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ABSTRACT In a digital communication system, forward error correction (FEC) codes and interleavers
are implemented to code the data so as to improve the error performance, which is hindered by random
and burst errors. In the context of noncooperative communication, interleaver parameter recognition,
which is the prerequisite for frame synchronization, channel coding recognition subsequently, is of vital
significance. Methods of blindly recognizing convolutional interleaver parameters have been proposed in
published literature, but the accuracy of recognition decreases significantly when bit error rate (BER) is
high. To improve the performance of the algorithm, the effect of error bits on Gauss-Jordan elimination
through pivoting (GJTEP) algorithm is analyzed in this paper. The following conclusion is drawn: error bits
on the principal diagonal of data storage matrix will exert a great impact on the recognition accuracy. Based
on the conclusion, an improved blind recognition method with denoising, the core principle of which is
reducing error bits on the principal diagonal of data storage matrix, is proposed in this paper. The simulation
experiment results demonstrate that the performance on error resilience is markedly improved.

INDEX TERMS Convolutional interleavers, blind recognition, noncooperative communication,
Gauss-Jordan elimination through pivoting (GJTEP) algorithm, denoising.

I. INTRODUCTION
In a digital communication system, interleavers are usually
implemented after FEC to resist burst errors. Interleavers
can transform burst errors into independent random errors
by exchanging the rows of the data matrix. The independent
random errors are then corrected by FEC, contributing to the
enhancement of the reliability of the communication system.
Two types of interleavers are mainly considered, block inter-
leavers and convolutional interleavers. For block interleavers,
the data exchanging is limited in a complete interleaving
block [1], while convolutional interleavers have a certain
memory [2], [3].

In recent years, many scholars have focused on the anal-
ysis of the blind recognition of convolutional interleavers
parameters in the context of noncooperative communication.
Some methods have been proposed in published literatures.
In [4], a classic algorithm based on principle component
analysis (PCA) is proposed to solve the problem of block
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interleaver coding in the noisy background, andmore detailed
explanation along with theoretical analysis are given in [5],
which has laid a firm foundation for the recognition of convo-
lutional interleaver parameters. Literature [6]–[9] have pro-
posed effective solutions for the recognition of convolutional
interleaver parameters with noise. Method in [6] includes a
4-dimension searching, but the algorithm is time-consuming
and even difficult to realize. The algorithm is simplified in [8].
Algorithms based on rank criteria [10] are proposed
in [7]–[9] to blindly estimate the convolutional interleaver
parameters. However, the algorithms work only when the
codeword length n equals the product of the interleav-
ing depth M and the interleaving width B. There are also
drawbacks on error performances. In [11], the algorithm
is extended to GF(2m) case assuming non-binary codes.
In [12], [13], algorithms based on zero-to-mean-ratio are
proposed to overcome the effect of error bits. The algorithm
in [12] realizes the blind recognition of convolutional inter-
leaver parameters when the codeword length is not equal to
the product of the interleaving depth M and the interleaving
width B. The error performance has a certain amount of
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FIGURE 1. Structure of convolutional interleaver.

improvement, but when BER continues to increase, the accu-
racy of recognition is still relatively low. In [14], [15], a blind
interleaver parameters estimationmethod enhanced by identi-
fying relatively error-less partial symbols among intercepted
streams is proposed. In [16], Swaminathan et al. propose a
algorithms for the joint recognition of the type of FEC codes
and interleaver parameters without knowing any information
about the channel encoder. The proposed algorithm classifies
the incoming data symbols among block coded, convolutional
coded, and uncoded symbols. In [17], an efficient method
is given to reconstruct the block interleaver and recover the
convolutional codewhen several noisy interleaved codewords
are given. In [18], algorithms blind estimation algorithms
to identify RS code parameters are given. On top of that,
estimate block interleaver parameters from RS coded and
block interleaved data stream are proposed. In this paper,
the mechanism error bits impacting recognition accuracy is
analyzed and we find out that error bits on the principal
diagonal of the data storage matrix play an important role
in decreasing recognition accuracy. Then the denoising algo-
rithm based on reducing error bits on the principal diagonal
of data storage matrix is proposed to improve error perfor-
mance. Simulation experiments are carried out and the results
prove the effectiveness of the algorithm proposed in this
paper.

