IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 5, 2019, accepted July 13, 2019, date of publication July 23, 2019, date of current version August 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930578

A Comparative Study of Deep Learning-Based
Vulnerability Detection System

ZHEN LI'24, DEQING ZOU“135, JING TANG'-2, ZHIHAO ZHANG2,
MINGQIAN SUNZ, AND HAI JIN“12, (Fellow, IEEE)

!National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing
Lab, Big Data Security Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China

2School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3School of Cyberspace Security, Huazhong University of Science and Technology, Wuhan 430074, China

4School of Cyber Security and Computer, Hebei University, Baoding 071002, China

SShenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

Corresponding author: Deqing Zou (deqingzou@hust.edu.cn)
This wok was supported in part by the National Key Research and Development (R&D) Plan of China under Grant 2017YFB0802205,

in part by the National Natural Science Foundation of China under Grant 61672249 and Grant 61802106, and in part by the Shenzhen
Fundamental Research Program under Grant JCYJ20170413114215614.

ABSTRACT Source code static analysis has been widely used to detect vulnerabilities in the development
of software products. The vulnerability patterns purely based on human experts are laborious and error
prone, which has motivated the use of machine learning for vulnerability detection. In order to relieve
human experts of defining vulnerability rules or features, a recent study shows the feasibility of leveraging
deep learning to detect vulnerabilities automatically. However, the impact of different factors on the
effectiveness of vulnerability detection is unknown. In this paper, we collect two datasets from the programs
involving 126 types of vulnerabilities, on which we conduct the first comparative study to quantitatively
evaluate the impact of different factors on the effectiveness of vulnerability detection. The experimental
results show that accommodating control dependency can increase the overall effectiveness of vulnerability
detection F1-measure by 20.3%; the imbalanced data processing methods are not effective for the dataset
we create; bidirectional recurrent neural networks (RNNs) are more effective than unidirectional RNNs and
convolutional neural network, which in turn are more effective than multi-layer perception; using the last
output corresponding to the time step for the bidirectional long short-term memory (BLSTM) can reduce

the false negative rate by 2.0% at the price of increasing the false positive rate by 0.5%.

INDEX TERMS Vulnerability detection, deep learning, source code, comparative study.

I. INTRODUCTION

Nowadays, software vulnerabilities have led to many cyber-
attacks. Although numerous approaches have been pro-
posed for software vulnerability detection, the number of
vulnerabilities reported in the Common Vulnerabilities and
Exposures (CVE) [1] increases each year. The problem of
software vulnerability prevalence will still exist for a long
time.

Source code static analysis has been widely used to
detect vulnerabilities in the development of software prod-
ucts. There are mainly two types of approaches: code
similarity-based approaches and pattern-based approaches.
Code similarity-based approaches are limited to detecting

The associate editor coordinating the review of this manuscript and
approving it for publication was Hong-Mei Zhang.

103184

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

vulnerabilities caused by code clone [2], [3], while pattern-
based approaches are more general and widely used to
detect vulnerabilities with various causes. For pattern-based
approaches, vulnerabilities are detected through match-
ing vulnerability patterns which can be generated by
human experts or machine learning techniques. This types
of approaches involve three categories: rule-based meth-
ods, traditional machine learning-based methods, and deep
learning-based methods. Rule-based methods [4]-[8] and tra-
ditional machine learning-based methods [9]-[12] typically
require human experts to define rules or features to generate
vulnerability patterns. As a result, they need many manual
efforts and are difficult to characterize the vulnerabilities
accurately, thus achieve high false positives or high false
negatives. Deep learning-based methods [13]-[17], which do
not need human experts to define features and can learn

VOLUME 7, 2019

https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-3934-7605

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

IEEE Access

vulnerability patterns automatically, have become a new trend
in software vulnerability detection.

The recently proposed VulDeePecker [16] is the first to
use deep learning to detect vulnerabilities at the slice level
(i.e., multiple lines of code that are semantically related to
each other in terms of e.g., data dependency or control depen-
dency), while noting that other studies on using deep learn-
ing for vulnerability detection are at a coarser granularity
(e.g., function level) [13]-[15]. VulDeePecker demonstrates
the feasibility of using deep learning to detect vulnerabilities
in a finer granularity, while the quantitative impact of differ-
ent factors on the effectiveness of vulnerability detection is
unknown, such as the following:

o VulDeePecker adopts data dependency as the seman-
tic information of programs. This makes one wonder
whether or not other semantic information (e.g., control
dependency) can improve the effectiveness of vulnera-
bility detection.

o VulDeePecker does not involve any imbalanced data
processing, although the number of vulnerable samples
is much smaller than the number of samples without
vulnerabilities. This makes one wonder whether or not
the imbalanced data processing can improve the effec-
tiveness of vulnerability detection.

o VulDeePecker uses the Bidirectional Long Short-Term
Memory (BLSTM) neural network. This leaves one
wonder whether or not other neural networks can
improve the effectiveness of vulnerability detection.

