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ABSTRACT Every year, many people around the world die because of mining accidents. Industrial
Internet of Things (IloT) can be employed to sense public safety hazards and provide early warning of
accidents, thereby ensuring safe operations at underground mining, personnel positioning, and specific
items supervision and emergency response. Real-time data anomaly detection can predict the probability
of occurrence of the abnormal event. However, massive heterogeneous monitoring data, poor wireless
environment and data spatio-temporal association have posed a serious challenge to data anomaly detection
for underground mining. Existing methods are mostly concerned about single data or processing at cloud
platform, with little regard for the time and space association. Focus on the accuracy and timeliness of
data anomaly detection, a novel multi-source multi-dimensional data anomaly detection scheme based on
hierarchical edge computing model is presented in this paper. Firstly, a hierarchical edge computing model
is proposed to realize load balance and low-latency data processing at the sensor end and base-station
end. Then a single-source data anomaly detection algorithm is designed based on fuzzy theory, which can
comprehensively analyze the anomaly detection results of multiple consecutive moments. Finally, a multi-
source data anomaly detection algorithm executed at the base-station end is designed to consider the sensing
data associated attributes of time and space. Experimental results reveal that the proposed scheme has higher
detection accuracy and lower processing delay compared with traditional solutions.

INDEX TERMS Industrial Internet of Things (IIoT), underground mining, anomaly detection, multi-source
multi-dimensional data, edge computing.

I. INTRODUCTION

The Internet of Things (IoT) can connect various things to
the network through information sensing devices and com-
munication protocols, and conduct information exchange and
communication through information media, to implement
intelligent identification, positioning, tracking, supervision
and other functions [1]-[3]. In the past few years, the IoT has
been widely popularized in transportation, security, medical,
industrial manufacturing and other fields, of which Indus-
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trial Internet of Things (IloT) customized for manufacturing
processes has received increasing attention from academia
and industry [4]. Facing frequent mine accidents that cause
a large number of casualties and property losses, it is imper-
ative to construct a public safety monitoring IIoT to sense
public safety hazards and provide early warning of accidents,
thereby ensuring safe operations at underground mining, per-
sonnel positioning, and specific items supervision and emer-
gency response, etc. Unlike other industrial scenarios [5],
mining operations require construction workers to work in
underground tunnels. However, the construction environment
has the characteristics of closed and narrow space, which
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may cause hidden dangers such as insufficient oxygen and
temperature, to seriously threaten the personal safety of
underground construction workers. At present, underground
mining mainly includes operations for metal mines and coal
mines. Under the conditions of weak light, unstable tem-
perature, release of toxic gases, lack of oxygen, frequent
collapse and explosion, the safety of mining workers poses a
serious challenge to mining. For the complex mining environ-
ment, there is no perfect solution for mine safety monitoring
and emergency treatment currently. In particular, traditional
preventive measures still require manual treatment without
achieving expected goal [6]. Every year, many people around
the world die because of mine disasters. In 2018, there were
more than 200 accidents in China’s coal mines alone, and
more than 300 people died [7]. This figure is still distressing.
Therefore, employing IIoT to carry out safety monitoring
and accident warning is of great practical significance for
ensuring the safe production of underground mining.

There are still many challenges to accurately and timely
warn safety: unreliable wireless transmission, abnormal
detection of multi-source data, and energy consumption in
harsh environments [8], [9]. Real-time data abnormal detec-
tion has important practical applications. In underground
mining, different sensor nodes periodically collect informa-
tion such as temperature, humidity, harmful gas concentra-
tion and personnel sign parameters, etc. By detecting the
abnormality of the sensory data stream, the probability of
occurrence of the abnormal event can be predicted, to conduct
timely response and handling. The particularity of mining,
as well as the inherent characteristics of sensory data and
sensors make anomaly detection face many challenges. First
of all, the mining environment needs to deploy multiple
types of sensors to collect data, mainly including temperature,
humidity, gas, wind speed, stress, displacement, etc. So how
to perform anomaly detection on distributed sensor data is
a problem. Secondly, the data anomaly detection for safety
warning needs to consider the low-latency demand. The tra-
ditional methods mostly perform anomaly detection and deci-
sions in the cloud, and it is difficult to meet the real-time of
anomaly detection. Finally, data collection is geographically
relevant and time-sensitive, which relies heavily on the time
and geographic location information of the collection node.
How to determine their relevance and accurate data anomaly
detection is a challenge.

At present, Research of IIoT is mainly focused on mainly
focus on energy consumption [10], delay problem [11], [12],
channel access [13], [14], industrial applications [15]-[17]
and so on. Until now, there has already some research
about data anomaly detection in IloT application scenarios.
Wang et al. in [18]adopts Bayesian network to detect anomaly
of wireless sensor network in coal mine. This method can
learn the data of gas concentration, grasp the periodical
change rule, and reduce the fault caused by individual error
data. Moreover, the method can learn the correlation between
different types of gases and concentration changes at multiple
locations. Oliver Obst et al. in [19] studies the anomaly
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detection of gas concentration in coal mine using wireless
sensor networks. In addition, a method based on echo state
network is proposed, which uses machine learning theory to
train normal data and is used to detect data anomalies. Com-
pared with Bayesian method, this method has higher detec-
tion accuracy. Chen et al. in [20] proposes a fully distributed
and general data anomaly detection method based on graph
theory, which analyzes the temporal and spatial correlation of
industrial field data and proposes an anomaly detection model
for large-scale data. This method can effectively realize data
anomaly detection in building construction and smart grid
monitoring. Soydan et al. in [21] used image analysis method
to monitor the mining process of a coal mine in Turkey.
However, this method is mainly oriented to underground
structure and does not analyze the environmental data, such
as gas and temperature. Tan et al. proposed a multi-channel
TDMA scheduling method for IIoT in underground mining
environment, which can ensure the reliability of wireless
transmission. And the network topology adopted in this paper
is the same as in [22].

