. 7(b), we get the improvement by the
gain of 0.3%-1.1%, 16.0%-1.9%, 14.0%-2.3%, 14.5%-
2.1%, 10.9%-0.7% and the decline of 14.5%-2.1% on
MVRED. On ETH, as shown in Fig. 7(c), we can
observe the gains by 1.3%-5.3%, 1.3%-11.2%, 2.2%-
4.4%, 1.7%-3.7%, 1.2%-8.8% and the decline of
6.9%-36.3%, in terms of NN, FT, ST, F-measure, DCG
and ANMRR, respectively.
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TABLE 3. Comparison of label estimation with existing methods on NTU.

TABLE 4. Comparison of label estimation with existing methods on MVRED.

b: SPEED ANALYSIS
For real application, the speed is an important factor to eval-
uate the retrieval performance. To show the efficiency of our
method, we illustrate the speeds of different methods on
three datasets in Tab. 2. For fair comparison, all the meth-
ods were tested on a Windows 7 ultimate x64 with single
Core (CPU:3.3 GHz; RAM: 8GB). The experimental results
shows our algorithm is much faster than the other methods.
Specifically, our proposed method only costs 0.25s for one
query on NTU dataset, while HGS, which achieved the sec-
ond best results on NTU, costs 31.63s. Considering the speed,
the second fast method is NN (5.04s), while its performance
is much lower than ours as shown in Fig. 7.

c: LABEL ESTIMATION WITH EXISTING METHODS
We evaluated the propose method by initializing the rank
graph with the existing methods on three datasets. The results

are listed in Tab 3, 4 and 5, respectively. From the results,
we have several observations:

• Ourmethod can consistently outperform all the distance-
based, statistic-based and graph-based methods on three
datasets in terms of all evaluation criteria. For example,
our method improves performance of the best method
HGS by the gain of 1.7%, 6.6%, 2.7%, 3.6%, 3.7%,4.9%
in terms of NN, FT, ST, F-measure, DCG, AUC and
the decline of 6.7% in terms of ANMRR on NTU as
shown in Tab 3. On MVRED, our method improves
performance of HGS by the gain of 0.7%, 7.0%, 3.0%,
4.2%, 4.4%, 4.5% in terms of NN, FT, ST, F-measure,
DCG, AUC and the decline of 7.7% in terms of ANMRR
as shown in Tab 4. On ETH as shown in Tab 5, our
method improves it by the gain of 2.6%, 0.3%, 1.4%,
0.3%, 0.6%, 0.1% in terms of NN, FT, ST, F-measure,
DCG, AUC and the decline of 4.7% in term of ANMRR.
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TABLE 5. Comparison of label estimation with existing methods on ETH.

• Even initializing the rank graph by the methods with
low performances, our method can still improve the per-
formances. Specially, for distance-based methods NN,
we can get the gain of 6.8%, 4.2%, 1.5%, 1.2%, 5.0%,
4.6% in terms of NN, FT, ST, F-measure, DCG, AUC
and the decline of 15.8% in terms of ANMRR on ETH
dataset as shown in Tab. 5. The similar performance can
be obtained on NTU and MVRED as shown in Tab. 3
and Tab. 4, respectively.

V. CONCLUSION
In this paper, we propose a novel unsupervised method of
metric learning for 3D model retrieval. We utilize the visual
feature to initialize graph and refine the graph by combin-
ing the visual and contextual information. To improve the
quality of the estimated labels, we adopt both similarity
and dissimilarity to handle the noisy label information and
learn an improved metric with iteratively updating the whole
procedure. Furthermore, when initializing the rank graph
by existing distance-based methods, statistic-based methods
and graph-based methods, our method improves the perfor-
mances of these methods without any annotations. Extensive
experiments on three 3D datasets have proven the effective-
ness and efficiency of our method.
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