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ABSTRACT Sclera segmentation is revealed to be of noteworthy importance for ocular biometrics. The
paramount step for biometric recognition methods is the segmentation of the area of interest, i.e., the sclera
in our case. The sclera segmentation process plays a pivotal part in retaining the accuracy of the sclera-
based recognition schemes by restraining the errors. However, accurate sclera segmentation in the images
from various sensors in a real environment is quite challenging due to the saturated and/or defocused vessel
patterns and the vessel structure, which has complex nonlinear deformations due to the multilayered sclera.
With the development of deep learning algorithms, studies that are based on the sclera segmentation using
convolutional neural networks (CNNs) have achieved promising results for sclera recognition. However,
previous CNN-based methods are based on the repeated subsampling stages of convolution strides, or spatial
pooling leads to losing much of the finer image structure that significantly decreases overall performance in
tasks, such as semantic segmentation. In this paper, we present Sclera-Net, a residual encoder and decoder
network that exploits identity and non-identity mapping residual skip connections to take benefit of the high-
frequency information from the prior layers of both encoder and decoder networks to determine the accurate
sclera region as well as other ocular regions. In this way, the finer image structure that was being lost due
to repeated subsampling during convolution and pooling can be reutilized using residual skip connections
to enhance overall performance. Furthermore, the proposed Sclera-Net does not enhance the performance
on the cost of increasing depth, complexity, or the number of parameters. We performed comprehensive
experiments and obtained optimum performance not only on sclera datasets but also on the iris datasets.
In particular, we achieved an equal error rate and mean F1-score of 0.0093 and 96.2421, respectively, on the
challenging SBVPI database, which is the best-reported result to date.

INDEX TERMS Sclera recognition, sclera segmentation, convolutional neural network, semantic
segmentation, residual connections, encoder-decoder network, deep learning.

I. INTRODUCTION
In recent years, biometric authentication is being used and
incorporated in our daily lives. Different characteristics can
be used to verify and/or identify a person, such as biologi-
cal, behavioral and physical traits. Biometrics is particularly
useful because the information cannot be forgotten, changed,
stolen, or lost. Hence, it provides an undoubted and reliable
connection between the user and the device or application
that uses it [1]. Owing to the efforts of researchers, biometric
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technology is being utilized in various applications such as
person identification in national databases or at the borders.
It is playing a key role in behavioral and physiological forms,
providing an effective platform for security issues.

Biometric recognition has shown an increased interest in
new and unique human traits rather than the typical char-
acteristics of the human body such as fingerprint, iris, face,
voice, and retina, etc. [2]. Recognition systems for humans
based on blood vessel patterns have been investigated using
the palms [3], retina [4]–[6], conjunctival vasculature [7], and
sclera [8]. No biometric method is perfect or can be useful
uniquely and globally in real environmental conditions [9].
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To improve resilience to spoofing, provide large population
coverage, ensure applicability to various environmental con-
ditions, and attain high recognition accuracy, advance studies
on different biometric traits are essential [8]. Among the
several biometric methods and techniques, sclera recognition
has the advantage of secure biometrics, i.e., the sclera regions
are difficult to spoof because they are highly protected por-
tions of the eye. Each individual has a unique structure of
the blood vessels of the sclera, and it can be acquired non-
intrusively in visible light. An individual’s identification can
be performed by using their vessel patterns on the sclera
because these patterns are unique even for twins [10], these
patterns have a high amount of randomness, and the left eye
vessel patterns are different from the right eye of the same
individual; thus, making them perfect for personal identifi-
cation. In addition, the patterns remain unchanged through-
out an individual’s lifetime [11]. Humans among mammals
have the uniqueness of extensive exposed sclera, making
it feasible for the imaging of the surrounding conjunctival
vasculature [12]. This is another important benefit of utilizing
the sclera for human biometric authentication. Additionally,
the sclera features can be easily fused with iris biometrics.
Iris recognition is considered among the most accurate and
reliable approaches for personal recognition. The iris images
collected in near-infrared reveal complex and rich patterns.
However, if the images are acquired in visible light, the iris
recognition accuracy is adversely affected. Hence, the fusion
of the sclera and iris features makes them more robust for
biometrics [13].

Typical sclera recognition systems depend on sclera seg-
mentation, enhancement of the blood vessel, feature extrac-
tion, and matching processes. Since sclera segmentation
is the initial and basic step in sclera recognition systems,
an incorrect segmentation or error will flow through the
complete system and affect the overall accuracy. Moreover,
incorrect sclera segmentation can reduce the region of the
detected blood vessels or introduce new patterns, such as
eyelids or eyelashes, which impair the effectiveness of the
system. Various-sensor environments [14] such as visible
light or near infrared can be an additional challenge for
segmentation of ocular regions. Furthermore, a variety of
illumination conditions can alter the view of the texture pat-
terns by highlighting and attenuating numerous grey tones.
Additionally, a verification system should not consume large
computational resources to achieve real-time performance in
the representation, extraction, and comparison of the images
of texture.

The development of intelligent and expert systems is
very helpful for humans in various fields such as recogni-
tion, detection, classification, and other challenging appli-
cation. In automated systems, human level intelligence is
imitated by artificial intelligent systems, and for these kinds
of applications, deep learning is very famous. Although the
recent developments in deep learning approaches shown good
results in recognition tasks [15], [16], there exists notice-
able limitations as well as room for improvements, when

it comes to tasks like semantic segmentation, in our case
sclera segmentation. In order to overcome the challenges
related to sclera segmentation and to encourage the creation
of new intelligent sclera segmentation system, some competi-
tions were performed [17]–[20]. In these competitions state-
of-the-art, results were obtained using deep learning-based
methods. SegNet [21] and RefineNet [22] were the winners
of the Sclera Segmentation and Eye Recognition Bench-
marking Competition (SSERBC) 2017 and Sclera Segmenta-
tion Benchmarking Competition (SSBC 2018), respectively.
They showed remarkable results for sclera segmentation
on provided Multi-Angle Sclera Dataset (MASD) database.
However, these deep learning-based methods have clear lim-
itations of information lost due to continuous down-sampling
of images and/or increasing the computational complexity,
depth and cost in terms of parameters that are required to be
addressed. SegNet is an encoder-decoder network that was
inspired from VGG-16 [15] network having drawbacks of
vanishing gradient and overfitting problems, thereby results
in loss of finer image structure. RefineNet has the disadvan-
tage of very deep and complex network that results increase
in cost and trainable parameters.