Existing methods of data anomaly detection are mostly
concerned about single data and decision at cloud, with
little regard for the time and space association. Focus on
the accuracy and timeliness of anomaly detection problem,
a novel multi-source multi-dimensional data anomaly detec-
tion scheme based on hierarchical edge computing model is
proposed for early safety warning of underground mining.
The main contributions of this paper can be listed as follows:

1) According to the special hybrid topology of the IIoT
for mining operation monitoring, a hierarchical edge
computing model is proposed, which can perform
multi-source data anomaly detection at different ends:
collection end (sensors ) and sink end (base-stations ),
to realize load balance of the whole system and low-
latency data processing on the premise of ensuring low
energy consumption.

2) A single-source data anomaly detection algorithm is
designed which would be executed at both the sen-
sor end and base-station end. Based on fuzzy the-
ory, this algorithm establishes an anomaly detection
function, and considers the data monitoring values at
adjacent time to comprehensively analyze the abnormal
data detection results of multiple consecutive moments,
s0 as to avoid the error of the anomaly detection results
due to the one-sided estimation of the single time data.

3) Also, a multi-source data anomaly detection algorithm
executed at the base-station end is presented. Accord-
ing to the special tunnel structure in underground min-
ing, the definition of sensors location correlation based
on distance is proposed. When the anomaly detec-
tion algorithm works, sensors with location correlation
would be selected for detection and comprehensive
analysis to avoid errors caused by a certain sensor
fault.

The reminder of the paper is organized as follows:

Section Il reviews the related work in data anomaly detection.
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Section III described network model and problem
formulation. In section IV, a multi-source multi-dimensional
data anomaly detection scheme is presented, which includes
design of hierarchical edge computing model, a single-source
data anomaly detection algorithm and a multi-source data
anomaly detection algorithm. Section V carries on the exper-
imental verification and results analysis. Finally, section VI
gives the conclusion for this paper.

Il. RELATED WORK

At present, the research on IIoT is mainly focused on the real-
time processing, security and reliable transmission [23]-[27].
Most research of data anomaly detection is aimed at wireless
sensor networks (WSN). Oluwasanya et al. in. [28] conduct
a survey of data anomaly detection in WSN. Although many
literatures studies anomaly detection problem, there are not
many solutions for practical application scenarios. Many
methods are based on mathematical models, and whether
they can effectively solve practical problems remains to
be verified. Rassam et al. in [29] propose a new anomaly
detection model, in which before the sensor data is sent
to the base-station, the local anomaly detection of sensor
measurements is carried out. This method not only ensures
certain detection accuracy, but also reduces energy con-
sumption. However, this solution has higher CPU require-
ments for the sensor. Salem et al. in [30] proposed a data
anomaly detection method for medical WSN, which can
effectively detect anomaly changes, and timely warn dynamic
changes. However, this method requires high reliability and
real-time transmission in wireless environment. The research
progress of anomaly detection in WSN can be summarized as
follows:

1) Anomaly Detection Method Based on Statistics:
Anomaly detection method based on statistics is old
and mature, which creates a distribution model for the
dataset and fits the target data object. It is assumed that
the normal data falls in the high probability interval
while the outliers are relatively in the low probability
interval. Finally, the abnormality is judged according
to the probability of the object in the target data set
falling in the model. Rajasegarar et al. in [31], [32]
propose a classification method for anomaly detection
models and established two detection models: statis-
tical detection models and non-parametric detection
models. These two models can be applied in differ-
ent scenarios, where the statistical model is suitable
for applications with data types and sampling peri-
ods pre-determined, while the non-parametric model
conducts detections by the behavior of current data
and adjacent data with no prior knowledge. Fei et al.
in [33] propose a multi-source data anomaly detection
method, which performs detection by statistical ways.
This method is mainly applied to the platform space,
and determines the relationship between two nodes
by two-dimensional coordinate positions. Ren et al.
in [34] study the time series based anomaly detection
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method and proposed an anomaly detection method
based on probability interval statistics. The algorithm
has higher data recognition than the aggregation algo-
rithm. Djenouri et al. in [35] investigate the application
of anomaly detection methods in urban traffic analysis,
with a focus on detection methods based on outliers.
According to the survey, the current outlier detection
method can effectively analyze traffic data, but in cities
with complex traffic conditions, the application effect
is limited.

2) Anomaly Detection Method Based on Distance:

Distance-based methods are usually built on the same
basic assumption that normal data objects are closer to
each other and abnormal data objects and normal data
objects are far apart. In the case where the attribute vari-
ables of the data object are continuous, the Euclidean
distance is usually used to measure the near-far rela-
tionship between the data objects. Sricharan et al.
in [36] proposed a model for determining the relation-
ship between adjacent nodes. Based on the statistical
properties of K-NN density estimates, they derived the
deviations and variances of the insertion estimates in
terms of sample size, sample dimensions, and potential
probability distributions. Bosman et al. in [37] pro-
posed a data anomaly detection method based on neigh-
bor node information. This method uses a machine
learning algorithm to implement data anomaly detec-
tion through distributed processing, thereby reducing
communication overhead. Xie et al. in [38] proposed a
distributed anomaly detection method, which analyzes
the data of adjacent nodes and uses a distributed global
probability density estimation method to measure the
data values of adjacent time. This method effectively
solves the problem of traditional single-source data
detection, and can comprehensively analyze the infor-
mation of adjacent nodes to perform data anomaly
detection.