The channel assumed in this paper is additive white Gaus-
sian noise (AWGN) channel. The amplitude of additive white
Gaussian noise follows Gaussian distribution. The spec-
trum components of AWGN follow uniform distribution in
the whole bandwidth. The power spectral density (PSD) of
AWGN is a constant in the range of entire bandwidth. These
characteristics of AWGN channel determines that the errors
are randomly distributed. Consequently, we can regard that
the errors in the received bitstream are randomly distributed,
which is one of the assumptions of the simulations. It is worth
noting that the parameter SNR in AWGN channel simulation
is converted into BER by calculating the ratio of errors and
total bits.

The remainder of this paper is organized as follows.
Section II briefly introduces the structure of convolutional
interleavers. In section III, the blind recognition algo-
rithm of convolutional interleaver parameters is summarized.
Section IV analyzes the influence of error bits on the principal

FIGURE 2. Output of CI (4,2).

diagonal of data storage matrix on the recognition accu-
racy. Based on the conclusion drawn in section IV, a novel
denoising algorithm is proposed in section V to enhance
error performance by reducing error bits on the principal
diagonal of data storage matrix. In section VI, the simula-
tion results are presented and finally the conclusion is given
in VII.

II. STRUCTURE OF CONVOLUTIONAL INTERLEAVERS
The convolutional interleaver was proposed in 1970 and
1971 by Ramsey [3] and Forney [2]. The structure is
demonstrated in Figure 1. The convolutional interleaving
encoder includes B shift registers with different length, real-
izing the delay of input data in each branch. The bitstream
before entering the interleaver is a FEC codeword sequence.
B bits are a group and entered in B branches. Then the
output of the shift registers is regarded as the output of
the convolutional interleaver. The delay of each branch is
different. The delay of the first branch is zero, the delay of
the second branch is M bits, the delay of the third branch
is 2 M bits, . . . , the delay of the i th branch is (i-1)M bits.
In this paper, the convolutional interleaver is written as CI
(B, M). The structure of convolutional interleaver is shown
in Figure 1.

Here we take CI (4,2) interleaver as an example. Assume
that the input bitstream is c1, c2, c3, . . . As can be seen
in Figure 2, the output of the interleaver is c1, 0, 0, 0,
c5, 0, 0, 0, c9, c2, 0, 0, c13, c6, 0, 0, c17, c10, c3, 0, c21, c14,
c7, 0, c25, c18, c11, c4, c29, c22, c15, c8, . . .
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FIGURE 3. Illustration of the storage matrix. The shaded boxes represent
frame synchronization symbols. (a) mBM, (m ≥ B) columns;
(b) BBM+ BM/2 columns.

III. BLIND RECOGNITION ALGORITHM
OF CONVOLUTIONAL INTERLEAVERS
PARAMETERS
The assumption n = BM is proposed in [4], n is the length of
codeword before entering the interleaver. But this assumption
is not necessarily true in practical applications. We assume
that the received bit sequence is Y :

Y = [y1 y2 y3 . . .]. (1)

The data storage matrix Rl is defined as:

Rl =


y1 y2 . . . y1
yl+1 yl+2 . . . y21
...

...
. . .