These questions inspire us to make a comparative study
while answering these questions as a piggyback.

Our Contributions: In this paper, we conduct the first com-
parative study to evaluate the quantitative impact of different
factors on the effectiveness of deep learning-based vulnera-
bility detection. Specifically, the main contributions of this
paper are as follows.

First, in order to experimentally show the effectiveness
of vulnerability detection, we collect two datasets from
the programs involving 126 types of vulnerabilities, while
noting that the dataset published by [16] only involves
two types of vulnerabilities (i.e., buffer error vulnerabil-
ities and resource management error vulnerabilities) and
only accommodates data dependency as the semantic infor-
mation. One dataset contains 68,353 code gadgets (i.e.,
a number of statements that are semantically related to each
other) with data dependency and control dependency and the
other dataset contains 98,262 code gadgets with only data
dependency. We have made the datasets publicly available
at https://github.com/VulDeePecker/Comparative_Study so
that other researchers can use them for their own studies.

Second, we evaluate the quantitative impact of differ-
ent factors on the effectiveness of vulnerability detection
on the datasets. Some of the experimental findings are
highlighted as follows: (i) Accommodating control depen-
dency can increase the overall effectiveness of vulnerabil-
ity detection Fl-measure by 20.3%. (ii) The imbalanced
data processing methods are not effective for the dataset

VOLUME 7, 2019

we create, and the over-sampling method (e.g., SMOTE) is
better than other imbalanced data processing methods for
the dataset. (iii) Bidirectional Recurrent Neural Networks
(RNNs) are more effective than unidirectional RNNs and
convolutional neural network, which in turn are more effec-
tive than multi-layer perception. (iv) Using the last output
corresponding to the time step for the BLSTM can reduce
the false negative rate by 2.0% at the price of increasing the
false positive rate by 0.5%.

Third, we implement the deep learning-based vulnera-
bility detection system based on an extended open source
parser Joern [18] for the comparative study, while noting
that VulDeePecker [16] is implemented based on the com-
mercial tool Checkmarx [5] which cannot accommodate new
semantic information of programs. In addition, we identify
important code elements in the code gadgets for vulnerability
detection, which can help understand what features the deep
learning model has automatically learned.

Paper Organization: Section II describes the preliminar-
ies, Section III presents the comparative study methodology.
Section IV discusses the experiments and results. Section V
reviews the related prior work. Section VI concludes the
present paper and discusses the future work.

II. PRELIMINARIES

Deep learning techniques are recently studied and used
to detect software vulnerabilities in source code [13]-[17].
VulDeePecker [16] is the first to use deep learning to detect
software vulnerabilities at the slice level, a finer granularity
than the function level. In this section, we give a brief review
on VulDeePecker, then introduce the BLSTM neural network,
and finally compare our study with VulDeePecker.

A. A BRIEF REVIEW ON VULDEEPECKER

1) CODE GADGET

A code gadget consists of a number of (not necessarily con-
secutive) program statements which are related to each other
semantically [16]. Specifically, for a vulnerability related to
library/API function call, the code gadget is composed of
the program statements semantically associated to the argu-
ments of library/API function call. The semantic information
can accommodate data dependency and control dependency
which are widely used for vulnerability detection [18]-[20].
The present design of VulDeePecker only accommodates data
dependency in the code gadgets.

2) DEEP LEARNING-BASED VULNERABILITY DETECTION

VulDeePecker [16] mainly focuses on detecting vulnerabili-
ties related to library/API function calls. It has two phases: a
learning phase and a detection phase. In the learning phase,
the input is plenty of training programs, some of which are
vulnerable and others are not. The output is vulnerability pat-
terns which are coded into a neural network. VulDeePecker
takes advantage of the commercial tool Checkmarx [5] to
collect code gadgets, each of which consists of a number of

103185

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

Output of each timestep

Activation layer

Dense layer

BLSTM layers

Vectors
comresponding to
code gadgets

Time step 1 2 -1 T

FIGURE 1. Structure of BLSTM.

program statements that are data-dependent on a library/API
function call. These code gadgets are labeled vulnerable or
not, and then transformed into vectors as the input to the
BLSTM. Finally, the vulnerability patterns, represented as the
BLSTM with fine-tuned parameters, are as the output of the
learning phase.

In the detection phase, the input is target programs and
the trained neural network from the learning phase, and the
output is vulnerable code gadgets. The code gadgets related
to the library/API function calls are first collected from
target programs based on the commercial tool Checkmarx
and transformed into vectors. Then VulDeePecker uses the
learned vulnerability patterns to determine whether the code
gadgets from the target programs are vulnerable or not and if
so, output the vulnerable code gadgets.