3) Anomaly Detection Method Based on Clustering: Clus-

tering is to classify similar or related data objects into
a cluster [39]. If a data object cannot be classified
into any cluster during the clustering process, then the
data object can be considered abnormal. Emadi and
Mazinani in [40] analyzed the anomaly detection of
data integrity in WSN. Through the characteristics of
temperature, humidity and voltage, they adopt clus-
tering method to analyze and complete data anomaly
detection. This method can guarantee high detection
accuracy. Seo et al. in [41] proposed a data anomaly
detection method for micro-clustering, and designed a
method for detecting and specifying outliers using a
local outlier as a center of a micro-cluster in offline
components. Sricharan et al. in [42] defined the outliers
of data in WSN, and proposed a method based on data
classification to estimate and calculate by probability
density function. This method has been proven to be
applicable to different types of data testing, including
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Gaussian distribution. According to the dynamic char-
acteristics of WSN, Rassam et al. in [43] analyzed the
data anomaly detection models in static and dynamic
environments respectively, and measured the similar-
ity of sensor data by One-Class Principal Component
Classifier (OCPCC). Through the incremental learn-
ing method, it can dynamically detect data changes.
Ahmad et al. in [44] proposed an anomaly detection
method based on K-Medoid custom clustering tech-
nology, which detects behaviors such as misguided
attacks. By defining the detected parameters, a data
anomaly detection model is established. The method
realizes dynamic detection by setting the threshold, and
is mainly applied in the field of remote sensing.

4) Anomaly Detection Method Based on Artificial
Intelligence: At present, artificial intelligence theory
has been applied in data anomaly detection. Among
them, related algorithms represented by deep learning
and machine learning have solved some problems.
Through the artificial intelligence method, the detec-
tion accuracy can be improved by training of big data
sets. Ramotsoela ef al. in [45] conducted a survey of
data anomaly detection methods in underwater WSN,
and focus on machine learning-based methods, which
can effectively improve the accuracy of detection, but
usually need to be deployed in the cloud. Kwon et al.
in [46] investigated the application of deep learning in
anomaly detection. At present, the use of deep learn-
ing or machine learning methods for anomaly detec-
tion can effectively improve the accuracy of anomaly
detection, and plays an important role in artificial
intelligence and image recognition.

In addition, Pham et al. in [47] proposed an anomaly detec-
tion method for large-scale data mining applications based
on spatial analysis and spectral anomaly detection to detect
the original loss. This method can be applied to continuous
big data case, such as video streaming. There are many
data anomaly detection methods [48] in current WSN, and
they have achieved very good results. However, there is still
few research for special fields. In particular, the abnormality
detection for underground mining scenario remains to be
further studied.
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Ill. SYSTEM MODEL AND PROBLEM FORMULATION

The underground mine can be divided into several tunnels
according to the specific mining requirements, and each lane
is connected by a vertical shaft. Therefore, the deployment of
mining safety monitoring network adopts a hybrid network
topology, in which each lane consists of a chain structure of
a wired network composed of several base-stations, and each
base-station contains a number of sensors, which constitutes a
star topology of a wireless sensor network. Different tunnels
are connected to remote cloud servers via the main optical
fiber of vertical shaft. Therefore, the overall topology is a
hybrid bus network with star topology and chain topology.
Fig. 1 depicts the overall topology of the system. Each sen-
sor collects environmental data, periodically sends wireless
data to the base station, and the base station sends it to the
server through the wired link. Finally, the server analyzes and
processes the environmental safety monitoring data. In gen-
eral, the structure of each roadway is basically the same and
independent of each other, so an anomaly detection scheme
based on a roadway’s chain and shape hybrid topology is
designed. Suppose there are a total of N(N € NT) base
stations (sink nodes) in a tunnel, and there are several sensors
under each base-station, assuming the number of sensors is
ci(1 < i < N). The sensor collects the monitoring data, and
periodically sends the wireless data to the base-station. There
are many types of sensors in underground mining, and the
data of different types of sensors are heterogeneous and have
different data transmission periods (assuming that different
sensors of the same type have the same data transmission
period), the data transmission period of the j-th sensor of
the i-th base-station is denoted by pi The data of the j-th
sensor of the i-th base station at time #(+ € NT) is denoted
byd (t)(t e N*,ie[1,N],j e [l,c]). A continuous time
data streamd (1), d! (2), ..., d! (T) is formed over a period
of time T(T € NT), while all sensors of the i-th base station
form a matrix DiT of data streams over a period of time 1 to 7',
which can be expressed as:

dl (1) d! @ d! (T)
2 2 2
sy df () dci(T)
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FIGURE 2. Base-station data buffer queue.

Because different sensors differ in type, start-up time, and
transmission period, it is possible that at time #(1 < ¢t < T),
a sensor does not transmit data, that is, the value of dlj. (2) is
empty. So the actual data stream is not a time-consecutive
matrix. Therefore, as shown in Fig.2, the base-station uses
a data buffer queue to receive sensor data. Sensors A, B,
C under one base-station i have different data transmission
periods, i.e. p‘l“ = 3, p? =4, pl-c = 6. At time 1, the three
sensors initiate transmission of data, after which the amount
of data received by the base-station is different at the same
time, and reaching a maximum at time 13. As the receiving
end, the base station will store the received data in a buffer
queue at each time, waiting for anomaly detection.

Assume that the buffer queue of the base-station i(1 < i <
N) is represented as Q; = {d';(t)|i e [1,N],j e[l,cl,t e
N}, the objective of anomaly detection is to detect the data in
the queue in turn. The anomaly detection is divided into two
parts: single-source data anomaly detection and multi-source
data anomaly detection.

A. FORMULATION OF SINGEL-SOURCE DATA ANOMALY
DETECTION
The goal of single-source data anomaly detection is to ana-
lyze the data of one sensor. This kind of detection is only
based on the normal value range of a certain type of sensor
to detect anomalies, which can detect sensor data anomalies
at a certain time. Assume that the lower bound of the normal
data of the j-th sensor of the i-th base-station is (pl.L’i, the upper
bound is gail)jj, S0, ‘

Vie [1,N],je[l,c],t € NT,we have

P AGRS (A

Dec(i,j, t) = J 2
(@ 1) 0 Otherwise @

In the underground construction environment, different
data within the normal range also have different meanings.
For example, there are two temperature data 15 and 23,
assuming they are both normal temperature values, but it is
clear that these are two different working environments for
the workers. Therefore, defining a data anomaly as yes or no
can not reflect the actual situation. In order to improve the
accuracy of data anomaly detection, this paper uses fuzzy
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FIGURE 3. Data anomaly detection based on fuzzy theory.

