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ABSTRACT Ultrasonogram is one of the main techniques for the non-invasive observation and the diagnosis
of the thyroid gland. And, the thyroid papillary carcinoma (TPC) was usually diagnosed during the regular
examination of the thyroid gland. The current diagnosis guideline heavily replies on the experienced clinical
endoscopists. This paper comprehensively evaluated four classification algorithms and five image feature
extraction algorithms for the TPC diagnosis problem. Our data demonstrated that the Hessian features
extracted from the transverse ultrasonograms performed better than those from the longitudinal view. The
best model (Acc = 0.9949) was achieved by the seven-layer shallow neural network with the LBP and
Hessian features extracted from both the longitudinal and transverse views of the ultrasonograms.

INDEX TERMS Thyroid pappilary carcinoma (TPC), transverse ultrasonogram, longitudinal ultrasonogram,
feature extraction, deep neural network.

I. INTRODUCTION
Thyroid gland is an endocrine organ in the front of the
neck and secretes essential hormones for metabolisms [1]
and protein synthesis [2]. Thyroid hormones may be pro-
duced at the amount exceeding the regular body needs, which
may be caused by various factors including the autoimmune
disorder Graves’ disease [3], [4]. Thyroid cancer has the
symptoms of lumps in the neck and may be caused by the
radiation exposures and genetic risks [5]. Thyroid papillary
carcinoma (TPC) is the major subtype of thyroid cancer and
has very good prognosis [6].

TPC has no symptoms at the early stages [7], [8] and was
usually diagnosed incidentally during other regular health
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checkup by ultrasonogram [9], [10]. As high as 7% of Ameri-
can adults have thyroid palpable nodules [11], and about 10%
of these thyroid nodules may be malignant [12], [13]. So the
current clinical thyroid guideline recommends all patients
with thyroid nodules to take ultrasonogram [14]. A clinician
may decide whether to proceed with further tests after inte-
grating the clinical factors and the ultrasonogram results [15].
Finally the guideline suggests a fine-needle aspiration biopsy
with cytology (FNAB) to determine whether to do the thyroid
surgery.

Various types of features were extracted from the ultra-
sonogram images and machine learning algorithms were uti-
lized to build the predictive models for clinical phenotypes.
The histogram of oriented gradient (HOG) features extracted
from the ultrasonograms was utilized to predict the pediatric
abnormalities of the kidney and urinary tract and achieved
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the prediction accuracies between 81% and 87% [16]. Local
binary patterns (LBP) was a popular algorithm to describe
the image texture patterns and was utilized to detect breast
lesion [17], [18]. The recent study demonstrated that the
integration of multiple image feature types may improve
the diagnosis accuracy of breast cancer [18]. A number of
other feature extraction algorithms were also explored for
their applicability in ultrasonogram-based disease predic-
tions, e.g., the gray-level co-occurrence matrix (GLCM) [19],
the Hessian matrix (Hessian) [20] and the Canny opera-
tor [20], etc. The recent state-of-the-art TPC prediction study
proposed to use the convolutional neural network (CNN) to
detect TPC based on the ultrasonogram images and achieved
93.5% in the TPC detection accuracy [21].

This study hypothesized that the ultrasonogram based TPC
prediction model may be improved by integrating various
feature types. We firstly described the ultrasonogram images
in the following types of features, i.e., histogram of oriented
gradient (HOG) [16], local binary patterns (LBP) [17], [18],
gray-level co-occurrence matrix (GLCM) [19], the Hessian
matrix (Hessian) [20] and the Canny operator [20]. Then
we evaluated how these types of features were integrated to
improve the ultrasonogram based TPC prediction model.

II. MATERIALS AND METHODS
A. DATA SET
This study established a cohort of thyroid papillary carci-
noma (TPC) patients and their controls in the China-Japan
Union Hospital of the Jilin University. Patients and controls
were diagnosed by the experienced clinicians and the ultra-
sonograms were collected as JPG images. Each participant
has the transverse and longitudinal ultrasonograms captured
according to the guidelines [22]. This cohort has 114 TPC
patients and 59 controls. This study was approved by the
IRB committee of the China-Japan Union Hospital of the
Jilin University. Each participant signed his or her informed
consent form. After removing the personal information and
clinical annotations, a rectangle of 730 × 420 pixels in size
was extracted to contain the maximal ultrasonogram data.

B. PROBLEM MODEL AND PERFORMANCE
MEASUREMENTS
A binary classification problem between TPC and control
ultrasonograms was investigated in this study. A TPC patient
was a positive sample, and there were P positive samples.
While a control participant was a negative sample and the
number of negative samples was N.

The binary prediction model was evaluated for its sensi-
tivity (Sn), specificity (Sp) and accuracy (Acc). The numbers
of correctly and incorrectly predicted positive samples were
denoted as True Positive (TP) and False Negative (FN). And
the sensitivity was defined as the percentage of correctly
predicted positive samples, i.e., Sn= TP/(TP+ FN)= TP/P.
The specificity was defined as the percentage of correctly pre-
dicted negative samples, i.e., Sp = TN/(TN + FP) = TN/N,

where TN (true negative) and FP (false positive) were
the numbers of correctly and incorrectly predicted negative
samples, respectively. The overall prediction accuracy was
defined as Acc = (TP + TN)/(TP + FN + TN + FP) =
(TP + TN)/(P + N).
The Matthews’ correlation coefficient has been widely

used to evaluate biomedical prediction models based on pro-
tein sequences [23], small molecules [24] and images [25].
It was defined as MCC = (TP×TN-FP×FN)/sqrt((TP +
FP) ×(TP + FN) ×(TN + FP) ×(TN + FN)), where sqrt(x)
was the squared root of x.
All the models were run by 5-fold cross validation

and the model performances were calculated over 20 ran-
dom runs. Three popular classifiers were evaluated on the
binary classification problem. The classifier Gaussian naïve
Bayes (NBayes) was utilized to build the binary prediction
model [26], [27]. K nearest neighbor (KNN) algorithm was
a simple but powerful classifier that relied on the definition
of the inter-sample distance [28], [29]. The support vector
machine (SVM) was another widely-used classifier and has
been used in various types of applications, e.g., genomics [30]
and fMRI imaging data [31]. The SVMmodel with the linear
kernel was utilized in this study.