B. BLSTM

BLSTM, as a kind of widely used bidirectional recurrent
neural network, is effective in coping with sequential data
involving context. Figure 1 shows the structure of the BLSTM
whose input is the vectors corresponding to code gadgets.
The BLSTM consists of several BLSTM layers, a dense layer,
and an activation layer. The BLSTM layers have forward and
backward directions and contain Long Short-Term Memory
(LSTM) cells; the dense layer reduces the number of dimen-
sions of the vectors; and the activation layer uses an activation
function to generate the output corresponding to each time
step. The output of each time step (e.g., the last time step)
can be selected in the back propagation for parameter tuning.
Finally, a BLSTM with fine-tuned parameters is output after
training.

C. COMPARISON WITH VULDEEPECKER

We stress that this paper is not a simple incremental work
over VulDeePecker [16] for the following four reasons:
(i) Though VulDeePecker demonstrates the feasibility of
using deep learning to detect vulnerabilities in a finer gran-
ularity, the impact of different factors on the effective-
ness of vulnerability detection is unknown. In this paper,

103186

we make a comparative study which corresponds to three
steps of deep learning-based vulnerability detection system
(see Section III-A for details). (ii) In order to evaluate the
effectiveness, we collect two datasets from the programs
involving 126 types of vulnerabilities, because the dataset
published by [16] only involves two types of vulnerabilities
and only accommodates data dependency as the semantic
information. (iii) Our system is a completely new imple-
mentation using an extended open source parser Joern [18],
because a straightforward extension of VulDeePecker, which
is based on the commercial tool Checkmarx [5], cannot
accommodate new semantic information in the code gadgets.
(iv) We identify important code elements in the code gadgets
for vulnerability detection, which can be used to speculate
what features the deep learning model has automatically
learned.

IIl. COMPARATIVE STUDY METHODOLOGY

Our goal is to evaluate the quantitative impact of different fac-
tors on the effectiveness of deep learning-based vulnerability
detection. We focus on vulnerabilities related to library/API
function calls in C/C++ programs, while leaving the exten-
sion to accommodating other vulnerabilities to future work.
In this section, we describe the design of deep learning-based
vulnerability detection system to achieve the goal.

A. OVERVIEW
As highlighted in Figure 2, the input to the deep
learning-based vulnerability detection system is the source
code of a large number of training programs and some target
programs, and the output is vulnerable code gadgets. The
process of deep learning-based vulnerability detection has
six steps: generating code gadgets (Step I), generating ground
truth labels for code gadgets (Step II), transforming code gad-
gets into vectors (Step III), data processing with imbalanced
techniques (Step IV), training a neural network (Step V),
and applying the trained neural network to classify the code
gadgets (Step VI). Among these steps, Steps I, III, and VI are
standard, so there are no important factors that can be chosen
for comparative study. In this paper, we make a comparative
study from the following three aspects which correspond to
Steps I, IV, and V highlighted with bold border in Figure 2:
generating code gadgets with different semantic information,
data processing with different imbalanced techniques, and
training a neural network with hard negative mining.

There are two phases: a learning (i.e., training) phase and
a detection phase. In the learning phase, the input is the
source code of training programs which is used to train the
deep neural network for vulnerability detection. Specifically,
the learning phase has the following 5 steps.

« Step I: generating code gadgets. Considering code gad-
gets in which the statements are related to each other
only by control dependency involves little information
about vulnerabilities, this step generates two types of
code gadgets: code gadgets with data dependency and

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

IEEE Access

Output

Input | I
]
| I
Training | Step II: generating Step IV: data processing Step V: training a neural | |
programs > [— ground truth labels FP] > with imbalanced > : netwosk
| Step I for code gadgets Step lll: techniques l
| tep I: transforming |
generating code gadgets +
| | codegadgets into vectors ; |
Step VI: applying the
Target > > P trained neural network to —H»>
programs classify the code gadgets |

E

Vulnerable
| code gadgets

FIGURE 2. Overview of deep learning-based vulnerability detection system: Steps I, IV, and V which involve the comparative study are

highlighted with bold border.

code gadgets with both data dependency and control
dependency. The process of this step will be elaborated
in Section III-B.

o Step II: generating ground truth labels for code gad-
gets. According to the data sources of known vulner-
abilities, such as the National Vulnerability Database
(NVD) [21] and the Software Assurance Reference
Dataset (SARD) [22], this step labels each vulnerable
code gadget as “1”°, and labels each code gadget which
is not vulnerable as “0”. Specifically, the code gadgets
are labeled automatically as follows: if the code gadget
contains at least one vulnerable statement in the pro-
gram in question, it is labeled as *““1”’; otherwise, it is
labeled as “0”. Note that for the code gadgets which
are mislabeled with high probability (see Section III-D
for details), we manually check them and correct the
mislabeled ones in Step V.