theory to analyze the anomaly detection results. For the
j-th sensor of the i-th base station whose anomaly detection
result is between 0 and 1 at time ¢, this value represents the
degree of data anomaly, where 1 represents the lowest degree
of anomaly and O represents the highest degree of anomaly,
we redefine Eq. (2) as:

Vie[l,N],je[l,c],t e Nt,we have

j L_ U
10—}~

Decijty=1—12 “i*i —1| 3)

Equation (3) may be represented by the curve of Fig.3,
in the lower bound and upper bound intervals, the value of
anomaly detection is between [0.5, 1], and when it exceeds
upper bond or falls below the lower bound, it is less than 0.5
and approaches zero indefinitely (note that no value of
anomaly detection result is defined as O in this paper, in order
to avoid anomaly detection errors due to individual data as
much as possible).

In some special cases, this detection result according to
Eq. (3) is effective for single source data. However, because
a certain data detection result can not reflect the overall data
anomaly, this detection method can not effectively evaluate
the overall data anomaly results. In order to improve the
accuracy of single-source data anomaly detection and avoid
the deviation caused by the detection results of single data,
it is usually necessary to analyze the data results at adjacent
times. As shown in Fig.4, suppose at time 7, the result of
the data anomaly detection need to analyze the data values
attimetr —w+1,...,t —2,t — 1, ¢, respectively. In Fig.4,
the red dot and the green matrix represent the data at time
t —w+ 1 tor of the two sensors A and B, respectively.
According to Eq. (3), the values of the sensors A and B are
abnormal at time . However, according to the data change
trend from time ¢t — w + 1 to ¢, the data value of the sensor A
is tending to be normal, and therefore, it is not possible to
make an abnormal judgment at time ¢. Similarly, for sensor B,
the data values show a linear increasing trend in the same
time period. Although the value anomaly offset of sensor B
at time ¢ is smaller than that of sensor A, the data of node B is
anomalous.

Obviously,the larger the value of w is, the more accurate the
change trend of sensor outliers will be. However, too large a

111261



IEEE Access

Y. Peng et al.: Hierarchical Edge Computing: A Novel Multi-Source Multi-Dimensional Data Anomaly Detection Scheme

A
@ SensorA
Data "~
@
———————————— Upper-Bound———vS———————
@
0 ,’ time=
t-wHl e 2 t1 ot
<
@
———————————— Lower-Bound------------
\/

FIGURE 4. Variation of abnormal data at multiple times.

value of w will increase the processing delay of data anomaly
detection, so it is necessary to set a reasonable value of w
under the condition of delay constraints. Assuming that the
data processing speed is a constant o, the delay of the data
processing is &. Then, for the j-th sensor of the i-th base-
station, the processing delay at time ¢ is dlj. (t)/o, and for the
preceding vt/l times including time 7, the total processing delay
satisfies: ' _
Vie[I,N],je[l,c'],t e NT, wl e NT AW, < 1,wehave

t d] X

wi. * min i)
x=1 O

S d()

= wﬁ * min —
x=1 O

Exo

<é

<é

= W, < “

min’ _, d/(x)

Since the base-station uses the buffer queue to store the
sensing data, the storage amount of the sensing data cannot
exceed the length of the buffer queue. Assuming that for the
base-station i, and the function Cnt(x) represents the number
of elements of the set x. So the queue length of the buffer
queueQ; is Cnt(Q;). For the j-th sensor of the base-station i,
it can store LCnt(Qi)/péj data simultaneously in the buffer
queue, we have

W< Lcnt('Qi)J )
7

According to equation (4) and (5), we have

W= Lmin( Cm(.Qi) s*o )J (6)

i ’ . j
min! _ d/(x)

1

According to equation (6), in this paper, w datas before

t time are analyzed when abnormal data are detected. For the

Jj-th sensor of the i-th base-station, some data may be useless

in wi candidate data at ¢ time. In this paper, the number of
valid data is defined as follows:

111262

Definition 1 (Number of Valid Data): The value nﬁ(t) is
the number of valid data of the j(j € [I, ¢'])-th sensor
in base-station i(i € [1, N]) at time #(t € N),iff the three
following conditions both hold:

Condition 1: The number of valid data cannot exceed the
number of candidate data.

1< lt) < W, )

Condition 2: Valid data is incremented over time, that is
Vk € [t — 1(t) + 2, 1], we have

Dec(i,j, k) = Dec(i,j, k — 1) (8)
Condition 3: ni (¢) is the maximum number of valid data.

Dec(i, j, t — 11.(t)) > Dec(i,j,t — i)+ 1))  (9)

For the j-th sensor of the i-th base-station, if the larger the
value of etaﬁ(t), the change of the data value of the sensor
tends to be normal. Therefore, the ratio of emi.(t) to wﬁ is
used to represent the abnormal change of the single-source
data in this paper. According to the value of 7(#)/w! and
formula (3), we get the calculation method of single source
data anomaly detection based on time variation, which is
expressed by DecT (i, j, t).

Vie[l,N],je[l,c],t e Nt, we have

1 Conditi

The Condition in Eq. (10) is described as:

Vi € [1,N],j € [1,¢],t € N*, the Condition in
Eq. (10) is hold iff one of the following two conditions
hold:

C1: 0.5 < Dec(i, j,t) < 1.

. / /
C2: mO/W; > ¢
¢ is the valid detection coefficient, set according to the
specific requirements of underground construction.

B. FORMULATION OF MULTI-SOURCE DATA ANOMALY
DETECTION

The goal of multi-source data anomaly detection is to analyze
multi-sensor data of the same sensor’s type. Unlike single-
source data anomaly detection, this approach does not rely on
the data of a single sensor, but analyzes the data of multiple
sensors at different locations. Thus, the spatial dimension is
added to the temporal-dimension of equation (10). Multi-
source data anomaly detection needs to determine the loca-
tion of multiple sensors, and get the node set that is closer
to a sensor according to its location. This paper defines the
distance relationship between different sensors by location
correlation, which is used to decide the candidate anomaly
detection queue, and comprehensively analyzes the anomaly
data value at a certain time.