In this study, we emphasize that information lost at mul-
tiple stages during continuous down-sampling of the image
is important for segmentation tasks. Furthermore, we ensure
the efficient reuse of the image features in a manner that it
does not increase the computational complexity and cost in
terms of parameters. For this purpose, we propose, a deep
learning-based sclera network (Sclera-Net) to detect the true
boundary of the sclera and sharply acquires the class pixels
to ensure correct sclera segmentation. Sclera-Net is based on
exploiting residual connections for better flow of informa-
tion gradient using identity mapping (IM) and non-identity
mapping (NIM) residual building blocks (RBBs) [16] from
the prior layers in both encoder and decoder networks to
determine the accurate sclera region. In Sclera-Net, important
information that may be lost during multiple stages of convo-
lution strides or spatial pooling is reutilized from the prior
layers through RBBs in a feed-forward fashion. It is useful
for strengthening the feature propagation in the subsequent
layers.

Sclera-Net is novel in the following four ways:
– It is an end-to-end semantic segmentation network for

sclera and other ocular regions.
– It uses residual connectivity with IM and NIM for both

encoder and decoder.
– It is a standalone network because the pre-detection of

pupil, glint, iris, eyelid, and eyelashes is not required.
– Our Sclera-Net trained models and algorithms are pub-

licly available for fair comparisons [23].
The proposed Sclera-Net achieves new state-of-the-art

performance on three open databases of sclera: sclera
blood vessels, periocular and iris (SBVPI) [24], [25];
mobile iris challenge evaluation (MICHE-I) [26]; and
UBIRIS.v2 datasets [27]. Moreover, we evaluated the per-
formance of the proposed segmentation network for another

VOLUME 7, 2019 98209



R. A. Naqvi, W.-K. Loh: Sclera-Net: Accurate Sclera Segmentation in Various Sensor Images

very important ocular region, i.e., the iris, and performed
experiments with famous iris datasets: noisy iris challenge
evaluation (NICE-II) [28] and Chinese Academy of Sciences
(CASIA) v4.0 [29] in this study. Sclera-Net showed optimum
performance on not only the different sclera datasets but also
the iris datasets. In particular, we achieved mean F1-score
of 96.24 and 93.49 for challenging SBVPI and MICHE-I
(Galaxy S4) datasets, respectively.

The remainder of this paper is organized as follows.
In Section 2, we discuss in detail the previous studies related
to sclera segmentation. In Section 3, our proposedmethod and
its working methodology are explained. The experimental
setup and results are presented in Section 4. Result analysis
and related discussions are mentioned in Section 5. Conclu-
sion and discussion on some ideas for the future work are
presented in Section 6.

II. LITERATURE SURVEY ON SCLERA SEGMENTATION
Previous studies on sclera segmentation can be broadly cate-
gorized into two main classes i.e. handcrafted local features
and deep learning features.

Sclera segmentation methods based on handcrafted local
features can be further classified into Manual methods,
Pixel thresholding methods, Shape contour methods. Manual
methods [7], [30] for sclera segmentation were expensive
approach for real time applications due to high processing
time and mandatory human supervision. Pixel thresholding
based methods [31]–[36] are good for certain situations in
which illumination changes are not severe. However, the per-
formance of sclera segmentation based on pixel thresholding
is unsatisfactory for challenging cases owing to distortion and
noise present in the sclera images. Shape contour based meth-
ods [37]–[42] are useful in certain cases; however, several
challenges remain for sclera segmentation, such as occluded
and noisy images need to be discarded manually. The sclera
boundary can affect the convergence of the sclera shape
contours. Moreover, incorrect sclera segmentation can reduce
the region of vessels on the sclera or introduce patterns of
eyelids and eyelashes, thereby compromising the effective-
ness of the system. However, Convolutional neural network
(CNN) using deep learning has been flourishing very fast
and has proved as an influential method in tasks related to
image processing. CNN outperformed previous conventional
methods in a wide range of applications such medical and
satellite image analysis [43], [44]. Deep learning features-
based methods [45]–[48] have shown the advantages that
handcrafted local features-based methods cannot achieve.
Thus, in this study, we have focused on the deep learning
features-based methods.

The deep learning feature based methods for sclera
segmentation are further subdivided into two categories:
image patch-based deep learning and full image-based deep
learning methods. First, we discuss the former approach.
Radu et al. [45] proposed a two-stage multi-classifier sys-
tem architecture trained on randomly collected 60 patches
(100 × 100 pixels) each of the sclera and non-sclera regions

from theUBIRIS.v1 database. In the first stage, a normal clas-
sifier was used, while in the second stage, a neural network
based classifier worked on the probability space produced by
the first classifier.