C. FEATURE EXTRACTION ALGORITHMS
Five popular types of features were extracted from an ultra-
sonogram image. Due to the personal heterogeneity in sizes
and lesion locations, thyroid ultrasonograms of two persons
cannot be directly compared. The statistical and other types
of features were usually calculated from an image and a
comparative modeling was then carried out among these
features [32], [33].

The histogram of oriented gradients (HOG) algorithm has
been widely applied for the object detection [34], [35]. The
gradient features generated by HOG were also successfully
applied to predict lung cancers [36].

The local binary patterns (LBP) exhibits the inherent char-
acteristics of rotation-invariance and image texture descrip-
tion [37], [38]. LBP was initially proposed as a special case
of the Texture Spectrum model [39], [40] and has been
widely used to discriminate among different types of tex-
tures [41]–[43]. A major improvement may be achieved if
the LBP features were combined with the HOG features to
describe the image textures [44]. LBP has also been success-
fully applied to the problem of background subtraction [45].

The gray-level co-occurrence matrix (GLCM) describes
the co-occurring gray-scale values in an image and the cal-
culated spatial inter-pixel relationships were widely used in
medical image analysis [46]–[48]. Integration of GLCM and
LBP features may improve the coronary plague detection
based on the intravascular ultrasound images [49] and the
stroke detection based on the skull CT images [50].

Hessian matrix (Hessian) consists of the second-order
partial derivatives of a scalar-value function, and describes
a multi-variate function’s local curvatures [ref]. A convex
function has a positive semi-definite Hessian matrix and may
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easily derive a local optimality [51]. Hessian matrix was used
to quantitatively describe the vascular structures [52] and the
microcalcification clusters [53].

The Canny operator (Canny) with appropriate thresholds
was widely used to detect the boundaries in images [54].
The thresholds need to be carefully chosen with adaptive
rules [55], and the Otsu algorithm performs the best in most
cases [55].

D. FEATURE SELECTION BY GRADIENT BOOSTING
DECISION TREE
A feature selection algorithm may select phenotype-
associated features and exclude redundant features [56].
A gradient boosting decision tree (GBDT) algorithm builds
an ensemble of multiple weak regression model [57]. GBDT
iteratively improves weak learners with smaller differences
between the predicted phenotypes and the real ones, and is
used to rank target objects in many cases, e.g., the web search
engines [58]. GBDT returns the importance factor for each
feature, and the features with importance no smaller than a
user-defined threshold will be selected for further analysis.
The default threshold was set to 0.005.

E. IMPLEMENTATION
This study was carried out using the Python version 3.6 pro-
gramming environment. The machine learning packages
were sklearn version 0.20.3 and GBDT was implemented
in sklearn.ensemble. Deep learning algorithms were imple-
mented in keras version 2.2.4 and tensorflow version 1.12.0.

All the experiments were executed in an Inspur Gene
Server G100 with 256GB memory, 28 Intel Xeon R© CPU
cores (2.4GHz), and 26 TB hard disk.

III. RESULTS AND DISCUSSION
A. EVALUATION OF FIVE FEATURE EXTRACTION
ALGORITHMS ON THE LONGITUDINAL
ULTRASONOGRAMS
This study kept the top-ranked 20 features of each feature type
for further evaluation. GLCM extracted 64 features from a
given imagewhile all the other four algorithms generated over
300 thousand features. In order to integrate these five feature
types by a similar number of features, each feature type was
evaluated for the individual feature’s discriminative power by
t-test and the top-ranked 20 features with the smallest Pvalues
were kept for further analysis.

The five feature types demonstrated different averaged
values and standard deviations between the TPC samples and
the controls, as illustrated by Figure 1. Hessian and LBP
generated features with the top two largest averaged values.
And the Canny features have a small averaged value and a
relatively large standard deviation.

The prediction models were built using three popular clas-
sifiers, i.e., NBayes, KNN and SVM. Five types of fea-
ture extraction algorithms were evaluated, i.e., HOG, LBP,

FIGURE 1. Average and standard deviation values of the top-ranked
20 features extracted by each of the five feature extraction algorithms.
(a) HOG, (b) LBP, (c) GLCM, (d) Hessian, and (e) Canny.

GLCM, Hessian and Canny, on the longitudinal ultrasono-
gram images.

Five feature extraction algorithms were evaluated for their
performances of predicting TPC samples using the longi-
tudinal ultrasonograms, as shown in Figure 2. The feature
type Hessian achieved the best averaged prediction accuracy
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FIGURE 2. Comparison of five feature extraction algorithms on the
longitudinal ultrasonograms.

0.9561. And the second best feature type HOG achieved
0.9232. Figure 2 (a) demonstrated that the classifier SVMper-
formed the best on the Hessian features (Acc= 0.9825). The
next best prediction model was established by the classifier
NBayes on the feature types HOG (Acc = 0.9717). The next
two best prediction models were achieved by the classifier
KNN on the two feature types Hessian (Acc = 0.9697) and
HOG (Acc = 0.9654), respectively. All the other models
didn’t achieve Acc better than 95%.