VOLUME 7, 2019



Y. Peng et al.: Hierarchical Edge Computing: A Novel Multi-Source Multi-Dimensional Data Anomaly Detection Scheme

IEEE Access

A method of node correlation calculation based on plane
coordinate position is proposed in [33], but the calculation of
the method is complicated, and the underground construction
environment is in the tunnel, which the space is narrow, so the
plane two-dimensional coordinate can be simplified to one-
dimensional. As shown in the topology of Fig.1, the network
belongs to a hybrid network topology, which consists of
a chain structure between base-stations and a star network
between base-stations and sensors. Therefore, in the tunnel,
the position of the sensor is determined only by the distance
from the laneway entrance. It is assumed that the distance
between any two adjacent sensors is the same, and the base-
stations and sensors are numbered according to their location.
The location correlation of sensors is defined as follows:

Definition 2 (Location Correlation of Sensors): The
location correlation between the j-th sensor of the i-th
base-station and the n-th sensor of the m-th base-station
is denoted by Nbr{ (m, n), we have:

Viime [I,N],je[l,c],nell,™]

m
Nbrjm,n)y=x —(Q & —j—c"+m) (D)
k=i
x(x € Nt A x >= 2)is the correlation coefficient,

set according to the specific requirements of underground
construction.

If the correlation value is greater than 0, it indicates that
there is correlation; if it is less than 0O, it indicates that there
is no correlation. Therefore, this paper selects data with cor-
relation greater than 0 as candidate data for comprehensive
analysis, and uses H (i, j) as the candidate correlation node
set of the j-th sensor of the i-th base-station, we have

Vme[1,N],n€[l,c™]

H(i,j) = { (mn)li < m A Nbrl(m, n) > 0} (12)

The method of multi-source data anomaly detection in this
paper is based on the Eq. (11) to analyze the anomaly value
of the node set whose position correlation is greater than O at
time ¢. The multi-source data anomaly detection result of the
J-th sensor of the i-th base-station at time ¢ is denoted by
DecTL(i, j, t), and we have

Vie[l,N],je[l, c],t e Nt

1 Condition

DecTL(i,j,t) = 0 Otherwise 4

The Condition in Eq. (13) is described as:

Vi € [1,N],j € [1,c'],t € N*, the Condition in
Eq. (13) is hold iff one of the following two conditions
hold:

> DecT (m,n,t)

. (m,n)eH (i.j)
Cl: Cnt(H (i,))) Y.
C2: DecT(i,j, t) = 1.

Y is the valid detection coefficient, set according to the
specific requirements of underground construction.
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FIGURE 5. Hierarchical edge computing model.

IV. DESIGN OF ANOMALY DETECTION SCHEME
According to the special topology in IIoT for underground
the mining, the data anomaly detection operation is dis-
tributed in different node units for processing. Taking into
account the requirements of accuracy and efficiency in multi-
source multi-dimensional data anomaly detection, the scheme
consists of three parts: hierarchical edge computing model,
single-source data anomaly detection algorithm and multi-
source data anomaly detection algorithm. The traditional
data anomaly detection algorithm usually performs abnormal
decision in the remote cloud, and uses the big data stor-
age and analysis capability on the cloud platform to realize
intelligent data anomaly detection and analysis. However,
the underground mining operation is complex and variable,
and so abnormal events may occur at any time. This requires
data anomaly detection to meet both accuracy and real-time
requirements. In many mine accidents, due to the lack of
timely prediction of environmental anomalies, it is impossible
to effectively arrange evacuation and disaster relief when the
disaster arrives. To this end, this paper proposes to use edge
computing to transfer the cloud’s anomaly decision to the
edge side of the base station and sensor.

A. HIERARCHICAL EDGE COMPUTING MODEL

Fig. 5 shows the overall architecture of the hierarchical edge
computing model. According to the functional division of
anomaly detection, the IIoT system for mining operation
safety monitoring and early warning mainly consists of three
parts: remote cloud server, base station (aggregation node)
and sensor. Fig. 5(a) shows the physical architecture of the
early warning system, where the remote cloud is responsible
for storing and analyzing the data uploaded by the base
station. The base station is responsible for aggregating the
data collected by the sensor and forwarding it through a wired
link. The sensor is responsible for periodically collecting data
such as temperature, humidity, gas concentration, etc., and
transmitting it to the corresponding base station via wireless
medium. Fig. 5(b) shows the logical model of the early warn-
ing system. The model distributes the edge computing in two
units: the base station edge and the sensor edge. The hardware
devices of the base station are superior to the sensors in
terms of processing power and storage capacity. In addition,
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FIGURE 6. Flow chart of data anomaly detection in underground mining.

the base station equipment is usually powered by a wired
power source, and the backup battery capacity is also large.
Therefore, the task of edge computing in the base station
is mainly to perform the execution of the multi-source data
anomaly detection algorithm, and the task of edge computing
in the sensor node is to perform the execution of the single
source data anomaly detection algorithm (only the abnormal
data detection at a single moment).

As shown in Fig. 6, the edge computing process of the early

warning system is summarized as follows:

1) The sensor program periodically collects environmen-
tal state data according to requirements. After collect-
ing the data, it performs single source data anomaly
detection according to Eq. (3). When the detection
is completed, the original data and detection results
are sent to the base station. The sensor’s processor
generally only has simple information processing and
wireless transmission functions, so only simple data
anomaly detection can be performed.

2) The base station program waits to receive data trans-
mitted by the sensor side. After receiving the data,
the base station performs multi-source heterogeneous
data detection, and combines the received single-source
data anomaly detection result with other detection
results generated at sensors that are correlated in time
and space, and performs comprehensive analysis. The
final anomaly detection result is obtained according to
Eq. (10) and Eq. (13), and it is sent to the cloud with
the original data. A base station device generally has a
relatively powerful processor, such as an MSP430 and
an ARM. Therefore, a multi-source abnormality detec-
tion program is deployed at a base station for execution.
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Moreover, when the data detection triggers an abnor-
mal event, the system will start an emergency warning
and treatment plan according to the safety prevention
and early warning level in underground mining.