o Step III: transforming code gadgets into vectors. The
code gadgets have to be encoded into vectors for input
to deep neural networks. This step maps the vari-
able names and the user-defined function names to
symbolic names to generate the symbolic representa-
tion (e.g., ‘“‘strcpy(dest, source);” is mapped to ““str-
cpy(V1, V2);”), divides the symbolic representation into
a sequence of symbols (e.g., “strcpy”’, “(’, “V17, 7,
“V2”,%)”,and ““;”), then transforms each symbol into a
fixed-length vector, and finally obtains a vector for each
symbolic representation by concatenating the vectors of
symbols.

o Step IV: data processing with imbalanced techniques.
This step adopts no imbalanced techniques and several
imbalanced techniques respectively to process the vec-
tors obtained from Step III. The process of this step will
be elaborated in Section III-C.

o Step V: training a neural network. This step first uses
k-fold cross validation [23] to identify the code gadgets
which are mislabeled with high probability, check them
manually, and correct the mislabeled ones. Then the
vectors corresponding to code gadgets from the train-
ing programs and their labels are input to the neural
network. This step leverages hard negative mining for
imbalanced data processing, six neural networks, and
two strategies of outputs for recurrent neural networks.

VOLUME 7, 2019

The trained deep neural network with fine-tuned param-
eters is finally obtained. The process of this step will be
elaborated in Section III-D.

In the detection phase, the input is the source code of target
programs which goes through Steps I and III (the same as the
steps in the learning phase), then uses the following step to
detect the vulnerable code gadgets in target programs.

o Step VI: applying the trained neural network to classify
the code gadgets from target programs. For the vectors
corresponding to the code gadgets from target programs,
this step uses the trained neural network from Step V
in the learning phase to detect vulnerabilities in target
programs, identifies important code elements for vul-
nerability detection, and outputs the vulnerable code
gadgets. The process of this step will be elaborated in
Section III-E.

In what follows, we respectively elaborate Steps I, IV, and
V which involve the comparative study, and Step VI which
involves identifying important code elements for vulnerabil-
ity detection. For the details of Steps II and III, please refer
to [16].

B. GENERATING CODE GADGETS

Source code involves much semantic information among
which data dependency and control dependency are widely
used for vulnerability detection [18]-[20]. We generate the
code gadgets with different semantic information based on
the open source parser Joern [18]. We do not adopt the
commercial tool Checkmarx [5] to generate code gadgets as
VulDeePecker [16] does, because Checkmarx can be used to
obtain the code gadgets with only data dependency.

We select 811 C/C++ library/API function calls related
to security according to all kinds of known vulnerabili-
ties. The list of these security-related C/C++ library/API
function calls is deferred to Table 9 in Appendix VI-A.
In what follows, library/API function calls refer to these
811 security-related C/C++ library/API function calls. We
first use Joern [18] to extract the abstract syntax tree for each
function in programs, and traverse the abstract syntax trees
to identify all library/API function calls. Then we generate a
code gadget corresponding to each library/API function call.
There are mainly three steps.

103187

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

funci() |

|

(;) |

|

1 void func2(char *dest, D |

char* source){ |

2 [strepyldest, source); |

3} D !

4 [
5 void func1(){ _@ : func2()

6 char temp[50]; |
7 char buffer[20]; "» D I @

8 scanf("%s", temp); @‘7 |

9 intas=strlen(temp); |

10 if(a<20) |

11 func2(buffer, temp); D D |

. } é |

\/_\ @ |

|

c |

ol

> 11 |

|

funci()

D: Data dependency
C: Control dependency

char temp[50];
char buffer[20];
scanf("%s", temp);
int a=strlen(temp);
0 if(a<20)
1 func2(buffer, temp);
strcpy(dest, source);

o Om%

O o N

() +>

N2

|
|
|
|
|
|
|
|
[
: func2()
|
|
|
|
|
|
|
|
|

D

»
»

@«»ﬁfe@

|

|
N

|

Program source code PDGs of functions

Program slice for “strcpy” (line 2)
with data dependency and control
dependency

Code gadget
for “strcpy” (line 2)

FIGURE 3. Generating code gadgets with data dependency and control dependency for library/API function call strcpy (line 2).

First, we generate a Program Dependence Graph (PDG)
for each function using open source tool Joern [18]. In the
PDG, each node represents a statement or a control predicate,
and each edge represents a data dependency or a control
dependency between two nodes. As an example shown in Fig-
ure 3, the second column illustrates the PDGs of functions
funcl and func2, where the numbers in the nodes represent
the corresponding line numbers of statements.