The classifier KNN performed the best averaged pre-
diction accuracy 0.8521 among the three utilized classi-
fiers. Although the maximal prediction accuracy 0.9825 was
achieved by the classifier SVM on the Hessian features,
KNN’s best prediction accuracy 0.9697 on the Hessian fea-
tures was only 0.0128 smaller than the maximal accuracy
(Acc = 0.9825). Zhang, H et al., confirmed the observation
that the classifier KNN usually outperformed two popular
classifiers SVM and NBayes in most cases [59].

B. EVALUATION OF FIVE FEATURE EXTRACTION
ALGORITHMS ON THE TRANSVERSE ULTRASONOGRAMS
The prediction models were built using three popular clas-
sifiers, i.e., NBayes, KNN and SVM. Five types of fea-
ture extraction algorithms were evaluated, i.e., HOG, LBP,
GLCM, Hessian and Canny, on the transverse ultrasonogram
images.

The Hessian features demonstrated better discrimination
powers between the TPC samples and controls using the
transverse ultrasonogram, as shown in Figure 3. All the
top three TPC prediction accuracies 0.9828, 0.9762 and
0.9717 were achieved on the same feature type (Hessian) by
the classifiers SVM, KNN and NBayes, respectively. KNN
performed the best on the transverse ultrasonograms, with at
least 0.9000 in the TPC prediction accuracy on all the five
feature types. Its averaged prediction accuracy was 0.9410,
much better than that (Acc = 0.8893) of NBayes.

C. COMPARISON BETWEEN THE LONGITUDINAL AND
TRANSVERSE ULTRASONOGRAMS
The prediction models were built using three popular clas-
sifiers, i.e., NBayes, KNN and SVM. Five types of fea-
ture extraction algorithms were evaluated, i.e., HOG, LBP,
GLCM, Hessian and Canny, on the longitudinal and trans-
verse ultrasonogram images. The vertical axis was the

FIGURE 3. Comparison of five feature extraction algorithms on the
transverse ultrasonograms.

FIGURE 4. TPC prediction improvements using the transverse
ultrasonograms compared with the longitudinal ones.

accuracy difference of a classifier on a feature type between
the transverse and longitudinal ultrasonograms.

The prediction models using the transverse ultrasonograms
generated better or equal accuracies compared with the lon-
gitudinal ones in most cases, as shown in Figure 4. The
only exception was the feature type HOG, where the models
using the transverse ultrasonograms performed slightly worse
than the longitudinal ones. The prediction accuracies were
decreased no more than 0.0200 for all the three classifiers.
The averaged prediction accuracy improvements were similar
for all the three classifiers SVM (0.0729), NBayes (0.0977)
and KNN (0.0888), respectively. So overall, the transverse
ultrasonogram provides better information for the TPC pre-
diction using the classic machine learning algorithms.

D. CLASSIFICATION USING A DEEP LEARNING NETWORK
(a) The architecture of the classic deep learning network,
LeNet-5. (b) Classification accuracies of LeNet-5 using dif-
ferent image features. The vertical axis was the classification
accuracy.

In additional to the classic classification algorithms, this
study further evaluated how a convolutional neural net-
work performed on the dataset, as shown in Figure 5 (a).
The deep neural network LeNet-5 was utilized in this
study [60].

Figure 5 (b) illustrated that LeNet-5 didn’t outperform the
classic classifiers. LeNet-5 achieved the best accuracy 0.9482
on the GLCM features of the longitudinal view, which was
worse than the best model of a classic algorithm (SVM,
Acc= 0.9828) on the Hessian features, as shown in Figure 3.
All the other feature types didn’t achieve accuracies better
than 0.7000. This may be due to the limited number of
images for training LeNet-5. Another popular deep learning
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FIGURE 5. Deep learning network based classification.

framework AlexNet was also evaluated for our problem [61].
AlexNet performed similarly well with the previous model
but still only achieved prediction accuracies less than 0.7000.
So the two popular deep learning classifiers didn’t outperform
the classic machine learning algorithms.

E. COMPARISON OF A SHALLOW NEURAL NETWORK
WITH THE THREE CLASSIFIERS
The four classifiers were sNN, NBayes, KNN and SVM.
The shallow neural network (sNN) was a seven-layer neural
network with four completely-coupled nodes. The detailed
definition may be found in this section. The vertical axis
was the prediction accuracy of a classification model. Each
of the five feature types extracted from the longitudinal or
transverse ultrasonograms was evaluated for its prediction
performance with one of the four classifiers.

The shallow completely-joined neural network (sNN) was
constructed from the sequential model. This model has seven
layers, i.e., four layers of completely-coupled nodes and
three interface layers (two dropout layer and one completely
connected layer), all of which utilized the relu activation
functions and its dropout parameter was 0.3. This classifier
was denoted as sNN.

The classifier sNN achieved the best TPC prediction accu-
racies on both longitudinal and transverse views of the ultra-
sonograms, as shown in Figure 6. The best longitudinal model
of sNN achieved the accuracy Acc = 0.9876, while the best
transversemodel achievedAcc= 0.9885. Both of the two best
models were based on the Hessian features, suggesting that
the Hessian features may extract essential information from
the biomedical ultrasonograms [62], [63]. This observation
was further supported by that the second best models of
both the longitudinal and transverse views were trained by
the same classifier SVM on the Hessian features, as shown
in Figure 6. And the overall best model was achieved by the
classifier sNN with the Hessian features.