3) The cloud platform side waits to receive data sent by the
base station. When the data is received, it is stored in
the database of the cloud platform. Then, the decision
center uses data mining, artificial intelligence and other
algorithms to analyze and make decisions on the orig-
inal data, and implement the corresponding decision
processing scheme.

B. SINGLE-SOURCE DATA ANOMALY DETECTION
ALGORITHM

Single-source data anomaly detection algorithm uses Eq. (3)
and (10) to detect anomalies in one sensor data. For the
Jj-th sensor of the i-th base-station, the algorithm for detecting
anomaly data at time ¢ is divided into two parts: Firstly,
according to Eq. (6), the anomaly value of single-source
data at time 7 is calculated, and the algorithm of this part is
execute at the sensor. Secondly, according to the Eq. (10),
the outliers of the single-source data at several times before ¢
are synthetically analyzed, and the algorithm performs edge
computing at the base-station. For the j-th sensor of the i-
th base-station at time #, the process of single-source data
anomaly detection algorithm is shown as follows:

1) At the sensor side, according to Eq. (3), the abnormal
data value dec(i, j, t) at time t is calculated, and the
result is transmitted to the base-station together with
the original data and stored in the buffer queue Q of
base-station.
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2) Atthe base-station, according to the Eq. (6), the number
wf. of candidate data sets for data anomaly detection is
calculated, the data at timet—w§+ 1,...,t=2,t—1,¢
are sequentially traversed, and the number né(t) of valid
data is determined according to the definition 1.

3) Return the anomaly detection result according
to Eq. (10).

The base-station stores the data transmitted by the sensor
through a buffer queue, and for the base station i, the storage
queue Q; stores up to Cnt(Q;) data. The sensor data includes
the sensor number, time, raw data, and simple anomaly detec-
tion results. The base-station stores this information in a
buffer queue, including the base-station number, data infor-
mation from sensor and the final result of the single-source
data anomaly detection. In this paper, the storage structure
of the data is represented by Sensor Data Frame (SDF)
and Base-station Data Frame (BDF), respectively, as shown
in Fig.7.

Single-source data anomaly detection algorithm is divided
into two parts: sensor’s Fuzzy Theory Anomaly Detection
Method (FTADM) and base-station’s Single-source Anomaly
Detection Method (SDADM).

FTADM algorithm is mainly based on simple anomaly
detection of the data collected, according to equation (3) to
determine the preliminary detection results, the algorithm is
described in Fig. 8.

Sensor sends SDF data to base-station, and the base-station
stores the SDF data in the local cache queue, traverses the
SDF data in the buffer queue in turn, and performs a single-
source anomaly detection algorithm for multiple times. The
SDADM algorithm is executed in the base-station and ulti-
mately encapsulates the detection results and SDF data into
BDF data, as shown in Fig. 9.

C. MULTI-SOURCE DATA ANOMALY DETECTION
ALGORITHM

After executing the two-part single-source data anomaly
detection algorithm of sensor and base-station, we can get the
single-source data anomaly result at a certain time. According
to section.IIl, this anomaly detection result does not take into
account the anomaly detection result of the nearer sensor
node, so the results of Fig. 8 and Fig. 9 may be incorrect.
For example, the data value collected by a sensor is abnormal
because of equipment failure, but this kind of anomaly is not
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1. FTADM(J,d[], T, Lb,Ub,x) {

2. /1 J is the number of sensor.

3. /' d[]is an array of data collected by sensor,d[i](i =
1,2, ...) represents data at time 1.

4. /I T is the length of the superframe in which the sensor

collects data, that is, the length of array d| |.

Ub and Lb are the upper bound and lower bound of

the normal data value, respectively.

6. /' x(x > 0) is the invalid parameter of data

7. SDF s[T; // array of SDF

8 for (int ¢ = 0;¢ < T';7 + +){ //start of T-loop

0O«

if (d[t] > (Ub+ z) or d[t] < (Lb— x){
10. /Mnvalid Data
11. s[i].dec = 05
12. } else {
13. /laccording to Eq. (3)
14. sli].dec = 1 — abs(
15. (2xd[t] — Lb—Ub)/(Lb — Ub) — 1);
16. } // end of if
17. sli].data = d[t];
18. sli].time = 1;

19. } /lend of T'-loop
20.  si]ad = J;

21.  return s[];

22.}

FIGURE 8. Pseudocode for sensor’s fuzzy theory anomaly detection
algorithm.

real data, so we need to consider the data anomaly value of
multi similar nodes.

The single source data anomaly detection results can not
guarantee the detection results must be correct. The following
describes how to perform multi-source data anomaly detec-
tion on different sensors of the same type.

After the base-station completes the single-source data
anomaly detection, it will produce BDF data, which contains
the raw data and single-source anomaly detection at a certain
time. The Multi-source Data Anomaly Detection Method
(MDADM) is described in Fig.10.

V. EXPERIMENTAL VERIFICATION AND RESULT
ANALYSIS

In order to evaluate the effectiveness of the anomaly detec-
tion method proposed in this paper, we built a verifica-
tion platform and conducted a large number of experiments.
The experimental hardware platform uses TI’'s MSP430 and
CC2530 for base station and sensor programming. The
algorithm program is written in C language, and the data
results are analyzed by Python. To verify the performance
of detection algorithms under different experimental condi-
tions, the accuracy and delay indicators under different data
scales were measured. There are 10 sensors under each base
station, and there are a total of 60 sensors. There are three
types of sensors that collect temperature, wind speed, and
gas parameters. The sampling period of each type of sensor
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1. BFTADM(, s| ], L,p[], Di, Ri, Fi){

2. /I I is the number of base-station.