Second, we generate the program slice for each library/API
function call based on the PDGs. Specifically, the program
slice is composed of an interprocedural forward slice and
an interprocedural backward slice which are merged at the
library/API function call. For a library/API function call,
the forward slice in a function involves the statements from
all paths in the PDG starting at the library/API function call;
the backward slice in a function involves the statements from
all paths in the PDG ending at the library/API function call.
We can obtain the forward slice and the backward slice in a
function using Joern [18]. In order to generate the interpro-
cedural slice (i.e., slice that can cross function boundaries),
we extend Joern to generate the interprocedural forward slice
and the interprocedural backward slice by going beyond func-
tion boundaries which are caused by user-defined function
calls.

In order to show the impact of different semantic infor-
mation for code gadgets on the effectiveness of vulnerability
detection, we adopt two types of program slices based on
PDGs, which are then used to generate the corresponding two
types of code gadgets in the third step.

« Data dependency: This type of program slices involves
the interprocedural forward slice and the interprocedural
backward slice with only data dependency in the PDGs.

« Data dependency and control dependency: This type
of program slices involves the interprocedural forward

103188

slice with only data dependency, and the interprocedural
backward slice with both data dependency and control
dependency in the PDGs.

It is worth mentioning that control dependency does not
involve in the interprocedural forward slice for the second
type of program slices, because the statements, which are
affected by the library/API function calls only according to
control dependency, are not vulnerable. As an example shown
in Figure 3, the third column illustrates the program slice
for library function call “strcpy” (line 2) with data depen-
dency and control dependency. Because function funcl calls
function func2 at line 11, an edge between line 11 and line
2 is added, which represents the data dependency between
the parameters of function funcl and function func2 in the
interprocedural slice.

Third, we transform program slices to code gadgets. For
the statements from the same function in a program slice,
the order of the statements is preserved. As an example shown
in Figure 3, lines {6,7,8,9,10,11} and line {2} are obtained.
For the statements from different functions in a program
slice, the statements in the calling functions appear before
the statements in the called functions. The final code gadget
obtained in Figure 3 is lines {6,7,8,9,10,11,2}.

C. DATA PROCESSING WITH IMBALANCED TECHNIQUES
Since the number of vulnerable code gadgets is much smaller
than the number of code gadgets without vulnerabilities,
we can process the imbalanced data for vulnerability detec-
tion. There are mainly two types of approaches used to
reduce the influence of imbalance: changing the distri-
bution of dataset [24], [25] and leveraging hard negative
mining [26]. Because leveraging hard negative mining is
applied to the neural network for training, we describe its
design in Section III-D.

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

IEEE Access

1) CHANGING THE DISTRIBUTION OF DATASET

By increasing or decreasing some code gadgets (i.e.,
samples) reasonably to balance the dataset, the adverse
effects caused by imbalanced data can be reduced. The
main techniques include random data sampling, distance
methods, data cleaning approximation, clustering algo-
rithms, evolutionary algorithms, and so on. Among them,
the data sampling is the most widely used technique, and it
mainly includes under-sampling and over-sampling. Under-
sampling is mainly used for majority samples to remove noise
and redundant data, and over-sampling is primarily intended
to add the number of minority samples. We choose the fol-
lowing methods to preprocess the input vectors of neural
network.

o None. No imbalanced data processing techniques are
used.

o NearMiss-2. NearMiss-2 is an under-sampling method
using a K-Nearest Neighbor (KNN) classifier [24].

« SMOTE. SMOTE is an over-sampling technique, and
generates new synthetic samples by interpolation [25].

D. TRAINING A NEURAL NETWORK

Because the labels of code gadgets which are automatically
generated in Step II may be mislabeled, in this step we
use k-fold cross validation [23] to identify the code gadgets
which are mislabeled with high probability and check them
manually as per the following steps. First, the data set of
code gadgets is divided into k subsets. Second, one of the k
subsets is used as the validation set and the other k-1 subsets
are put together to form a training set. Third, the trained
neural network is used to classify the code gadgets in the
validation set. The false positives (i.e., the samples which
are not vulnerable and are detected as vulnerable) and false
negatives (i.e., the vulnerable samples which are not detected
as vulnerable) are considered as the code gadgets which are
mislabeled with high probability. We manually check them
and correct the mislabeled code gadgets. The second and third
steps are repeated k times so that each subset is used as the
validation set once.

After correcting the mislabeled code gadgets, we input
the vectors corresponding to code gadgets from the training
programs and their labels to the neural network. In what
follows, we first provide another type of approaches to imbal-
anced data processing for the neural network (i.e., leveraging
hard negative mining), then discuss different kinds of neural
networks and the selection strategies of outputs for recurrent
neural networks.