Next, we discuss the sclera segmentation based on full
image-based deep learning methods. Rot et al. [46] pro-
posed a multiclass segmentation approach for the eye
region segmentation based on the encoder-decoder-based
neural network model called semantic segmentation network
(SegNet) [21]. SegNet includes encoder-decoder pairs, which
are used to create feature maps for pixel wise classifica-
tion of input images with different resolutions. They eval-
uated the results based on the multi-angle sclera database
(MASD) [19]. Lucio et al. [47] proposed two approaches
for sclera segmentation, i.e., fully convolutional network
(FCN) [46] and generative adversarial network (GAN) [50].
The employed FCN without the fully connected layers,
i.e., VGG-16 without the last three layers was proposed by
Teichmann et al. [48].
To promote the development of new segmentation methods

for sclera, some competitions were also performed [17]–[20].
In [17], Das et al. proposed a benchmark for sclera segmen-
tation where four teams presented their approaches for the
defined task. The best results were obtained image patch-
based method already explained in [45]. Later, Das et al.
presented a new benchmark [18], which deals with sclera
segmentation as well as recognition. The best segmentation
results were achieved based on Fuzzy C Means that con-
siders spatial information and Gaussian kernel function is
used for calculating the distance between the data points and
the center of the cluster. They achieved segmentation results
of 85.21% and 80.21% for precision and recall, respectively.
Das et al. [19] presented a new sclera segmentation and eye
recognition benchmark where seven teams proposed their
algorithms for the assigned task. The winner of that competi-
tion attained precision and recall rates of 95.34% and 96.65%,
respectively. They acquired results using SegNet method [21]
in their proposed approach. In a recent competition [20],
benchmarking for sclera segmentation was presented by
Das et al. All submitted algorithms were evaluated based
on a cross-sensor scenario, i.e., images were collected using
the DSLR and mobile phone cameras. Precision and recall
rates of 81.35 and 75.82%, respectively, were attained [20].
These results were obtained using high-resolution semantic
segmentation architecture based on the multipath refinement
approach called RefineNet [22].

In Table 1, we have prepared a summary of the comparison
of the proposed method with previous methods on sclera
segmentation along with their strengths and weaknesses.

III. PROPOSED METHOD FOR SCLERA SEGMENTATION
A. OVERVIEW OF SCLERA SEGMENTATION USING
SCLERA-NET
Sclera-Net is applied to the full input eye image that has
not undergone any preprocessing overhead. Sclera-Net is a

98210 VOLUME 7, 2019



R. A. Naqvi, W.-K. Loh: Sclera-Net: Accurate Sclera Segmentation in Various Sensor Images

TABLE 1. Comparison of sclera segmentation based on deep learning features.

FIGURE 1. Overview of the proposed method for sclera segmentation.

convolutional encoder and decoder network based on the
residual connections in the encoder and decoder. The distinct
Sclera-Net encoder and decoder are shown in Figure 1 to
elaborate the overall process. The encoder compresses the
significant or semantic contents of the input image, which
can be represented as tiny features. The encoder outputs
the descriptive representation of the image, which is then
given as input to the decoder. The final segmented output is
regenerated by the decoder into the original dimensions of the
input image. In the Sclera-Net decoder, the process of upsam-
pling is performed by max-pooling indices and estimation of
sclera and non-sclera classes is performed using the softmax
loss function in the softmax layer. The pixel classification
layer is followed by the softmax layer, which is respon-
sible to predict pixel labels in the given input eye image.
Cross-entropy loss function is used in the pixel classification
layer.

Sclera-Net is based on SegNet architecture and takes the
residual connections concept from the ResNet model, which
ensures the accuracy and reliability of CNNs. The SegNet
architecture is comprised of two main blocks: encoder and
decoder [21]. The encoder compresses significant or seman-
tic contents of the input image and outputs the descriptive
representation of the image, which is then given as input
to the decoder. The final segmented output is generated by
the decoder. The SegNet encoder consists of 13 convolu-
tional layers and 5 pooling layers similar to the VGG-16
network [15], except for the fully connected layers. Hence,
SegNet is inspired by the VGG-16 network. On the other
hand, the decoder network is the inverted VGG-16 network,
also without the fully connected layers. It carries the softmax
layer, which generates probability distributions per pixel,
which is further classified into target classes. In the training
process, the encoder acquires low-resolution semantic feature
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FIGURE 2. Deep learning based sclera segmentation system with residual encoder and decoder networks.

maps, while the decoder learns filters that can create high-
resolution masks for segmentation based on the feature maps
generated by the encoder.

Furthermore, Sclera-Net inherits the concept of residual
connections from ResNet, which has higher accuracy as com-
pared to VGG networks [15], [16]. Additionally, the most
important factor for choosing ResNet residual concept is
that typical classification networks dramatically downsample
the image size to represent the image in the form of fea-
tures. During this process, high-frequency contextual infor-
mation is crushed and degraded, known as the vanishing
gradient problem [51]. This problem was solved by ResNet
through mapping with shortcut connections such as residual
connections.

As shown in Figure 2, Sclera-Net is the combination of a
residual encoder and decoder based on residual skip connec-
tions. The residual skip connections bring a major benefit as
they reinforce features by using the high-frequency compo-
nents from prior layers that are continuously lost as a result
of the convolution and up-sampling operations of the encoder
and decoder, respectively. The residual skip connections are
based on the residual building blocks (RBB) [51], which are
categorized into IM and NIM residual connections.

The identity mapping RBB is used if the number of
channels in the input features and residual function are the
same. It can be explained through Equation (1) and shown
in Figure 3 (a).

Fi+1 = Fi + R(Fi,Wi), (1)

where Fi represents the input features, Fi+1 the output fea-
tures, i is the sequence number of a residual block, Wi is the
weight of the corresponding residual block, and R represents
the residual function. Fi is the identity feature provided for
the element-wise addition to generate the output feature Fi+1
after the residual operation [51].

FIGURE 3. Residual block (a) identity mapping (b) non-identity mapping.

Similarly, the non-identity mapping RBB is used when the
number of channels in the input feature Fi does not match
the number of channels after the residual function R, as we
perform the NIM of 1 × 1 convolutions for the element-wise
addition [51]. This is represented in Equation (2) and shown
in Figure 3 (b).