FIGURE 6. Performance comparison of the four classifiers.

F. TWO FEATURES TYPES ARE BETTER THAN
ONE BASED ON NEURAL NETWORKS
Each grid was the best 5-fold cross validation accuracy of a
classifier C using two types of features (AlgA, AlgB) of either
longitudinal or transverse ultrasonograms. AlgA or AlgB
could be one of the five feature types, i.e., HOG, LBP,GLCM,
Hessian and Canny. The accuracy in the upper triangle was
calculated by combining the features of AlgA and AlgB and
then selecting features with GBDT. This feature selection
strategy was denoted as C-FS. The accuracy in the lower
triangle was calculated by selecting features in AlgA and
AlgB separately and then combining the selected features.
This was denoted as the FS-C feature selection strategy. The
classifier C was the shallow neural network with hidden
layers of fully connected nodes.

The SVMmodel performed the best (Acc= 0.9828) using
a single feature type Hessian in the previous sections and
may be improved by integrating other feature types, as shown
in Figure 7. This best model based on one feature type was
improved by at least 0.0058 in accuracy by the Canny fea-
tures. And the best model based on two feature types achieved
Acc= 0.9943 by integrating the GLCMandHessian features.
Figure 7 also demonstrated that a better prediction accuracy
may be achieved by selecting features for each feature type
and then integrating the chosen features (FS + C strategy),
compared with the strategy of selecting features after com-
bining two feature types (C + FS strategy). And the Hessian
features collaborated well with the other feature types, with
an improved prediction accuracy when being integrated with
any of the other four feature types.
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FIGURE 7. Duet heatmap of the five feature types.

FIGURE 8. Multi-view integrated prediction of TPC.

It’s interesting to observe that one feature type could
always be improved by integrating other feature types, but it’s
important to select a good collaborator, as shown in Figure 7.
For example, only 0.9714 in Acc was achieved by integrating
the HOG and GLCM features, while the HOG features alone
generated a model with Acc = 0.9717.

G. INTEGRATING BOTH VIEWS OF ULTRASONOGRAMS
Each column was the TPC prediction accuracy calculated by
integrating two feature types with the FS + C strategy. The
data series ‘‘Longitudinal’’, ‘‘Transverse’’ and ‘‘L+ T’’ were
based on the longitudinal, transverse and both views of the
ultrasonograms.

The feature type Hessian represented the best information
source for the TPC prediction, as shown in Figure 8. Three
of the four best models were achieved by the two feature
types Hessian and LBP, and the integration of the two ultra-
sonogram views (Acc = 0.9949) outperformed either view
alone. Except for the integration of the LBP and GLCM
features using two ultrasonogram views (Acc = 0.9823), all
the other models using the LBP features performed worse
than 0.9800 in Acc. Actually the LBP features achieved
Acc= 0.9183, only better than the Canny features with Acc=
0.9022, as shown in Figures 2 and 3.

So the best TPC prediction model was achieved using
the Hessian and LBP features of both ultrasonogram views.
The features were selected by the FS + C strategy and the
prediction accuracy was Acc = 0.9949.

Uliyan, DM et al., demonstrated that a combination of LBP
and Hessian features performed very well on the biomedical
image-based classification problem [64]. Figure 1 suggested

that LBP and Hessian had the largest averaged values among
the five feature types. Our comprehensive evaluation of all
the duets of feature types also supported that the integration
of LBP andHessian feature types achieved the best prediction
performances, as shown in Figure 8.

IV. CONCLUSION AND FUTURE SCOPES
This study investigated the ultrasonogram-based thyroid pap-
illary carcinoma (TPC) prediction problem. Five popular
types of features were extracted from the two ultrasono-
gram views, i.e., longitudinal and transverse. The best model
achieved the prediction accuracy 0.9949 using the LBP and
Hessian features extracted from both longitudinal and trans-
verse views of the ultrasonograms.

An integrated model of two feature types tended to out-
perform the models using only one feature type. The Hessian
features outperformed any one of the other four feature types,
and the Hessian-based model may be further improved by
integrating one more feature type.

ACKNOWLEDGMENTS
Constructive comments from the anonymous reviewers were
greatly appreciated.

REFERENCES
[1] B. Kim, ‘‘Thyroid hormone as a determinant of energy expenditure and the

basal metabolic rate,’’ Thyroid, vol. 18, no. 2, pp. 141–144, Feb. 2008.
[2] J. Calonne, L. Isacco, J. Miles-Chan, D. Arsenijevic, J.-P. Montani,

C. Guillet, Y. Boirie, and A. G. Dulloo, ‘‘Reduced skeletal muscle protein
turnover and thyroid hormone metabolism in adaptive thermogenesis that
facilitates body fat recovery during weight regain,’’ Frontiers Endocrinol.,
vol. 10, p. 119, Feb. 2019.

[3] W. M. Wiersinga, ‘‘Graves’ disease: Can it be cured?’’ Endocrinol.
Metabolism, vol. 34, no. 1, pp. 29–38, Mar. 2019.

[4] S. Malmstroem, D. Grove-Laugesen, A. L. Riis, B. J. Bruun, E. Ebbehoj,
K. W. Hansen, T. Watt, and L. Rejnmark, ‘‘Muscle performance and
postural stability are reduced in patients with newly diagnosed graves’
disease,’’ Thyroid, vol. 29, no. 6, pp. 783–789, Apr. 2019.

[5] T. Carling and R. Udelsman, ‘‘Thyroid cancer,’’ Annu. Rev. Med., vol. 65,
pp. 125–137, Jan. 2014.