...

y(µ−1)l+1 y(µ−1)l+2 . . . yµ1

, (2)

where µ and l are the numbers of rows and columns of Rl
respectively (µ� l).
The following conclusion has been given in [8]. There

are several complete FEC coding codewords in each row
of Rl and the position of the codeword is fixed in each row
when l ≥ BBM and l is the integer multiple of BM (shown
in Figure 3). So, Gauss-Jordan elimination through pivoting
(GJETP) [19] algorithm can be applied to find dependent
columns [5], [8] in Rl. When l < BBM or l is not the integer
multiple of BM, dependent columns will not be found in Rl.
But in actual situation, the assumption n = BM is not

always true. When n 6= BM , the conclusion above will
be incorrect. The least common multiple of x and y is
represented by lcm (x, y). When the number of columns
of Rl is l ≥ λlcm(n,B) and l is an integer multiple of
lcm (n,B), there are several complete FEC codewords in
each row of Rl, the positions of which are fixed in each
row. The parameter λ is a positive integer, depending on
the structure of the interleaving parameters and the parity

matrix of the FEC coding before interleaving. So GJETP
algorithm can be applied to find dependent columns. When
l < nB or l is not an integer multiple of nB, there
are no dependent columns in Rl. Therefore, the following
steps can be taken to estimate the convolutional interleaving
parameters.

A. ESTIMATE THE LEAST COMMON MULTIPLE lcm (n, B)
of n AND B
Traverse all values of l in the preset searching range lmin
to lmax , filling the received bit sequence in Y into the stor-
age matrix Rl with l columns. For each value of l, apply
GJETP algorithm to the correspondingRl to acquire the lower
triangular matrix R′l . Then the normalized rank of R′l is calcu-
lated. According to the rank criteria in [10], the dependent
columns can be detected. During the traverse, record the
value of l as N11 for the first time finding the dependent
column and record the value of l as N12 for the second time.
Then the least common multiple lcm (n,B) can be estimated
as N̂ = lĉm(n,B) = N12 − N11.

B. ESTIMATE B, M AND SYNCHRONIZATION
POSITION d0
According to the structural characteristics of the convolu-
tional interleavers, algorithm 1 is proposed to estimate the
parameters B, M and d0.

Algorithm 1 Estimation of Parameters B, M and d0
Notations:Mmax denotes the maximum value of
interleaver width. 8 is the set of all the factors of
N̂ = lcm(n,B) (except 1). R is data storage matrix;
Assumptions: The size of 8 is 1× η. The received data
stream is assumed to have bit errors;
Input: The least common multiple N̂ = lcm (n,B). The
received bit sequence Y ;
Output: B̂, M̂ and d̂0;
1: Take all the factors of lcm (n,B) (except 1) as
candidates of B, recorded as 8 = {B1B2 . . .Bη};
2: for i ≤ η do

for M ≤ Mmax do
for d < N̂ do

Deinterleave the bit sequence Y starting
from the d th bit of the received bit sequence
with parameters Bi andM . Then fill the
deinterleaved data into the matrix R with N̂
bits per row;
Apply GJETP algorithm on R to obtain the
lower triangular matrix R′ and calculate the
normalized rank of R′, recorded as ρi,M ,d ;

end
end

end

3:
[̂
B, M̂ , d̂0

]
=

argmin(ρi,M ,d )
Bi,M , d

;
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IV. ANALYSIS ON THE IMPACT OF ERROR BITS ON THE
PRINCIPAL DIAGONAL OF DATA STORAGE MATRIX
According to the previous sections, the key steps of blind
recognition algorithm of convolutional interleaver parameters
are listed as follows:

1. The construction of data storage matrix.
2. Acquiring the lower triangular matrix by GJETP

algorithm.
3. Calculating the normalized rank of the lower tri-
angular matrix and observing whether there is rank-
deficiency [5], [8], [12].

4. Estimating the lcm (n,B).
Once the value of lcm (n,B) is obtained correctly, the param-
eters B, M , d can be recognized by the algorithm described
in section III (2) easily.

By analyzing the principle of the proposed blind recog-
nition algorithms, it can be concluded that the core of the
algorithms is finding the rank-deficiency matrices. However,
when BER is comparatively high, error bits in the data storage
matrix will impact the result of GJETP algorithm, which will
probably lead to the miscalculation of the normalized rank.
To overcome the influence of error bits, Hamming weight
of the column and probability threshold are introduced to
determine dependent columns [5]. In [12], the denoising algo-
rithm based on zero-mean-ratio is proposed. Compared with
the algorithm in [5], the error performance of the algorithm
in [12] is improved. To achieve better error performance,
the impact of error bits on the principal diagonal of data stor-
age matrix is analyzed, and then a novel denoising algorithm
is proposed.