1) LEVERAGING HARD NEGATIVE MINING

For highly imbalanced dataset, hard negative mining, also
known as bootstrapping, is a common technique introduced
in the 1990s by Sung [27] when training face detection mod-
els. The basic idea is to gradually increase the background
examples collection by selecting the examples that are more
likely to cause false positives. This idea is then applied

VOLUME 7, 2019

Code gadgets
in vector
representation

(a) For each sample in Iy

Dense Activation
BLSTM layers layer layer

Classification
loss Hard code
» gadgets
sampler
1
I

|/hard-sel =Batch size

/ all

Thard-set X

> Forward for each
sample in /u

Dense Activation

BLSTM layers Tayer Forward and backward

layer == foreach sample in Jharg-set

(b) For each sample in Jhaa.set | | & — > Shared parameters

FIGURE 4. BLSTM neural network architecture for imbalanced data. In (a),
a read-only model is used for forward process for all code gadgets. In (b),
a set of hard samples, obtained by hard code gadgets sampler, is used for
both forward and backward passes. The adjusted model in (b) is updated
to the model in (a) simultaneously.

to the Online Hard Example Mining (OHEM) algorithm in
an imbalanced dataset for region-based convolution neural
network detector in the computer vision [26]. We apply the
OHEM algorithm [26] to neural networks for vulnerability
detection. In what follows, we take the BLSTM as an example
to show the process.

Each time step in the BLSTM corresponds to a symbol
in code gadgets obtained in Step III. Figure 4 (a) indicates
a BLSTM consisting of several BLSTM layers, a dense
layer, and an activation layer, which is a read-only model
that does not contain a reverse tuning procedure and is used
for the forward process for a set of all code gadgets 1.
After the forward process for all code gadgets, the online
hard sample mining is used to calculate the loss between the
prediction value and the true value. The samples whose loss
values are greater than the loss threshold are seen as hard
samples.

Considering that if we use all the samples as the input
of (a) in Figure 4, the non-hard samples, also called easy
samples, will participate in backward pass as well and require
memory allocation even if the losses of those easy samples
are set to 0. In order to reduce memory consumption and
improve the efficiency of computing, we replicate the net-
work directly and only use hard samples for the backward
pass training. As can be seen in Figure 4, (b) is a copy
of (a), and what makes a difference between them is that
the input of (b) is a set of hard samples I;4—ser Which is
used for both forward and backward passes. The samples
after the re-sampling phase are the input of (b) to train the
model.

2) DIFFERENT NEURAL NETWORKS

We choose three widely-used types of neural networks to
detect vulnerabilities: multi-layer perceptions, convolutional
neural networks, and recurrent neural networks. They involve
six neural networks: a Multi-Layer Perception (MLP),

103189

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

a Convolutional Neural Network (CNN), an LSTM, a Gated
Recurrent Unit (GRU), a BLSTM, and a Bidirectional Gated
Recurrent Unit (BGRU). Among them, LSTM and GRU are
unidirectional RNNs; BLSTM and BGRU are Bidirectional
RNNs (BRNNSs).

3) DIFFERENT SELECTION STRATEGIES OF OUTPUTS FOR
RNNs

For RNNs, the output of each time step in the activation
layer can be selected in the back propagation for parame-
ter tuning. At time step ¢ (1 < ¢t < 1), the output cor-
responding to ¢ for the code gadget x is h,(x). We adopt
two selection strategies of outputs to show the impact of
selection strategies of outputs corresponding to time steps
on the effectiveness of deep learning-based vulnerability
detection.

o Last time step: This strategy uses the output corre-
sponding to the last time step in the activation layer,
i.e., hy(x).

o Average of /[-max: This strategy uses the average of /
largest outputs corresponding to time steps in the activa-
tion layer, i.e.,

ave(maxy(hi(x), h(x), ..., h; (x))) €))

where function max; indicates the / largest values among
the elements, and function ave indicates the average of
the elements.

E. APPLYING THE TRAINED NEURAL NETWORK TO
CLASSIFY THE CODE GADGETS

In the detection phase, we use the trained neural network
to detect whether each code gadget from target programs
is vulnerable or not. For RNNs, we can obtain the output
corresponding to each symbol in a code gadget. The larger
the output value corresponding to a symbol in the code
gadget is, the more likely the symbol is vulnerable. The
impact of each symbol in the vulnerable code gadgets on
the classification can be illustrated by hot maps. For each
code gadget, the larger output value corresponding to the
symbol is represented by darker color, which means the
greater probability of vulnerability. In order to explore which
code elements (i.e., one or multiple symbols) are more likely
to be vulnerable and highlight their usefulness semantically,
we manually examined the code elements with darker color
in 500 vulnerable code gadgets which were randomly chosen.
We found that most of them involved the library/API function
calls, the types, the control conditions, and so on. This can be
explained by the fact that the misuse of library/API function
call names and their parameters, the type conversions of vari-
ables, the return types of functions, i f conditions, while
conditions, and for conditions often lead to vulnerabilities.
From the hot maps, we can speculate what features the deep
learning model has automatically learned, and further help
to explain the deep learning models, which is an interesting
future work.