3./ s[]is an array of base-station’s buffer queue, s[i](i =
1,2, ...) represents i-th SDF data in queue.

4. /I Lis the length of the buffer queue, that is, the length of
array s |.

5. /I p[]is an array of sensor’s data acquisition period, s[j]
(4 € [1,¢!]) represents the peroid of j-th sensor of
base-station /

6. /I Di is the data proces delay constraint, and R is the
data processing rate

7. /I Fis the valid detection coeffcient in Eq. (10).

8. BDF b[L] = 0; // array of BDF

9 for (int i = 0;¢ < L;i + +){ //start of L-loop

10. if (s[i].dec >= 0.5){ //claimed normal data
11. bli].decT = 1,

12. continue;

13. } // end of if

14. int k = s[i].data;

15. for (int j = 4;j >= 0; 5 — —){ //start of i-loop
16. if (s[j].sid == s[i].sid and k > s[j].data)
17. k = s[j].data;

18. } // end of i-loop

19. int w =min(L/p[s[i].sid], Di x Ri/k);

20. int m = i, count = 0;

21. for int j =m;j >=1—w—+ 1;5 — —){//m-loop
22. if (s[j].sid == s[m].sid){

23. if (s[j].dec <= s[m].dec){

24, m=j;

25. count + +;

26. }else

217. break;

28. } // end of if

29. } // end of m-loop

30. if (count/w >= F1)

31. bli].decT = 1;

32. } //lend of L-loop
33.  return||;
34. }

FIGURE 9. Pseudocode for base-station single-source anomaly detection
algorithm.

is different (1000, 2000, 3000ms), and each sensor sends
100 data periodically. The test data set randomly generates
abnormal data by manual setting, and the overall data value
obeys the normal distribution N(u, o2), among which yu =
(Ub — Lb)/2 and 0 = /(Ub+ Lb)/2. In Eq. (10), (11)
and (13), we set ¢ = 0.5, x = 5 and ¢ = 0.4, respectively.
The experimental platform environment and parameter set-
tings are shown in Table. 1 below.

Different from simulation, the experiments mainly explore
how to perform edge computing on the actual embedded
system, so some theoretical parameters will be simplified
according to the situation. For example, it is assumed that the
CPU processing rate is constant 1 in Eq.(6). This setting is
also in line with the actual situation. Although the processing
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. MDADM(, b[], L,bm[][ ][], N, c[ ], X, Pi){

. /I I is the number of base-station.

3. /I b[]is an array of BDF data, d[i](i = 1,2, ...)

represents ¢-th BDF data .

/I L is the length of array dJ ].

./l bm[][][] s an array of the result of single-source data
anomaly detection, and bm/[i][7][¢] represents the
detection result of the j-th sensor of the i-th base-station
at time ¢, which is normally 1 and the anomaly is 0.

6. // N is the total number of base-stations.

7. /I ¢[]is an array of number of sensors in one base-station,

and c[¢] represents the sensors’ number in base-station .

8. /I X is the correlation coefficient in definition 2.

9. /I Piis the valid detection coefficient in Eq. (13).

10.  int dt[M][L] = 0; // array of result of MDADM, M = c[I]

11. for(inti = 0;7 < L;i + +){ //L-loop

o =

S

12. int j = b[i].sdf .sid;

13. int t = b[i].sdf time;

14. if (b[i].decT == 1) { // normal data

15. dt[j][t] = 1,

16. continue;

17. } // end of if

18. int h,k =0;

19. for (int m = 0;m < I;m + +)} //I-loop
20. for (int n = 0;n < c[m];n + +)} // ¢[m]-loop
21. int s =sum(c[n], c[m]);

22. int d = X—abs(s — j — ¢[m] + n); // according
23. to definition 2

24, if (d > 0){

25. h++;

26. if ((bm[m][n][f] == 1))

27. k++;

28. } /1 end of if

29. } // end of ¢[m]-loop

30. } /1 end of I-loop

3. if (k/h >= Pi)

32. dt[j][t] = 1,

33. } // end of L-loop
34.  returndt[][];
35.}

FIGURE 10. Pseudocode for multi-source data anomaly detection
algorithm.

speeds of different CPUs are different, the impact on test
results can be ignored in actual experiments.

This paper mainly examines three performance indicators
of the detection algorithm: detection accuracy, algorithm exe-
cution time and average delay. The detection accuracy is
defined as the ratio of the number of results of data anomaly
detection to the total number of anomalies. This indicator can
reflect the execution efficiency of the detection algorithm.
The algorithm execution time is defined as the total time
required for data anomaly detection, which is used to measure
the time complexity of algorithm execution. The average
delay is defined as the average of the processing time of
all data in the anomaly detection, which is used to measure
the time sensitivity of the detection scheme. The experiments
explored the performance of four anomaly detection schemes:
Traditional Anomaly Detection Method(TADM) (Eq. (2)),
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TABLE 1. Experiment parameters.

Base-station Sensor
CPU MSP430 CC2530(8051CPU)
Hardware
Wired link RS485 No

Wireless link |2.4-GHz IEEE |2.4-GHz IEEE

802.15.4 802.15.4

Programming |C and Python
language

The number of | 1,2,3,4,5,6
base-station

Type of senso-|The ratio Temperature, wind speed and gas, which is 3: 3: 4
rs

The number of | Each base-station contains 10 sensors
Sensors

Sensor data tr-| 1,2 and 3s for three types
ansmission pe-
riod

Upper-bound |40,80 and 20 for three types
of normal data
(Ub)

Lower-bound |-20,10 and 10 for three types
of normal data
(Lb)

Data size Total 100 datas, each with a size of 10 Bytes

Experiment 20
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FIGURE 11. Accuracy analysis of different methods in this paper.