GJETP algorithm is essentially a kind of linear transfor-
mation method. We briefly recall the GJTEP for the binary
field. A storage matrix Xwith size µ× n is given. Let L = X ,
and then we initialize two identity matrices A and B with size
µ×µ and n×n respectively.We denote zi as the ith column of
a given matrix Z . Three steps of this algorithm are as follows:

For i = 1 to i = n do
1. If the ith element of l i is equal to zero, exchange l i with

the first l i
′

(i′ > i) that has a one on its ith element.
Exchange bi and bi

′

.
2. If the ith element of l iis equal to zero, exchange the ith

row of L with its first row i′ (i′ > i) that has a one on
its ith element. Exchange the ith row of A with its i′.

3. If the ith element of l i is equal to one, xor l i to any
l i
′

(i′ > i) that has a one on itsith row and xor bi and bi
′

.
End for, output L, A and B.

Based on this algorithm, the relationship between L, A
and B is:

L = AXB (3)

L is a lower triangular matrix.
Two conjectures are raised according to the principle of

GJETP algorithm.
Conjecture 1: Error bits on the principal diagonal of data

storage matrix will cause a more serious error propagation

TABLE 1. The simulation conditions.

after GJETP and the recognition accuracy of rank deficient
matrix will be decreased.
Conjecture 2: Assume that the number of error bits on the

principal diagonal of data storage matrix is α, the total num-
ber of bits on the principal diagonal of data storage matrix
is β. When E = α/β is a constant value, the recognition
accuracy varies inversely with the number of data storage
matrix columns.

Numerical simulations are carried out to check the
conjecture 1. Firstly, the impact of error bits on the principal
diagonal on the lower triangular matrix obtained by GJETP
algorithm is analyzed. Keep the total number of error bits
fixed and vary the number of error bits on the principal
diagonal. In order to measure the level of error propagation
after GJETP algorithm, the concept of error-propagation-
index (EPI) is introduced. Assume that there are no errors in
the received bitstream Y , then Y is filled into the data storage
matrix R. A lower triangular matrix R1 can be obtained by
applying GJETP algorithm on R. When there are errors in Y ,
the lower triangular matrix is denoted as R2. Take R1 and R2
into consideration, count the number of bit-flipping cases in
the same position of thematricesR1 andR2, denoted as θ . The
total number of elements of the matrix is λ, EPI is defined as:

EPI = θ/λ (4)

EPI describes the influence that error bits exert on the lower
triangular matrix after GJETP algorithm. When EPI is high,
it is indicated that the error propagation is severe. Obviously,
the range of EPI is (0,1).

The conditions of the simulation are listed in TABLE 1.
Each EPI value is the mean value of 100 simulation results.
The trend of EPI variation is demonstrated in FIGURE 4.

From FIGURE 4 we can observe that EPI is near zero
when there are no error bits on the principal diagonal. While
EPI rockets up as soon as the number of error bits on the
principal diagonal increases. Finally, the curve of EPI flattens
out with the growth of abscissa value. So, the conclusion can
be drawn that error bits on the principal diagonal will cause
fateful error propagation when applying GJETP algorithm.
The effect of error propagation on the recognition accuracy
will be analyzed in the following part.

For the sake of exploring the relationship between the
number of error bits on the principal diagonal and recog-
nition accuracy of rank deficient matrix, another simulation
experiment is carried out. The simulation conditions are listed
in TABLE 2. Keep the total number of error bits fixed and
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FIGURE 4. Trend of EPI variation with the increasing of number of error
bits on the principal diagonal.

TABLE 2. The simulation conditions.

vary the number of error bits on the principal diagonal.
FIGURE 5 shows the recognition accuracy of rank deficient
matrix at different BER.