Xk+1 = T (Ek )+ S(Ek ,Wk ), (2)
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where Ek represents the input features,Xk+1 the output fea-
tures, k the sequence number of a residual block, Wk the
weight of the corresponding residual block, S the residual
function, and convolution (Conv 1× 1) combined with BN is
represented by T (Ek ) [52].
In our proposed Sclera-Net, we used both IM and NIM as

shown in Figure 2. Hence, spatial information that was lost
by the continuous convolution process is retained through the
addition of an RBB.

B. SCLERA-NET ENCODER AND DECODER
As explained in previous section, RBBs are more useful than
typical series networks because they provide high accuracy
by enhancing features.

In the Sclera-Net encoder, 5 Groups comprising of 13 con-
volution layers of 3× 3 filters are used. The first two Groups
contain two convolution layers each, while the remaining
three Groups contain three convolution layers each. There
are seven residual connections in the Sclera-Net encoder, out
of which three are NIM and four are IM residual connec-
tions. The first Group does not have any residual connections
because high-frequency loss is not very significant in the
initial Groups. The type of residual connection is based on the
transition size between the layers and requirement of match-
ing the channel size of feature map for element-wise addition.
If the transition size is same, then IM residual connections are
used; however, different size transitions are compensated by
NIM residual connections. Hence, Group 2 to Group 4 have
three NIM residual connections and Group 3 to Group 5 have
four IM residual connections.

In Figure 2, the convolution, batch normalization, recti-
fied linear unit, max-pooling, and unpooling (upsampling)
layers are represented as Conv, BN, ReLU, Max-pool, and
Unpool, respectively. The NIM residual connection is based
on the convolution layer of size 1 × 1 and BN layer. This
size of convolution layer is selected to match channel size
for element-wise addition. After summation in each block,
the ReLU layers are used for post activation. The pooling
indices information of the pooling layers is provided to the
decoder part to preserve the indices and input image size. The
unpooling layer regenerates the input image in the decoder
part based on the indices and size related information.

In Table 10 of the appendix section, we have listed the
layer Groups and provided the details of each layer used in the
Sclera-Net encoder. The size of the input image depends on
the kind of database used for the experiment. Here, we have
selected input images of size 224 × 224 for illustration
purposes.

Next, we explain our proposed Sclera-Net structure for the
encoder shown in Figure 2 and elaborated in Table 10 of the
appendix section. It comprises of 13 convolutional layers and
5 pooling layers. In the first convolutional layer, 64 filters are
used with a feature map size of 224 × 224 × 64 and a kernel
size (k) of 3 × 3. Here, in the feature map, 224 × 224 is the
width (w) and height (h) of the output. They are calculated on

the basis of following equation:

outputh or w =
(inputh or w − kh or w + 2× p)

s
+ 1, (3)

For example, in Table 10, the input width (inputw), kernel
width (kw), padding (p), and stride (s) are 224, 3, 1, and 1,
respectively. Therefore, the output width value can be
achieved by substituting these values in the above-mentioned
equation, i.e., 224 = ((224− 3+ 1× 2)/1+ 1).

Following each convolutional layer, batch normalization
is performed based on the mean and standard deviation of
the data. This reduces the problem of internal covariate shift.
Notably, normalization has to be performed independently
for each dimension, over ‘mini-batches’, and not in one
thread for all dimensions, hence the name ‘batch’ normal-
ization. A rectified linear unit (ReLU) layer is also applied
as an activation function following each batch normalization.
The function for the ReLU layer is explained in [53], [54].
ReLU is explained through the following simple equation:

v = max(0, u), (4)

where u represents the input values and v represents the
output values. This function reduces the problem of vanishing
gradient [55]. This problem may occur when sigmoid and
hyperbolic tangent functions are used in back-propagation
for training. ReLU has a faster processing speed than a non-
linear activation function. Initially, the feature map is passed
through the ReLU layer. Subsequently, the obtained feature
map, which is passed through the second convolutional layer,
is once again passed through the ReLU layer before it passes
through the max pooling layer, as shown in Table 10. Here,
the second convolutional layer maintains the feature size of
the first convolutional layer, i.e., 224× 224× 64; whereas the
size of filters, paddings, and strides are 3, 1, and 1, respec-
tively. For maintaining clarity and simplicity in Table 10,
BN layer is included in Conv layer.

The Sclera-Net decoder architecture is the mirror image of
the encoder as shown in the Table 11 of the appendix section.
Features are upsampled by the Sclera-Net decoder by utiliz-
ing the pooling indices obtained from the Sclera-Net encoder.
For extracting same size images from the encoded features,
the images in the decoder are processed through the same
number of convolution layers. The features in the decoder
are first unpooled, and subsequently the image undergoes
the convolution operations. It is in contrast to the encoder,
in which the pooling operation is performed after the convolu-
tion process. There are two filters in the last convolution layer,
which indicate the channel number of the output or the num-
ber of classes. In the Sclera-Net decoder part, seven RBBs are
used in the inverse to the encoder for upsampling the image.
Here, we deal with two classes: sclera and non-sclera, and
two outputs or masks can be obtained: sclera and non-sclera
pixels. At the end, Sclera-Net includes the classification layer,
which classifies each pixel as sclera or non-sclera based on
the softmax loss-function.
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TABLE 2. Key differences of proposed (Sclera-Net) architecture from SegNet [21] architecture.

Residual decoder includes the same number of connections
and size of feature maps as that in the residual encoder. The
decoder presents an image of the same size as used at the input
of the encoder, i.e., 224× 224. The size of image varies based
on the kind of database used for segmentation. In the final
output layer, a mask is obtained, which comprises of different
values of pixels based on the classes, i.e., sclera or non-sclera
in this case. Details on each layer while example images of
the best, medium, and worst cases traveled through Sclera-
Net encoder and decoder is shown in Figures 19, 20, and 21 of
the appendix section, respectively.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA AND SETUP
In this study, we used sclera blood vessels, periocular and iris
(SBVPI) database, collected for research related to sclera and
periocular recognition [24]. This dataset includes 2399 high
quality images collected from 55 different individuals. For
each individual, 32 images were collected while he/she
looked in four different directions: straight, left, right, and up.
Most of the previous databases deal with the segmentation of
only the iris or pupil in different scenarios. However, these
databases cannot be used for the sclera and other ocular region
segmentations. MASD version 1 is used for sclera segmenta-
tion and eye recognition in the visible spectrum [19]. How-
ever, we did not use this database because the information
of ground truth was not provided. Without this information,
we could not train or test our method. Therefore, we used the
SBVPI database [25].