[6] N. Oishi, T. Kondo, A. Ebina, Y. Sato, J. Akaishi, R. Hino, N. Yamamoto,
K. Mochizuki, T. Nakazawa, H. Yokomichi, K. Ito, Y. Ishikawa, and
R. Katoh, ‘‘Molecular alterations of coexisting thyroid papillary carci-
noma and anaplastic carcinoma: Identification of TERT mutation as an
independent risk factor for transformation,’’ Mod. Pathol., vol. 30, no. 11,
pp. 1527–1537, Nov. 2017.

[7] C. Hedman, T. Djärv, P. Strang, and C. I. Lundgren, ‘‘Effect of thyroid-
related symptoms on long-term quality of life in patients with differentiated
thyroid carcinoma: A population-based study in Sweden,’’ Thyroid, vol. 27,
no. 8, pp. 1034–1042, Aug. 2017.

[8] A. H. Ellenberg, L. Goldman, G. S. Gordan, and S. J. S. Lindsay, ‘‘Thyroid
carcinoma in patients with hyperparathyroidism,’’ Surgery, vol. 51, no. 6,
pp. 708–717, 1962.

[9] B. Abboud, T. Smayra, H. Jabbour, C. Ghorra, and G. Abadjian, ‘‘Correla-
tions of neck ultrasound and pathology in cervical lymph node of papillary
thyroid carcinoma,’’ Acta Chirurgica Belgica, to be published.

[10] S. Liu, C. Xu, Y. Zhang, J. Liu, B. Yu, X. Liu, and M. Dehmer, ‘‘Feature
selection of gene expression data for cancer classification using double
RBF-kernels,’’ BMC Bioinf., vol. 19, Oct. 2018, Art. no. 396.

[11] G. H. Tan and H. Gharib, ‘‘Thyroid incidentalomas: Management
approaches to nonpalpable nodules discovered incidentally on thyroid
imaging,’’ Ann. Internal Med., vol. 126, no. 3, pp. 31–226, Feb. 1997.

[12] S. J. Mandel, ‘‘A 64-year-old woman with a thyroid nodule,’’ JAMA,
vol. 292, no. 21, pp. 2632–2642, Dec. 2004.

[13] L. Hegedüs, ‘‘Clinical practice. The thyroid nodule,’’NewEngland J.Med.,
vol. 351, pp. 1764–1771, Oct. 2004.

VOLUME 7, 2019 101825



R. Zhu et al.: Integrating Five Feature Types Extracted From Ultrasonograms to Improve the Prediction of Thyroid Papillary Carcinoma

[14] D. S. Cooper, G. M. Doherty, B. R. Haugen, R. T. Kloos, S. L. Lee,
S. J. Mandel, E. L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger,
S. I. Sherman, D. L. Steward, and R.M. Tuttle, ‘‘Revised American thyroid
association management guidelines for patients with thyroid nodules and
differentiated thyroid cancer: The American thyroid association (ATA)
guidelines taskforce on thyroid nodules and differentiated thyroid cancer,’’
Thyroid, vol. 19, no. 11, pp. 214–1167, Nov. 2009.

[15] J. P. Brito, M. R. Gionfriddo, A. Al Nofal, K. R. Boehmer,
A. L. Leppin, C. Reading, M. Callstrom, T. A. Elraiyah, L. J. Prokop,
M. N. Stan, M. H. Murad, J. C. Morris, and V. M. Montori, ‘‘The accuracy
of thyroid nodule ultrasound to predict thyroid cancer: Systematic review
and meta-analysis,’’ J. Clin. Endocrinol. Metabolism, vol. 99, no. 4,
pp. 63–1253, Apr. 2014.

[16] Q. Zheng, S. L. Furth, G. E. Tasian, andY. Fan, ‘‘Computer-aided diagnosis
of congenital abnormalities of the kidney and urinary tract in children
based on ultrasound imaging data by integrating texture image features and
deep transfer learning image features,’’ J. Pediatric Urol., vol. 15, no. 1,
pp. 75-e1–75-e7, Feb. 2019.

[17] U. R. Acharya, K. M. Meiburger, J. E. W. Koh, E. J. Ciaccio,
N. Arunkumar, M. H. See, N. A. M. Taib, A. Vijayananthan, K. Rahmat,
F. Fadzli, S. S. Leong, C. J. Westerhout, A. Chantre-Astaiza, and
G. Ramirez-Gonzalez, ‘‘A novel algorithm for breast lesion detection using
textons and local configuration pattern features with ultrasound imagery,’’
IEEE Access, vol. 7, pp. 22829–22842, 2019.

[18] S. Sasikala, M. Ezhilarasi, and S. Senthil, ‘‘Breast cancer diagnosis system
based on the fusion of local binary and ternary patterns from ultrasound B
mode and elastography images,’’ Current Med. Imag. Rev., vol. 14, no. 6,
pp. 947–956, 2018.

[19] N. A. Shaharuddin and W. M. H. W. Mahmud, ‘‘Feature analysis of
kidney ultrasound image in four different ultrasound using gray level co-
occurrence matrix (GLCM) and intensity histogram (IH),’’ Int. J. Integr.
Eng., vol. 10, no. 3, pp. 42–47, 2018.

[20] H. Yang, A. Pourtaherian, C. Shan, and A. F. Kolen, ‘‘Feature study
on catheter detection in three-dimensional ultrasound,’’ Proc. SPIE,
vol. 10576, Mar. 2018, Art. no. 105760V.