As can be seen in FIGURE 5, the recognition accuracy
keeps a high level when there are no error bits on the principal
diagonal. However, if the number of error bits on the principal
diagonal exceeds a certain threshold, the recognition accu-
racy will decrease dramatically. When the number of data
storage matrix columns is fixed, the threshold depends on
BER. Overall, the higher BER is, the lower the threshold is.
Take BER = 0.0213 (the green curve in FIGURE 5) as a
case. The recognition accuracy is near 0.9 when there are
no error bits on the principal diagonal, but the recognition
accuracy drops to 0.6 as soon as the number of error bits on
the principal diagonal increases to 15. While the number of
error bits on the principal diagonal makes up only 0.033 of
the total number of error bits.

According to the results of numerical simulations above,
we can conclude that error bits on the principal diagonal of
data storage matrix will cause a more serious error propaga-
tion after GJETP algorithm and the recognition accuracy of
rank deficient matrix will be decreased accordingly.

At this point, conjecture 1 has been checked. Then we
will check conjecture 2. The simulation experiment is carried
out, the conditions of the simulation are listed in TABLE 3.
According to the conclusion in [5], [8], when the number
of columns is 42, 56, 84 and 105 respectively, the lower
triangular matrices after GJETP algorithm are supposed to

FIGURE 5. The ratio of recognizing rank-deficiency matrix correctly at
different BER.

TABLE 3. The simulation conditions.

be rank deficient matrices. In FIGURE 6, X-axis represents
the ratio of the number of error bits on the principal diag-
onal to the total number of error bits (E in conjecture 2),
Y-axis represents the ratio of recognizing rank deficient
matrix correctly.

In general, when E in conjecture 2 is fixed, the larger the
number of columns is, the lower the ratio of recognizing rank
deficient matrix correctly is. That means, when the value of
columns rises in the traversal search algorithm, the recogni-
tion accuracy will descend significantly. So far, conjecture 2
has been checked.

To sum up, the following conclusion can be drawn. In order
to improve the capacity of error resistance, it is critical to
improve the accuracy of recognizing rank deficient matrix
correctly. Error bits on the principal diagonal of data storage
matrix have great impacts on the accuracy of recognizing rank
deficient matrix, so priority should be given to reducing the
number of error bits on the principal diagonal.

V. THE DENOISING ALGORITHM TO REDUCE NUMBER
OF ERROR BITS ON THE PRINCIPAL DIAGONAL OF
DATA STORAGE MATRIX
Based on the conclusion in section V, a novel denoising
algorithm is proposed in this section. The core principle of
the denoising algorithm is reducing error bits on the principal
diagonal so as to restrain error propagation after GJETP algo-
rithm, and finally the goal of improving error performance is
achieved.

Lemma 1 is proposed.
Lemma 1: Assume that there are linearly dependent

column vectors in matrix A. The correlation of linearly
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FIGURE 6. The ratio of recognizing rank-deficiency matrix correctly for
different columns.

dependent column vectors will not be altered after the random
exchange of columns or rows.

Then we will prove lemma 1. In matrix Aµ×l =

[α1α2 . . .αl], there are k (0 < k ≤ l) linearly depen-
dent column vectors. According to the definition of linearly
dependent columns, there must be a nonzero vector λ =
[λ1λ2 . . . λk ] that makes (6) come into existence:

B× λT = 0. (5)

B is the set of linearly dependent column vectors in A:

B = [αm1 αm2 . . . αmk ], (6)

where 0 < mi ≤ k , i = 1, 2, . . . , k .
We firstly prove that the correlation of linearly dependent

column vectors will not be altered after the random exchange
of rows.