In our experiment, we performed two-fold cross validation
for training and testing our proposed model. For this, we ran-
domly divided the database into two subsets. From the images
of 55 people, the images of 30 people were used for training
by applying augmentation of images described in part B of
section 4, and the images of the remaining 25 people were
used for the testing purpose without applying augmentation.
Data augmentation of the training data is performed to avoid
overfitting issues. For the training and testing of Sclera-Net,
we used a desktop computer with an IntelrCoreTM (Santa
Clara, CA, USA) i7-7700 CPU@3.60 GHz, 32 GB memory,
and an NVIDIA GeForce GTX 1080 Ti (3584 CUDA cores
and 11 GB memory) graphics card. MATLAB 2018b [56]
was used for performing the experiments. We performed
the training of Sclera-Net by using experimental databases.

Therefore, no fine-tuned or pre-trained networks such as
ResNet, DenseNet, Inception Net, or GoogleNet were used.

B. DATA AUGMENTATION
Augmentation of training data is performed to increase
the number of training samples to achieve better perfor-
mance. Specifically for segmentation tasks, accuracy of the
task depends on the quantity of training images and their
corresponding annotated (ground truth) images. Hence, data
augmentation is an artificial way to increase the quantity
of training images. Models perform well with more data
obtained through data augmentation [57]. In our case, we arti-
ficially produced 14 images from each of the 900 training
images. Hence, 12,600 images were produced using dif-
ferent augmentation techniques such as image translation
(left, right, up, and down), flipping (horizontal), cropping,
resizing, etc. Other machine learning and deep learning
tasks also used these types of techniques to achieve better
accuracy [58].

C. TRAINING OF SCLERA-NET
In this research, the training of Sclera-Net was performed
without using pre-trained networks for the segmentation of
the ocular eye region, i.e., the sclera, using our designed
Sclera-Netmodel. For this, original imageswere usedwithout
any enhancement or preprocessing, and a stochastic gradient
descent (SGD) optimization method was used [59]. This
optimization method minimizes the difference between the
expected and actual outputs. In SGD, iteration is defined as
the number of training samples divided by the mini-batch
size, and the number of epochs is set to one. In our experi-
ment, we performed the training for a predefined number of
epochs, i.e., 50, and a mini-batch size of 20. In other words,
with 50 epochs, the model was exposed to the entire dataset
50 times in the training process. Multiple epochs allow a
learning algorithm to run until it converges or its error is suf-
ficiently minimized; hence, we selected 50 epochs. However,
the batch size can vary based on the size of the database.
As shown in Equations (5) and (6), one epoch is countedwhen
training is performed once with the entire dataset.

xj+1 := p.xj − d .η.wj − η.
〈∂Rj(w)
∂w
|wj

〉
Dj, (5)

wj+1 := wj + xj+1, (6)
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FIGURE 4. The curves for the training accuracy (figures on the left) and
training loss (figures on the right) based on the number of epochs for the
2-fold cross validation; (a) First fold (b) Second fold.

Here, wj is the learnt weight at the jth iteration, xj is the
momentum variable, p is the momentum, d is the decay
of weight, and η is the learning rate.

〈
∂Rj(w)
∂w |wj

〉
Dj is the

average over the jth batch, Dj of the derivative of the object
with respective to w evaluated at wj. In view of the optimal
parameters of training using SGD, p, d , and η of Equations 4
and 5 were set as 0.9, 0.0005, and 0.01, respectively.

Training loss is calculated based on all the image pix-
els present in the mini-batch using cross-entropy loss
function [21]. The relationship between training loss and
training accuracy for two-fold cross validation, i.e., training
accuracy and loss curves for the first and second folds are
shown in Figures 4 (a) and (b), respectively. The figures on
the left represent the training accuracy curves, while the
figures on the right represent the training loss curves. The
x-axis represents the number of epochs, while the y-axis rep-
resents the training accuracy or training loss of each batch for
50 epochs. The increase or decrease in the loss factor depends
on the batch size (20) and learning rate (0.01). Loss decreases
gradually when the learning rate is lowered, thereby showing
the linearity. However, if the learning rate is high, the loss
value decreases sharply. An optimal CNN model cannot be
obtained if the learning rate is high because this may lead to
the problem of a high loss value, thereby, resulting in a poorly
trained model. In this experiment, we used optimal models
with loss curves close to 0 (0 %) and training accuracies close
to 1 (100 %) as shown in Figure 4.

The ocular regions, such as sclera, pupil, iris, etc., in the eye
images databases are usually very small compared to the other
regions; hence, the quantity of non-sclera, non-pupil, or non-
iris pixels are much larger than that of the sclera, pupil, or iris
pixels. Therefore, there can be a big difference of frequencies

in each class while training over a dataset. The frequency
difference between each class indicates that the non-ocular
regions dominate during training; hence, there should be a
balance between each class. For avoiding the under represen-
tation of ocular classes during training, frequency balancing
is applied. Here, we use median frequency balancing, where
weight is allocated to the cross-entropy loss [60]. Weights are
determined from the training data sample using the following
equations:

WC1 =
Medfrequency

freqc1
, (7)

WC2 =
Medfrequency

freqc2
, (8)

where WC1 and WC2 are the weights of the sclera and non-
sclera classes, respectively, freqc1 represents the number of
sclera pixels in the image, freqc2 represents the number of
non-sclera pixels in the image, andMedfrequency is the median
of freqc1 and freqc2. Based on frequency balancing, a weight
value of less than 1 is assigned to a major class, whereas a
minor class is assigned a value greater than 1.