[21] H. Li, J. Weng, Y. Shi, W. Gu, Y. Mao, Y. Wang, W. Liu, and J. Zhang,
‘‘An improved deep learning approach for detection of thyroid papil-
lary cancer in ultrasound images,’’ Sci. Rep., vol. 8, no. 1, Apr. 2018,
Art. no. 6600.

[22] C. Carmeci, R. B. Jeffrey, I. R.McDougall, K.W.Nowels, and R. J.Weigel,
‘‘Ultrasound-guided fine-needle aspiration biopsy of thyroid masses,’’
Thyroid, vol. 8, no. 4, pp. 283–289, Apr. 1998.

[23] G. Taherzadeh, A. Dehzangi, M. Golchin, Y. Zhou, and M. P. Campbell,
‘‘SPRINT-Gly: Predicting N- and O-linked glycosylation sites of human
andmouse proteins by using sequence and predicted structural properties,’’
Bioinformatics, to be published.

[24] M.Wiercioch, ‘‘Exploring the potential of spherical harmonics and PCVM
for compounds activity prediction,’’ Int. J. Mol. Sci., vol. 20, no. 9, p. 2175,
May 2019.

[25] K. Li, S. Wang, C. Du, Y. Huang, X. Feng, and F. Zhou, ‘‘Accurate fatigue
detection based on multiple facial morphological features,’’ J. Sensors,
vol. 2019, Feb. 2019, Art. no. 7934516.

[26] C. Xu, J. Liu, W. Yang, Y. Shu, Z. Wei, W. Zheng, X. Feng, and
F. Zhou, ‘‘An OMIC biomarker detection algorithm TriVote and its appli-
cation in methylomic biomarker detection,’’ Epigenomics, vol. 10, no. 4,
pp. 335–347, Apr. 2018.

[27] R. Ge, M. Zhou, Y. Luo, Q. Meng, G. Mai, D. Ma, G. Wang, and F. Zhou,
‘‘McTwo: A two-step feature selection algorithm based on maximal infor-
mation coefficient,’’ BMC Bioinf., vol. 17, no. 1, p. 142, 2016.

[28] K. E. Richardson and B. M. Znosko, ‘‘Nearest-neighbor parameters for 7-
deaza-adenosineÂů uridine base pairs in RNA duplexes,’’ RNA, vol. 22,
no. 6, pp. 934–942, Jun. 2016.

[29] A. D. Rodgers, H. Zhu, D. Fourches, I. Rusyn, and A. Tropsha, ‘‘Modeling
liver-related adverse effects of drugs using kNearest neighbor quantitative
structure-activity relationship method,’’Chem. Res. Toxicol., vol. 23, no. 4,
pp. 32–724, Apr. 2010.

[30] W. Sun, C. Chang, Y. Zhao, and Q. Long, ‘‘Knowledge-guided Bayesian
support vector machine for high-dimensional data with application to
analysis of genomics data,’’ in Proc. IEEE Int. Conf. Big Data, Dec. 2018,
pp. 1484–1493.

[31] M. Wang, C. Li, W. Zhang, Y. Wang, Y. Feng, Y. Liang, J. Wei, X. Zhang,
X. Li, and R. Chen, ‘‘Support vectormachine for analyzing contributions of
brain regions during task-state fMRI,’’ Frontiers Neuroinf., vol. 13, p. 10,
Mar. 2019.

[32] A. Jalalian, S. Mashohor, R. Mahmud, B. Karasfi, M. I. B. Saripan, and
A. R. B. Ramli, ‘‘Foundation and methodologies in computer-aided diag-
nosis systems for breast cancer detection,’’ EXCLI J., vol. 16, pp. 113–137,
Feb. 2017.

[33] V. K. Sudarshan, ‘‘Application of wavelet techniques for cancer diag-
nosis using ultrasound images: A review,’’ Comput. Biol. Med., vol. 69,
pp. 97–111, Feb. 2016.

[34] N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ in Proc. Int. Conf. Comput. Vis. Pattern Recognit. (CVPR),
vol. 1, Jun. 2005, pp. 886–893.

[35] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ‘‘Pedestrian
detection using infrared images and histograms of oriented gradients,’’ in
Proc. IEEE Intell. Vehicles Symp., Jun. 2006, pp. 206–212.

[36] E. Adetiba and O. O. Olugbara, ‘‘Lung cancer prediction using neural
network ensemble with histogram of oriented gradient genomic features,’’
Sci. World J., vol. 2015, Jan. 2015, Art. no. 786013.

[37] D. Unay, A. Ekin, M. Cetin, R. Jasinschi, and A. Ercil, ‘‘Robustness of
local binary patterns in brain MR image analysis,’’ in Proc. 29th Annu.
IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS), Aug. 2007, pp. 2098–2101.

[38] L. Nanni, A. Lumini, and S. Brahnam, ‘‘Local binary patterns variants as
texture descriptors for medical image analysis,’’ Artif. Intell. Med., vol. 49,
no. 2, pp. 117–125, 2010.

[39] D.-C. He and L. Wang, ‘‘Texture unit, texture spectrum, and texture
analysis,’’ IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 509–512,
Jul. 1990.

[40] L. Wang and D.-C. He, ‘‘Texture classification using texture spectrum,’’
Pattern Recognit., vol. 23, no. 8, pp. 905–910, 1990.

[41] T. Ahonen, A. Hadid, and M. Pietikainen, ‘‘Face description with
local binary patterns: Application to face recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041,
Dec. 2006.

[42] T. Ahonen, J. Matas, C. He, and M. Pietikäinen, ‘‘Rotation invariant image
description with local binary pattern histogram Fourier features,’’ in Proc.
Scandin. Conf. Image Anal. Oslo, Norway: Springer, 2009, pp. 61–70.