103190

IV. EXPERIMENTS AND RESULTS

According to the vulnerabilities related to library/API func-
tion calls, our experiments are geared towards answering the
following three Research Questions (RQs).

+ RQI: Can accommodating more semantic information
in the code gadgets enhance the effectiveness of vulner-
ability detection?

« RQ2: Can imbalanced data processing methods enhance
the effectiveness of vulnerability detection?

« RQ3: Can different kinds of deep neural networks
impact the effectiveness of vulnerability detection?

We implement the neural networks in Python using
TensorFlow [28]. The computer running experiments has
a NVIDIA GeForce GTX 1080 GPU and an Intel Xeon
E5-1620 CPU operating at 3.50GHz.

A. EVALUATION METRICS
The effectiveness of vulnerability detection can be evaluated
by 5 widely used metrics [29]:

o False Positive Rate (FPR): The ratio of false-positive
samples to the total samples that are not vulnerable,
where false-positive samples are the samples which are
not vulnerable and are detected as vulnerable.

o False Negative Rate (FNR): The ratio of false-negative
samples to the total samples that are vulnerable, where
false-negative samples are the vulnerable samples which
are not detected as vulnerable.

e Accuracy (A): The ratio of true-positive and true-
negative samples to the total samples, where true-
positive samples are the vulnerable samples which are
detected as vulnerable, and true-negative samples are the
samples which are not vulnerable and are not detected as
vulnerable.

o Precision (P): The ratio of true-positive samples to the
total samples that are detected as vulnerable.

o Fl-measure (F1): The overall effectiveness that con-

siders both precision and false negative rate. F1 =
2-P-(1-FNR)
P+(I-FNR)

The values of above five metrics vary from O to 1. For FPR
and FNR, the closer they are to 0, the better; for A, P and F1,
the closer they are to 1, the better.

B. PREPARING THE DATASET

The programs we use are from two widely used vulnerability
data sources: NVD [21] and SARD [22], where NVD reports
the vulnerabilities in software products, and SARD involves
large numbers of programs (i.e., test cases) with production,
synthetic, and academic security flaws or vulnerabilities. In
the NVD, for each vulnerability of open source products,
the source code of vulnerable program and its corresponding
patched program can be obtained by means of diff file, which
describes the difference between the vulnerable pieces of
code and their patched versions [30]. In the SARD, there are
three types of programs: ‘“good” programs which have no
vulnerabilities, ‘““bad” programs which have vulnerabilities,

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

IEEE Access

TABLE 1. Datasets for experiments: a dataset of code gadgets with data
dependency and control dependency (DDCD dataset for short) and a
dataset of code gadgets with data dependency (DD dataset for short).

#Vulnerable | #Not vulnerable
Dataset | #Code gadgets code gadgets code gadgets
DDCD 68,353 13,686 54,667
DD 98,262 15,110 83,152

and “mixed” programs which have vulnerabilities and their
patched versions.

We focus on 19 popular C/C++ open source products
as VulDeePecker [16] selects, and collect all kinds of vul-
nerabilities which diff files are available in these products.
We also collect C/C++ programs in the SARD with all kinds
of vulnerabilities. Note that we do not use the dataset of
VulDeePecker [16], because (i) the types of vulnerabilities
are limited to two types of vulnerabilities (i.e., buffer error
and resource management error) and (ii) the code gadgets
generated by means of commercial tool Checkmarx [5] only
involve data dependency. In total, we collect 368 open source
programs related to CVEs from the NVD and 14,000 pro-
grams from the SARD. It is worth mentioning that a program
in the NVD consists of one or several files which contain
a vulnerability or its patched version and a program in the
SARD is a test case. These programs contain 126 types of
vulnerabilities, where each type is uniquely identified by a
Common Weakness Enumeration IDentifier (CWE ID) [31].
The 126 CWE IDs are listed in Appendix VI-B. In our exper-
iments, we randomly select 80% of programs from the NVD
and the SARD we collect respectively as training programs,
and the rest of 20% as target programs.

We generate code gadgets according to the methods pro-
posed in Section III for both training programs and tar-
get programs, and delete the duplicated code gadgets. We
obtain a dataset involving 68,353 different code gadgets with
data dependency and control dependency (DDCD dataset
for short), in which 55,334 code gadgets are generated
from training programs and 13,019 code gadgets are gener-
ated from target programs; and we obtain a dataset involv-
ing 98,262 different code gadgets with data dependency
(DD dataset for short) in which 78,558 code gadgets are
generated from training programs and 19,704 code gad-
gets are generated from target programs. For the NVD,
each statement that is deleted or modified according to the
diff file is considered as the vulnerable statement. For the
SARD, vulnerable statements are clearly marked in each
vulnerable program. The number of vulnerable code gad-
gets and the number of code gadgets that are not vulner-
able are shown in the third column and fourth column of
Table 1 respectively. The datasets are publicly available at
https://github.com/VulDeePecker/Comparative_Study.