D. TESTING OF SCLERA-NET FOR SCLERA SEGMENTATION
To acquire the results of segmentation from the proposed
Sclera-Net, an image is given as an input to the trained
model, and there are no extra steps, such as preprocessing,
involved during the training and testing of the Sclera-Net
model. The given input image passes through the proposed
Sclera-Net encoder and decoder, and the output is a binary
segmentation mask. This segmentation mask is further used
by the trainedmodel to evaluate and generate the sclera region
segmentation results. The segmentation performance of the
proposed Sclera-Net is evaluated using different metrics such
as average segmentation error (Erroravg), intersection over
union (IoU ), and precision, recall, and F1-score (PRF).
First, we discuss the average segmentation error, which is
being used by many researchers to evaluate the segmentation
performance. Pixel classification accuracy is calculated by
the exclusive-OR (XOR) logic between the output image
(Oj(m, n)) from the trained model and its ground truth mask
(Mj(m, n)), which is given as

Pj =
1
mxn

∑
m,n

Oj(m, n)⊕Mj(m, n), (9)

where m and n are the width and height, respectively, of the
image, and Pj is the pixel classification accuracy of each
image. The overall error in segmentation is represented as
Erroravg and calculated by averaging the classification error
(Pj) over all images in the database as shown in Equation 10.

Erroravg =
1
T

∑
j

Pj, (10)

where T represents the total number of tested images. The
value of Erroravg always lies between 0 and 1. The error is
minimum if the value of Erroravg is close to 0, whereas the
error will be the largest if value of Erroravg is close to 1.
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FIGURE 5. Sample images of the correct results of segmentation using
Sclera-Net on the SBVPI database [25]. (a) Original image, (b) annotated
image, and (c) segmentation result, where the white regions represent
the true positive pixels, whereas the green and red regions represent the
false positive and false negative pixels, respectively.

TABLE 3. Comparison of Sclera-Net and previous methods based on the
SBVPI database [25].

1) RESULTS OBTAINED FOR SCLERA SEGMENTATION FROM
THE PROPOSED SCLERA-NET METHOD
Figures 5 and 6 show the correct and incorrect results of sclera
segmentation using Sclera-Net on the SBVPI database [25].
For pictorial representation of the results, two types of errors,
false positive and false negative are defined that are repre-
sented in green and red color, respectively. A false positive
error occurs when a non-sclera pixel is misclassified as a
sclera pixel by the network, whereas a false negative error
occurs when a sclera pixel is misclassified as a non-sclera
pixel by the network. Whereas, the sclera pixels that are
correctly classified as sclera pixels are known as true positive
that are represented in white.

2) COMPARISON OF THE PROPOSED SCLERA-NET METHOD
WITH PREVIOUS METHODS
In the next experiment, we compared our proposed Sclera-
Net model with the previous state-of-the-art models,

FIGURE 6. Sample images of the incorrect results of segmentation using
Sclera-Net on the SBVPI database [25]. (a) Original image, (b) annotated
image, and (c) segmentation result, where the white regions represent
the true positive pixels, whereas the green and red regions represent the
false positive and false negative pixels, respectively.

TABLE 4. Comparison of the Sclera-Net and previous methods using IoU
based on the SBVPI database [25].

i.e., SegNet [21] and RefineNet [22]. The overall error in
segmentation, i.e., Erroravg is the metrics used to evaluate
the performance of Sclera-Net with previous methods. For
comparison purposes, we have extracted the results on the
SBVPI dataset [25]. We performed a 2-fold cross valida-
tion for the training and testing of our proposed model
on the 2399 images of the SBVPI database collected from
55 individuals. For this purpose, we randomly divided the
database into two subsets i.e., the 1st subset and the 2nd

subset. In fold 1, the augmented images of the 1st subset were
used for training and the images of 2nd subset were used for
testing with no augmentation applied. Similarly, in fold 2,
the augmented images of the 2nd subset were used for training
and the images of 1st subset with no augmentation were used
for testing. Table 3 shows the average segmentation error
Erroravg for two-folds cross validation and their average.

To quantify the overlap in percentage terms between
the ground truth image and the predicted output, some of
the previous studies have used the IoU metric [61], [62],
also referred to as the Jaccard index. The IoU measures
the pixels shared between the predicted output and the
ground truth image divided by the total number of pixels
present across both. The IoU can be determined using the
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TABLE 5. Comparison of the Sclera-Net and previous methods based on the SBVPI database [25].

TABLE 6. Comparison of Sclera-Net and previous methods based on the MICHE-I database [26].

TABLE 7. Comparison of Sclera-Net and previous methods using the
UBIRIS.v2 database [27] based on the PRF -protocol. Greater mean and
smaller standard deviation values indicate better performance.

TABLE 8. Comparison of Sclera-Net and previous methods for iris
segmentation using the NICE-II database.

following equation:

IoU =
TP

TP+ FP+ FN
, (11)

As we examine the equation, we can see that the IoU is the
ratio of the true positive value divided by the sum of true pos-
itive, false positive and false negative values. Table 4 shows
the results of the IoU for two-folds cross validation and their
average.

TABLE 9. Comparison of Sclera-Net and previous methods for iris
segmentation using the CASIA v4.0 distance database.

For sclera segmentation, some of the previous researches
used other metrics based on PRF , i.e., precision or positive
predictive value (PPV ), recall or true positive rate (TPR),
and F1-score. For evaluating sclera segmentation, this met-
rics is useful to compare the results obtained using different
methods [63]. Strength and weakness of the method can be
measured using Equations (12) to (14), where TP, TN , FP,
and FN are the numbers of true positive, true negative, false
positive, and false negative, respectively.