[43] G. Zhao, T. Ahonen, J. Matas, and M. Pietikäinen, ‘‘Rotation-invariant
image and video description with local binary pattern features,’’ IEEE
Trans. Image Process., vol. 21, no. 4, pp. 1465–1477, Apr. 2012.

[44] X. Wang, T. X. Han, and S. Yan, ‘‘An HOG-LBP human detector with
partial occlusion handling,’’ in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep. 2009, pp. 32–39.

[45] C. Silva, T. Bouwmans, and C. Frélicot, ‘‘An extended center-symmetric
local binary pattern for background modeling and subtraction in videos,’’
in Proc. Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl.
(VISAPP), 2015, pp. 1–9.

[46] W. Gomez, W. C. A. Pereira, and A. F. C. Infantosi, ‘‘Analysis of co-
occurrence texture statistics as a function of gray-level quantization for
classifying breast ultrasound,’’ IEEE Trans. Med. Imag., vol. 31, no. 10,
pp. 1889–1899, Oct. 2012.

[47] N. Fujima, A. Homma, T. Harada, Y. Shimizu, K. K. Tha, S. Kano,
T. Mizumachi, R. Li, K. Kudo, and H. Shirato, ‘‘The utility of MRI his-
togram and texture analysis for the prediction of histological diagnosis in
head and neck malignancies,’’Cancer Imag., vol. 19, no. 1, p. 5, Feb. 2019.

[48] P. Yin, N. Mao, C. Zhao, J. Wu, L. Chen, and N. Hong, ‘‘A triple-
classification radiomics model for the differentiation of primary chordoma,
giant cell tumor, and metastatic tumor of sacrum based on T2-weighted
and contrast-enhanced T1-weightedMRI,’’ J. Magn. Reson. Imag., vol. 49,
no. 3, pp. 752–759, Mar. 2019.

[49] Y. N. Hwang, J. H. Lee, G. Y. Kim, E. S. Shin, and S. M. Kim, ‘‘Char-
acterization of coronary plaque regions in intravascular ultrasound images
using a hybrid ensemble classifier,’’ Comput. Methods Programs Biomed.,
vol. 153, pp. 83–92, Jan. 2018.

[50] P. P. R. Filho, R. M. Sarmento, G. B. Holanda, and D. De Alencar Lima,
‘‘New approach to detect and classify stroke in skull CT images via
analysis of brain tissue densities,’’ Comput. Methods Programs Biomed.,
vol. 148, pp. 27–43, Sep. 2017.

[51] M. C. Bartholomew-Biggs, ‘‘The estimation of the Hessian matrix in non-
linear least squares problems with non-zero residuals,’’ Math. Program.,
vol. 12, no. 1, pp. 67-80, 1977.

[52] H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang,
X. Qian, H. Zhang, and L. Li, ‘‘Three-dimensional Hessian matrix-based
quantitative vascular imaging of rat iris with optical-resolution photoa-
coustic microscopy in vivo,’’ J. Biomed. Opt., vol. 23, no. 4, Apr. 2018,
Art. no. 046006.

101826 VOLUME 7, 2019



R. Zhu et al.: Integrating Five Feature Types Extracted From Ultrasonograms to Improve the Prediction of Thyroid Papillary Carcinoma

[53] B. Thangaraju, I. Vennila, and G. Chinnasamy, ‘‘Detection of microcalci-
fication clusters using Hessian matrix and foveal segmentation method on
multiscale analysis in digital mammograms,’’ J. Digit. Imag., vol. 25, no. 5,
pp. 607–619, Oct. 2012.

[54] C.-X. Deng, G.-B. Wang, and X.-R. Yang, ‘‘Image edge detection algo-
rithm based on improved canny operator,’’ in Proc. Int. Conf. Wavelet Anal.
Pattern Recognit., Jul. 2013, pp. 168–172.

[55] Y.-K. Huo, G. Wei, Y.-D. Zhang, and L.-N. Wu, ‘‘An adaptive threshold
for the canny operator of edge detection,’’ in Proc. Int. Conf. Image Anal.
Signal Process., Apr. 2010, pp. 371–374.

[56] X.-Q. Zeng and G.-Z. Li, ‘‘Supervised redundant feature detection for
tumor classification,’’ BMC Med. Genomics, vol. 7, no. 2, p. S5, 2014.

[57] J. Elith, J. R. Leathwick, and T. Hastie, ‘‘A working guide to boosted
regression trees,’’ J. Animal Ecol., vol. 77, no. 4, pp. 802–813, Jul. 2008.

[58] D. Cossock and T. Zhang, ‘‘Statistical analysis of Bayes optimal subset
ranking,’’ IEEE Trans. Inform. Theory, vol. 54, no. 11, pp. 5140–5154,
Nov. 2008.

[59] H. Zhang, A. C. Berg, M. Maire, and J. Malik, ‘‘SVM-KNN: Discrimi-
native nearest neighbor classification for visual category recognition,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
vol. 2, Jun. 2006, pp. 2126–2136.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[61] Z.-W. Yuan and J. Zhang, ‘‘Feature extraction and image retrieval based
on AlexNet,’’ in Proc. 8th Int. Conf. Digit. Image Process. (ICDIP),
vol. 10033, 2016, Art. no. 100330E.

[62] M. Bayat, M. Fatemi, and A. Alizad, ‘‘Background removal and vessel
filtering of noncontrast ultrasound images of microvasculature,’’ IEEE
Trans. Biomed. Eng., vol. 66, no. 3, pp. 831–842, Mar. 2019.