The random row exchanges in matrix A are equivalent to
the random row exchanges in matrix B. So, we randomly
exchange the rows of B and denote the result as B1:

B1 = X × B. (7)

X is a nonzero invertible square matrix, representing the
random row exchanges in B.
Then left multiply both sides of (6) by matrix X :

X × B× λT = 0. (8)

By putting (8) in (9) we can get:

B1 × λT = 0, (9)

whichmeans that the column vectors inB1 are linearly depen-
dent. The proposition: the correlation of linearly dependent
column vectors will not be altered after the random exchange
of rows is proved.

And then we will prove that the correlation of linearly
dependent column vectors will not be altered after the random
exchange of columns.

The random column exchanges in matrix A are equivalent
to the random column exchanges in matrix B. So, we ran-
domly exchange the columns of B and denote the result
as B2:

B2 = B× Y . (10)

Y is a nonzero invertible square matrix, representing the
random column exchanges in B.

By using absurdity, the assumption can be made that the
correlation of linearly dependent column vectors will be
altered after the random exchange of columns, which means
there is no longer a nonzero vector λ2 that makes (12) come
into existence:

B2 × λT = 0. (11)

Equation (6) can be transformed as:

B× Y × Y−1 × λT = 0. (12)

By putting (11) in (13) we can get:

B2 × Y−1 × λT = 0. (13)

Y−1 is a nonzero square matrix and λT is a nonzero vector.
Let λ2:

λ2 = Y−1 × λT(λ2 6= 0) (14)

Therefore, there is a nonzero vector λ2 that makes (12) come
into existence, which is contradictory to the assumption in the
absurdity. Given the above, the proposition: the correlation of
linearly dependent column vectors will not be altered after the
random exchange of rows is proved.

In conclusion, lemma 1 is proved.
According to lemma 1, if there are dependent columns in

data storagematrix, the random exchanges of rows or columns
will not alter the correlation of the dependent columns,
having no effect on the recognition of rank deficient matrices.
In order to reduce error bits on the principal diagonal of
data storage matrix, the rows and columns are randomly
exchanged. As shown in FIGURE 7, the red boxes represent
error bits and the black ones represent correct bits. The
number of error bits on the principal diagonal decreases
after the random exchanges of rows and columns. However,
FIGURE 7 just shows an ideal situation. In fact, there is a
serious risk that the number of error bits will not be reduced
after the random exchanges of rows and columns, hence
the loops of exchanging rows and columns randomly are
adopted to find the case that the number of error bits on
the principal diagonal is minimized. Theoretically, the larger
the number of loops is, the stronger the error tolerance is.
However, the computational cost will be improved. Denote
the number of loops as exccnt, the recommended value of
exccnt is 20. The normalized rank obtained in each loop is
recorded, and the minimum value is selected as the temporary
normalized rank ξtemp. We call the method Exchanging-
the-Rows-and-Columns-Randomly- GJETP (ERCR-GJETP)
algorithm (algorithm 2), which is listed below.
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FIGURE 7. The rows and columns are exchanged randomly and the number of error bits on the principle diagonal decreases. The red boxes represent
error bits and the dotted line represents the principal diagonal. This figure shows an ideal result. In fact, it is hard to reduce the number of error bits on
the principal diagonal to 0 by exchanging the rows and columns randomly.

Algorithm 2 ERCR-GJETP Algorithm
Notations: ξtemp denotes the temporary normalized
rank. exccnt denotes the number of loops; 0 is the set of
the recorded normalized ranks.
Assumptions: The size of data storage matrix is µ× l
and µ ≥ 2l. The received data stream is assumed to have
bit errors;
Input: The data storage matrix Rl;
Output: ξtemp;
1: while i ≤ exccnt do

Exchange the rows of Rl randomly;
Exchange the columns of Rl randomly;
Apply GJETP algorithm on Rl to get the lower
triangular matrix;
Calculate the normalized rank of the lower triangular
matrix and record it in 0;

end
2: ξtemp = min(0);

However, the goal of reducing error bits on the principal
diagonal may not be achieved by ERCR-GJETP algorithm
when BER is high, which means that the value of temporary
normalized rank ξtemp is not estimated correctly. If ξtemp is 1,
the following steps are considered.