PPV =
TP

TP+ FP
, (12)

TPR =
TP

TP+ FN
, (13)

F1-score =
2× PPV × TPR
PPV + TPR

, (14)

Table 5 and Figure 16 shows the PRF results calculated
based on above defined equations. The lowest and highest
values of PPV , TPR, and F1-scorewere 0 and 100 %, respec-
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FIGURE 7. Sample images of the correct segmentation results using
Sclera-Net on the MICHE-I (MICHE-I Galaxy S4, MICHE-I Galaxy Tab2,
MICHE-I Iphone 5) subdatabases [26] while viewing in different
directions. (a) Original image, (b) annotated image, and (c) segmentation
result, where the white regions represent the true positive pixels,
whereas the green and red regions represent the false positive and false
negative pixels, respectively.

tively. Results show that our proposed method outperformed
other methods in all the defined metrics.

3) SCLERA SEGMENTATION ACCURACIES BY SCLERA-NET
BASED ON OPEN DATABASES
For evaluating Sclera-Net in various sensors environment,
this research includes experiments with additional open
databases: MICHE-I [26] and UBIRIS.v2 [27]. Sclera-Net is

FIGURE 8. Sample images of the correct sclera segmentation results
using Sclera-Net on the UBIRIS.v2 database [27]. (a) Original image, (b)
annotated image, and (c) segmentation result, where the white regions
represent the true positive pixels, whereas the green and red regions
represent the false positive and false negative pixels, respectively.

FIGURE 9. Sample images of the iris segmentation results using the
proposed Sclera-Net on the NICE-II database. (a) Original image, (b)
annotated image, and (c) segmentation result, where the black regions
represent the true positive pixels, whereas the green and red regions
represent the false positive and false negative pixels, respectively.

separately trained without fine-tuning for the open databases.
Additional details related to hardware and capturing strate-
gies used in the databases can be found in their respec-
tive references. The ground truth images for MICHE-I
and UBIRIS.v2 were obtained from [47]. Two databases
comprised of 1,300 manually annotated sclera images,
being 1,000 sclera images from the MICHE-I database and
300 sclera images from the UBIRIS.v2.
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FIGURE 10. Sample images of the iris segmentation results using the
proposed Sclera-Net on the CASIA v4.0 distance database. (a) Original
image, (b) annotated image, and (c) segmentation result, where the white
regions represent the true positive pixels, whereas the green and red
regions represent the false positive and false negative pixels, respectively.

FIGURE 11. Sample images with incorrect segmentation results using
Sclera-Net on the MICHE-I sub-databases [26] while looking in different
directions. (a) Original image, (b) annotated image, and (c) segmentation
result, where the white regions represent the true positive pixels, and the
green and red regions represent the false positive and false negative
pixels, respectively.

The examples of the correct segmentation results
of Sclera-Net on MICHE-I and UBIRIS.v2 are shown
in Figures 7 and 8, respectively. Here, the green color pixels

FIGURE 12. Sample images of incorrect segmentation results using
Sclera-Net on the UBIRIS.v2 database [27] while looking in different
directions. (a) Original image, (b) annotated image, and (c) segmentation
result, where the white regions represent the true positive pixels,
whereas the green and red regions represent the false positive and false
negative pixels, respectively.

FIGURE 13. Comparison of segmentation results obtained by Sclera-Net
(left) and SegNet [21] (right) on images with (a) sclera thin boundary (b)
sclera occluded with eye lashes.

represent the false positive cases, red color pixels represent
the false negative cases, and white color pixels represent the
true positive cases. We obtained some incorrect results of
sclera segmentation with our proposed Sclera-Net method.
Figures 11 and 12 show the incorrect results for sclera
segmentation on MICHE-I and UBIRIS.v2, respectively. The
incorrect results are mainly due to ambient light, reflections
from skin, or other kinds of noises whose pixels are similar to
those of the sclera. Some errors are due to very light-colored
pixel values similar to the non-sclera pixel values.
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FIGURE 14. (SegNet [21]) the first 64 channel features from Group 4 before the
4th max-pooling (Pool-4).

FIGURE 15. (Sclera-Net) the first 64 channel features from Group 4 before the
4th max-pooling (Pool-4).

For a fair comparison of the proposed segmentation
method with the existing researches on the MICHE-I and
UBIRIS.v2 datasets, the PRF protocol is used. The PRF

metrics evaluates the segmentation performance based on
the ground truth masks. Tables 6 and 7 list the PRF val-
ues of the segmentation methods based on MICHE-I [26]
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FIGURE 16. Mean and standard deviation of the proposed method and
existing alternatives in terms of precision, recall and F1-score based on
SBVPI database [25].

and UBIRIS.v2 [27], respectively. Additionally, the results
in Tables 6 and 7 are presented through bar graphs
in Figures 17 and 18. The results show that Sclera-Net shows
optimal segmentation performance as compared to the other
methods. It can be seen that Sclera-Net provides higher
F1-score measures than the previous methods. Hence, our

proposed method has outperformed the other methods in all
defined criteria and metrics.

4) SCLERA-NET FOR OTHER EYE REGION SEGMENTATION
USING OPEN DATABASES
Sclera-Net not only shows remarkable results for the segmen-
tation of sclera and non-sclera classes, but it can also deal with
the segmentation of other eye regions such as iris. Iris seg-
mentation is very useful in different applications of biometric
recognition. In this section, we evaluated two well-known iris
datasets: noisy iris challenge evaluation (NICE) II [28] and
Chinese Academy of Sciences (CASIA) v4.0 distance [29]
for iris segmentation. The NICE-II dataset includes 1000 eye
images with noisy iris, irregular illumination, motion blurs,
partial open eyes, off-angle eyes, occluded iris, etc. The
annotated images for this dataset are publicly available for
comparison and evaluation purposes. The CASIA v4.0 dis-
tance database contains 2567 images from 142 participants.
The images are captured at a 3 m distance from the cam-
era. The ground truth for CASIA v4.0 distance is obtained
from [64]. Figures 9 and 10 show the segmented results
on the NICE II and CASIA v4.0 distance datasets,
respectively.