[63] Z. Fanti, F. Torres, E. Hazan-Lasri, A. Gastelum-Strozzi, L. Ruiz-Huerta,
A. Caballero-Ruiz, and F. A. Cosío, ‘‘Improved surface-based registration
of CT and intraoperative 3D ultrasound of bones,’’ J. Healthcare Eng.,
vol. 2018, Jun. 2018, Art. no. 2365178.

[64] D.M.Uliyan, H. A. Jalab, andA.W.A.Wahab, ‘‘Copymove image forgery
detection using Hessian and center symmetric local binary pattern,’’ in
Proc. IEEE Conf. Open Syst. (ICOS), Aug. 2015, pp. 7–11.

RENXIANG ZHU is currently pursuing the degree
through the Tang Aoqing Honors Program (com-
puter science) with the College of Computer Sci-
ence and Technology, Jilin University, Changchun,
China. His research interests include computer
vision, natural language processing, and intelligent
control robot and bioinformatics.

ZHONGYU WANG is currently pursuing the
bachelor’s degree with the College of Computer
Science and Technology, Jilin University, Jilin,
China. He is a member of the Tang Aoqing Honors
Program in Science. He joined the HILab in the
first year of college.

YIFAN ZHANG is currently pursuing the bach-
elor’s degree with the College of Computer Sci-
ence and Technology, Jilin University, Jilin, China.
His research interests include NLP and image
recognition.

BINGXIN YU received the master’s degree from
the College of Clinical Medicine, Jilin Uni-
versity, Changchun, China, in 2012. In 2012,
she began to work with the Ultrasound Depart-
ment, China-Japan Union Hospital, Jilin Univer-
sity. She is currently pursuing the Ph.D. degree
with the Key Laboratory of Zoonosis, Department
of Pathogenobiology, College of Basic Medicine,
Ministry of Education of China, Jilin University,
Changchun. Her research interests include ultra-

sonic information sciences and medical image processing.

MINGRAN QI received the B.Sc. degree from
the College of Clinical Medicine, Jilin University,
Changchun, China, in 2016. She is currently pur-
suing the Ph.D. degree with the Key Laboratory of
Zoonosis, Department of Pathogenobiology, Col-
lege of Basic Medicine, Ministry of Education of
China, Jilin University, Changchun. Her research
interests include genomics and the non-coding
RNA of gastric cancer.

XIN FENG received the master’s degree from
the School of Software, Jilin University, in 2013.
In 2016, she went to the School of Computer Sci-
ence, Jilin University, to pursue the Ph.D. degree.
She is mainly devoted to the research of biomedi-
cal big data during the reading period.

CHENJUN WU is currently pursuing the bache-
lor’s degree with the College of Computer Science
and Technology, Jilin University, Jilin, China. Her
research interests include NLP and CV.

VOLUME 7, 2019 101827



R. Zhu et al.: Integrating Five Feature Types Extracted From Ultrasonograms to Improve the Prediction of Thyroid Papillary Carcinoma

YUXUAN CUI is pursuing the bachelor’s degree
with the College of Computer Science and Tech-
nology, Jilin University, Jilin, China. His research
interest includes data analysis.

LAN HUANG received the Ph.D. degree from
the College of Computer Science and Technol-
ogy, Jilin University, Changchun, China, in 2003,
where she is currently a Professor with the Col-
lege of Computer Science and Technology. Her
research interests include datamining and business
intelligence.

FAN LI is currently a Professor and a Doc-
toral Supervisor. She is currently pursuing the
Doctor of Medicine degree. Her research inter-
ests include the new detection technology of
pathogens, the occurrence and transmission mech-
anism of bacterial drug resistance, virology, bio-
logical materials, medical imaging informatics,
and other fields.

FENGFENG ZHOU received the bachelor’s and
Ph.D. degrees in computer sciences from the
University of Science and Technology of China,
in 2000 and 2005, respectively. His Lab at the Jilin
University focuses on the development of feature
selection algorithms for biomedical big data.

101828 VOLUME 7, 2019


	INTRODUCTION
	MATERIALS AND METHODS
	DATA SET
	PROBLEM MODEL AND PERFORMANCE MEASUREMENTS
	FEATURE EXTRACTION ALGORITHMS
	FEATURE SELECTION BY GRADIENT BOOSTING DECISION TREE
	IMPLEMENTATION

	RESULTS AND DISCUSSION
	EVALUATION OF FIVE FEATURE EXTRACTION ALGORITHMS ON THE LONGITUDINAL ULTRASONOGRAMS
	EVALUATION OF FIVE FEATURE EXTRACTION ALGORITHMS ON THE TRANSVERSE ULTRASONOGRAMS
	COMPARISON BETWEEN THE LONGITUDINAL AND TRANSVERSE ULTRASONOGRAMS
	CLASSIFICATION USING A DEEP LEARNING NETWORK
	COMPARISON OF A SHALLOW NEURAL NETWORK WITH THE THREE CLASSIFIERS
	TWO FEATURES TYPES ARE BETTER THAN ONE BASED ON NEURAL NETWORKS
	INTEGRATING BOTH VIEWS OF ULTRASONOGRAMS

	CONCLUSION AND FUTURE SCOPES
	REFERENCES
	Biographies
	RENXIANG ZHU
	ZHONGYU WANG
	YIFAN ZHANG
	BINGXIN YU
	MINGRAN QI
	XIN FENG
	CHENJUN WU
	YUXUAN CUI
	LAN HUANG
	FAN LI
	FENGFENG ZHOU