Fuzzy Theory Anomaly Detection Method (FTADM) (Eq. 3),
Single-source Data Anomaly Detection Method (SDADM)
(Eq. 10) and Multi-source Data Anomaly Detection Method
(MDADM) (Eq. 13). In the case of the same data set,
the experiment compares and analyzes the differences in
detection efficiency and cost between different schemes.
Fig. 11 describes the accuracy comparison between the
four detection schemes as the data amount increases. It can be
seen from Fig. 11 that the MDADM has the highest detection
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FIGURE 12. Accuracy analysis of different methods in this paper.

accuracy while the TADM has the lowest. This shows that the
proposed detection method can effectively analyze the time
and space changes of the data and obtain reasonable results.
In addition, we can see that the detection accuracy of both
the SDADM and MDADM methods shows an approximately
linear increase as the data amount increases, while the detec-
tion accuracy of both the TADM and FTADM methods does
not change significantly as the data amount grows. This is
because both the TADM and FTADM methods rely primarily
on single-point data values, and changes in data scale do
not affect their detection accuracy. When the data scale is
large, the probability of detection failure of these two methods
(especially TADM) will be greater. Therefore, the proposed
detection algorithms have higher detection accuracy com-
pared with TADM.

Fig. 12 shows the execution time comparison between the
four detection schemes as the data amount increases. As can
be seen from Fig. 12, the execution time of the MDADM
method is greater than that of other methods. In particular, this
trend is more pronounced as data scale continues to increase.
This is because the MDADM method analyzes multiple data
for continuous time and related location nodes, so execution
time is more than other methods. In addition, it can be seen
that when the data scale is not very large, the gap between
different algorithms is small. This increase cost in execution
time is worthwhile compared to the improvement in detection
accuracy.

The MDADM method takes more time in total execution
time. But if we calculate the average processing delay of
the detection scheme, the gap will be small. Fig. 13 shows
the average delays comparison between the four detection
schemes as the data amount increases. As can be seen from
Fig. 13, the average data processing delay does not increase
linearly as the data scale increases. Moreover, the difference
between the average delays of the various detection algo-
rithms differs by a few milliseconds. For underground mining
environment, the data processing delay of milliseconds is
completely acceptable.

Among the current data anomaly detection methods,
cluster-based methods are widely used, and the main methods
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FIGURE 14. Accuracy analysis comparison with existing methods.

are DBSCAN [49], k-means [50], and so on. The cluster-
based method can realize the intelligent analysis of large-
scale data sets through the artificial intelligence theory such
as machine learning, and can obtain high anomaly detection
accuracy. Among the many methods, DBSCAN is one of the
most studied in the academic world. Therefore, this paper
chooses the abnormal detection method based on DBSCAN
for comparative analysis. In [40], an anomaly detection algo-
rithm based on DSCAN is proposed. Here, we compare the
performance of MDADM algorithm with this DBSCAN algo-
rithm in terms of accuracy, execution time and average delay.
We performed statistics on 20 experiments, and used box-
plots to represent comparative analysis results.

Fig. 14 shows the detection accuracy comparison between
the MDADM algorithm and the DBSCAN algorithm as the
data amount increases. It can be seen from Figure 14 that
with the increase of data scale, the MDADM algorithm has
little difference in detection accuracy from DBSCAN. When
the data scale is small, the detection accuracy of DBCAN
is greater than that of MDADM. However, as the data scale
increases, the difference in detection accuracy between the
two algorithms becomes smaller and smaller. Moreover, in a
large number of cases, the MDADM algorithm has higher
detection accuracy than the DBSCAN algorithm. According
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to the data change situation in Fig. 14, the data scale has less
influence on the DBSCAN algorithm, and has a greater influ-
ence on the MDADM algorithm. Therefore, the MDADM
method is very suitable for the anomaly detection of large
amounts of data in large-scale WSN for underground min-
ing. According to the experimental analysis, the MDADM
algorithm has reached the detection accuracy level of the
DBSCAN algorithm. Moreover, when the data scale is large,
the MDADM algorithm can obtain higher abnormality detec-
tion accuracy.

Fig. 15 shows the execution time comparison between the
MDADM algorithm and the DBSCAN algorithm as the data
amount increases. It can be seen from Fig. 15 that as the data
scale increases, the execution time of the MDADM algorithm
and the DBSCAN algorithm both show an approximately lin-
ear increase trend. Overall, the DBSCAN algorithm performs
more time than the MDADM algorithm. Especially when the
data scale is large, the difference in execution time between
the two algorithms is obvious. From the experimental results,
we can see the MDADM algorithm has less execution time
than the DBSCAN algorithm, and the effect of data scale
on execution time is linear. This is because the MDADM
algorithm uses hierarchical edge calculation, which results
in the algorithm execution time being dispersed on the base
station and sensor nodes, achieving effective load balancing
and reducing node energy consumption.
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Fig. 16 shows the average delay comparison between the
MDADM algorithm and the DBSCAN algorithm as the data
amount increases. As can be seen from Figure 16, as the data
scale increases, the average latency of the MDADM algo-
rithm and the DBSCAN algorithm increases. Compared to
Fig. 16, this change is gently rising. In particular, the average
delay of the MDADM method is smaller than the DBSCAN
algorithm when the data scale is large. Therefore, for the
abnormal detection of large amounts of data in large-scale
WSN in underground mining environments, it is appropriate
to adopt the MDADM method.

VI. CONCLUTION

In this paper, a multi-source multi-dimensional data anomaly
detection method based on hierarchical edge computing is
proposed, which is aiming at early warning of an accident in
ITIoT for underground mining environment. According to the
special hybrid topology of star network and chain network,
a hierarchical edge computing model is first proposed, which
can perform multi-source data anomaly detection at sensors
end and base-stations end, to realize load balance and low-
latency data processing. Based on fuzzy theory, A single-
source data anomaly detection algorithm is then proposed,
which takes into account the temporal correlation of monitor-
ing data. At last, a multi-source data anomaly detection algo-
rithm is designed, which considers the temporal and spatial
correlation properties of multi-source data. Extensive exper-
imental verification demonstrates that the proposed scheme
performs better in detection accuracy and processing delay
than traditional schemes.
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