The first a rows of the data storage matrix Rl are deleted
and the rest part of Rl is denoted as Rdelete, where ais an
adjustable parameter and the recommended value of a is 5.
Then ERCR-GJETP algorithm is applied on matrix Rdelete to
get the lower triangular matrix. The normalized rank of the
lower triangular matrix is calculated and recorded.

Loop the steps described in the previous paragraph. Note
that the Rl in the current loop is the Rdelete in the former one.
The number of loops D is determined by (16):

D = dµ− 2le /a, (15)

where µ and l are the numbers of rows and columns of the
data storage matrix respectively. Select the minimum of the
recorded normalized ranks as the final normalized rank ξfinal .
If the value of ξfinal is still 1, the number of columns is added
by one for the next round of search.

Two reasons for the deletions of the rows are listed
below. Firstly, if there are quite a number of error bits in
the deleted rows, the error propagation after ERCR-GJETP
will be decreased. Secondly, the principal diagonal will
be updated after each deletion, which means the number
of error bits on the principal diagonal is possible to be
reduced.

With the benefit of denoising algorithm proposed in this
section, N̂ = l̂cm(n,B) can be estimated more accu-
rately for erroneous case. The improved N̂ estimation algo-
rithm is given in algorithm 3. The estimation of B, M
and synchronization position d0 follows the steps described
in section III (2).

VI. SIMULATION RESULTS
In this section, the performance of the proposed algorithm is
analyzed by simulation experiments.

FIGURE 8 shows the rank deficiency when BER is 0. The
simulation conditions are listed in TABLE 4.

As shown in FIGURE 8, for the first time and the sec-
ond time rank deficiency are detected, the corresponding
numbers of columns are 120 and 150 respectively. The dif-
ference of them is 30, which is the least common multiple
of the interleaving width B = 6 and the codeword length
n = 15.
FGIURE 9 plots the value of normalized rank when d

and M varies. ρ represents the normalized rank. For clear
display, we replace ρ with 1 − ρ. The simulation conditions
are listed in TABLE 5. According to FIGURE 10, when ρ is
the minimum (1−ρ reaches the maximum, correspondingly),
the estimation of d is 3 and M is 5, the corresponding B is 3
(B is not shown in FIGURE10). The convolutional interleaver
parameters are blindly recognized successfully
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Algorithm 3 N̂ Estimation Algorithm With Denoising
Notations: µ and l indicate the number of columns and
rows of the data storage matrix Rl , respectively. Rdelete is
the rest part of Rl after deletions of rows. a is the number
of rows deleted in each loop, D is the number of loops.
ξtemp denotes the temporary normalized rank. ξfinal
denotes the final normalized rank. 2 is the set of the
recorded normalized ranks;
Assumptions: µ ≥ 2l. l ∈ (lmin, lmax). t is the while
loop count. The received data stream is assumed to have
bit errors;
Input: The received data stream;
Output: The least common multiple of n and B: N̂ ;

1: t = 0;
2: l = lmin;
3: while t < 2 do

The received data stream is reshaped into the data
storage matrix Rl of size µ× l;
Apply ERCR-GJETP algorithm on Rl to get ξtemp;
if ξtemp = 1 then

D =
dµ− 2le /a; (16)
for i = D do

Delete the first a rows of Rl to get Rdelete;
Apply ERCR-GJTEP algorithm on Rdelete to
obtain the lower triangular matrix;
the normalized rank of the lower triangular
matrix is calculated and stored in 2;
Assign Rdelete to Rl ;

end
ξfinal = min(2);

end
if ξfinal < 1 then

N̂ = l − N̂ ;
t = t+1;

end
l = l + 1;

end
4: return N̂ ;

TABLE 4. The simulation conditions.

TABLE 5. The simulation conditions.

The error performance of algorithms proposed in [8], [12]
and this paper is compared and the result is shown
in FIGURE 10. The simulation conditions are listed
in TABLE 6.