Tables 8 and 9 list the comparative results for iris segmen-
tation using the NICE-II and CASIA v4.0 distance datasets,
respectively. The sample images (Figures 9 and 10) and
comparative analysis (listed in Tables 8 and 9) show that the
proposed Sclera-Net shows less segmentation error rate than
the previous methods.

FIGURE 17. Mean and standard deviation of the proposed method and existing alternatives in
terms of precision, recall and F1-score based on MICHE-I database [26].
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FIGURE 18. Mean and standard deviation of the proposed method and existing alternatives in
terms of precision, recall and F1-score based on UBIRIS.v2 database [27].

FIGURE 19. Example of best case with details on each layer of the proposed Sclera-Net model.

V. RESULT ANALYSIS AND DISCUSSION
In this study, the IM and NIM based on residual connec-
tivity from the previous layers is used to achieve better
semantic segmentation. The previous CNN based methods
continuously eliminate high frequency information while the
information flows through the convolution layers. This loss
of information can adversely affect the performance of the
network in terms of losing important and useful information.
Therefore, for retaining information from the previous layers,
we used the concept of IM and NIM based on RBBs, which
import features from the previous layers. Figure 2 shows the

overall diagram of the encoder and decoder with IM- and
NIM-based RBBs. The performance of Sclera-Net can be
visualized from the results of Figures 5, 7, and 8 obtained
using SBVPI [25], MICHE-I [26], and UBIRIS.v2 [27]
databases, respectively. Additionally, the performance can
be confirmed from the results of sclera segmentation men-
tioned in Tables 5, 6, and 7 obtained using SBVPI, MICHE-
I, and UBIRIS.v2 datasets, respectively. Here, we have used
three different metrics for performance evaluation: average
segmentation error,IoU , and PRF. Besides correct segmenta-
tion results, we have observed some incorrect segmentation
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FIGURE 20. Example of medium case with details on each layer of the proposed Sclera-Net model.

FIGURE 21. Example of worst case with details on each layer of the proposed Sclera-Net model.

results with our proposed method. It is observed that environ-
mental light, reflections from skin, or other kind of noises,
whose pixels are similar to the sclera, are the main causes of
error. Our experiments have proved that the proposed sclera
segmentation method is not only suitable for sclera segmen-
tation, but also shows outstanding performance on other eye
region segmentation, such as the iris. The performance of
the proposed method for iris segmentation is evident from
the results of Figures 9 and 10 obtained using NICE-II and
CASIA distance v4.0, respectively. Additionally, the perfor-
mance can be confirmed from the results of iris segmenta-
tion mentioned in Tables 8 and 9 obtained using NICE-II
and CASIA distance v4.0, respectively. Here, we have used
the average segmentation error metric for the performance
evaluation of iris segmentation because it is considered as a

protocol by the previous methods using NICE-II and CASIA
distance v4.0. From the various datasets used in different
environments, it can be concluded that the proposed method
showed outstanding results even on iris segmentation and
outperformed other previous methods.

To explain the power of the residual skip connec-
tions, we compared the performance of the proposed resid-
ual connectivity approach with previous non-residual-based
approaches through reference convolutional features. These
reference convolutional features were obtained from Group
4 (Table 10) in both Sclera-Net and SegNet. Note that the
output features in Group 4 after Pool-3 contains 512 chan-
nels, and for simplicity, the first 64 channels (1st to 64th)
are visualized. Group 4 features are the 2nd-last pooling
index features. Noticeable visual differences are presented by
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TABLE 10. The Sclera-Net encoder based on residual connections.

these features. With a careful analysis of the output (as per
Figures 14 and 15), it can be observed that the real power of
the residual skip connections is evident from the visual fea-
tures in Group 4 (Table 10) for both non-residual-based Seg-
Net (Figure 14) and residual-based Sclera-Net (Figure 15).
It can be seen from the figures that the Group 4 features

from SegNet are significantly noisier than those from Sclera-
Net, which can reduce errors in detecting the correct sclera
pixels.

To further confirm the strength of the residual skip
connections, we compared the SegNet [21] sclera seg-
mentation with the Sclera-Net results. The segmentation
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TABLE 11. The Sclera-Net decoder based on residual connections.

results obtained with the proposed residual features show a
finer and thinner boundary compared with the non-residual
method, which substantially reduces the rate of error in
the case of the Sclera-Net method. The proposed method
is equally able to separate the thin iris boundary from
sclera and robust when the sclera images are occluded with
eyelashes. These important observations can be visualized
from Figure 13.

VI. CONCLUSIONS AND FUTURE WORKS
In this research, Sclera-Net is proposed for the semantic
segmentation of the sclera and other eye regions. It is based on
the IM and NIM of the RBBs in both the encoder and decoder
parts of the network. This network enhances the accuracy
by enabling high-frequency information to pass through the
network. This method is useful for the true boundary segmen-
tation of different eye regions in non-ideal and challenging
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situations. Preprocessing is not performed in this method as
in the case of previously proposed methods. Experiments for
sclera segmentation were conducted on three sclera and two
iris image datasets. Results showed that our proposed method
outperformed previous methods of end-to-end segmentation.
For the future work, the network will be optimized and the
number of parameters and layers will be reduced to enable
this method to work efficiently in smart phones. In addition,
its applicability in other segmentation tasks such as in crop
diseases or medical images will be studied.

APPENDIX
ADDITIONAL FIGURES (F) & TABLES (T)
See Figures 11–21 and Tables 10 and 11.
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