FIGURE 8. The rank deficiency difference can be estimated correctly
when BER = 0.

FIGURE 9. Result of the searching. The maximum of 1− ρ corresponds
the estimated d and M (B).

TABLE 6. The simulation conditions.

It can be concluded from FIGURE 10 that the algorithm
proposed in this paper has advanced the capacity of error
resistance. Algorithm in [12] has better error performance
than algorithm in [8] does. However, the denoising part of
algorithm in [12] just calculates the number of ‘0’s in the
matrix. When BER is high, the denoising algorithm is inca-
pable of overcoming the effect of error propagation after
GJETP algorithm. The algorithm proposed in this paper
focuses on reducing error bits on the principal diagonal of
data storage matrix and shows better performance.

The error performance of the proposed algorithm is
improved at the expense of the sharp increase of computa-
tional complexity. TABLE 7 shows the time consumption of
the three algorithms on the same computing platform with
the simulation conditions in TABLE 6. In TABLE 7, the time
consumption of the algorithm in this paper is far more than
that of the algorithms in [8] and [11]. The large number of
loops in the proposed algorithm should account for this.
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FIGURE 10. Estimation accuracy of the 3 algorithms at different BER. The
error performance of the algorithm proposed in this paper is greatly
improved.

TABLE 7. Time consumption of three algorithms.

TABLE 8. The simulation conditions.

TABLE 9. The simulation conditions.

The parameter exccntaffects the performance of the algo-
rithm. FIGURE 110 shows the recognition accuracy when
exccntis 10, 20 and 30 respectively. The conditions of the
simulation are listed in TABLE 8.

Obviously, with the increase of exccnt, the accuracy of
estimation rises. To balance the computational cost and per-
formance, we usually choose exccnt = 20.

Different convolutional interleavers are considered.
FIGURE 12 demonstrates the recognition accuracy of the
algorithm for different convolutional interleavers. The con-
ditions of the simulation are listed in TABLE 9.

The performance plot in FIGURE 12 indicates that
the parameter of convolutional interleavers influences the
recognition accuracy. For CI (3,2), the accuracy is near 1
when BER = 0.08. However, the corresponding BER is

FIGURE 11. Accuracy of estimation with different exccnt.

FIGURE 12. Accuracy of estimation for different convolutional
interleavers.

TABLE 10. Test code set.

merely 0.03 for CI (6,2). Essentially, when the least common
multiple of parameter B and the codeword length n is large,
the number of data storage matrix columns in the searching
algorithmwill rise up in turn. According to the conjecture 2 in
section IV, the accuracy of recognition will fall down.

The performance of the proposed algorithm in estimating
the convolutional interleaver parameters from erroneous con-
volutional coded data is demonstrated in FIGURE 13. The set
of convolutional codes for simulation is listed in TABLE 10.
The simulation conditions are listed in TABLE 11.

According to the simulation results, the convolutional
interleaver parameters of convolution coded data can also
be estimated by the algorithm when BER is high. Similar to
the block code cases, the error performance is related to the
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TABLE 11. The simulation conditions.

FIGURE 13. Accuracy of estimation for convolutional coded data.

least commonmultiple of the codelength and the product of B
and M .

VII. CONCLUSION
In this paper, the blind recognition of convolutional inter-
leaver parameters in a noisy channel is investigated. The
structure of convolutional interleaver is briefly introduced.
The proposed methods in published literatures are summa-
rized, but the error performances of the methods are generally
in need of improvement. The effect of error bits on the
principal diagonal of data storage matrix is analyzed and a
denoising algorithm focusing on reducing error bits on the
principal diagonal of data storage matrix is then proposed.
The noisy channel is assumed to be AWGN channel in our
work. Simulation results show that the performance of the
algorithm proposed in this paper makes great progress in
AWGN channel. The algorithm is proved to be applicable
to both block codes and convolution codes. It is noteworthy
that the improvement of the algorithm error performance
is at expense of increasing computational complexity. The
algorithm needs to be optimized in our future work.
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