C. EXPERIMENTAL RESULTS FOR RQ1

In order to answer whether accommodating more semantic
information in the code gadgets can enhance the effectiveness
of detecting vulnerabilities related to library/API function

VOLUME 7, 2019

TABLE 2. F1-measure with different values of dropout for BLSTM.

Dropout | FPR (%) | ENR (%) | A (%) | P (%) | FI (%)
0.1 3.0 10.3 955 | 89.1 89.4
0.2 30 104 954 | 89.1 893
04 34 8.0 956 | 878 | 899
0.6 33 135 945 | 877 | 87.1
0.8 33 135 945 | 877 | 87.1

calls, we take control dependency as the additional semantic
information and compare the effectiveness for the code gad-
gets with only data dependency and the code gadgets with
both data dependency and control dependency. We use no
imbalanced data processing and use BLSTM neural network
with the last time step as the selection strategy of outputs as
VulDeePecker [16] does.

We use the cross validation to train the deep learning model
to make sure its generalization. Selecting an appropriate value
of k in the k-fold cross validation is an important research
question, since it depends on the sample size, the number
of parameters, the structure of data, etc [32]. Considering
the tradeoff between the training overhead and the gener-
alization of the model, we use a 5-fold cross validation to
train a BLSTM and choose the values of hyper-parameters
that lead to the highest Fl1-measure (i.e., the overall effec-
tiveness of vulnerability detection). Specifically, we vary
the value of a hyper-parameter and observe the impact on
the F1-measure. When we adjust a hyper-parameter, we set
other hyper-parameters to their default values or the val-
ues that are widely used by the deep learning community.
The main hyper-parameters we use are as follows: the out-
put dimension is 128, the batch size is 32, the minibatch
stochastic gradient descent together with ADAMAX [33] is
used, the learning rate is 0.01, the number of epochs is 4,
the number of hidden layers is 1, the dimension of hidden
vectors is 500, and the length of the vector corresponding to
a symbol is 40. Table 2 shows the F1-measure with different
values of dropout. We observe that the Fl1-measure reaches
the maximum when dropout is 0.4 and declines with larger
dropout. Therefore, the best value of dropout is 0.4. The other
hyper-parameters of BLSTM are tuned in a similar fashion.

As illustrated in Table 3, using code gadgets with data
dependency and control dependency outperforms using code
gadgets with only data dependency in terms of most met-
rics. Specifically, compared with using code gadgets with
data dependency, the FNR for using code gadgets with data
dependency and control dependency is reduced by 31.2% at
the price of increasing the FPR by only 0.5%. As a result,
the overall effectiveness F1-measure for data dependency and
control dependency increases 20.3%. This can be explained
by the fact that control dependency carries extra information
that can be used to distinguish the vulnerable code from
the code that are not vulnerable, especially for the vulnera-
bilities whose patches involve condition statements or loop
statements such as “if”’, “for”’, and *““while”. For example,
if a vulnerable statement in an “if-else” structure is not data
dependent on the ““if”” condition statement, then the ““if”

103191

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

TABLE 3. Effectiveness of BLSTM using different semantic information
(with no imbalanced data processing and with the last time step as the
selection strategy of output).

Type of semantic FPR | FNR A P F1
information (%) (%) (%) (%) (%)
Data dependency
(VulDeePecker [16]) 20 374 | 924 | 849 | 721
Data dependency and
control dependency

2.5 6.2 96.7 | 90.9 | 924

condition statement is not involved in the code gadget with
data dependency. However, the ““if”” condition statement as
a context affects the vulnerable statement by control depen-
dency. When the control dependency is used together with the
data dependency, the effectiveness of vulnerability detection
can be greatly improved. In what follows, we focus on using
the code gadgets with data dependency and control depen-
dency since it is more effective.

In summary, we answer RQ1 with the following:

Insight 1: Accommodating control dependency in the
code gadgets can increase the overall effectiveness of vulner-
ability detection F1-measure by 20.3%.

D. EXPERIMENTAL RESULTS FOR RQ2

In order to test whether imbalanced data processing methods
can enhance the effectiveness of deep learning-based vulner-
ability detection, we test three imbalanced data processing
methods involving two methods of changing the distribution
of dataset (i.e., NearMiss-2 and SMOTE) and a method of
leveraging hard negative mining (i.e., OHEM). We test the
BLSTM using code gadgets with data dependency and con-
trol dependency and use the last time step as the selection
strategy of output.

Table 4 summarizes the comparison of results. Using
imbalanced data processing methods does not outperform
using no imbalanced data processing in most metrics on the
dataset of code gadgets we create. Specifically, we make the
following observations. First, using NearMiss-2 method is
1.4% lower in terms of FNR, 38.5% higher in terms of FPR,
and 37.4% lower in terms of Fl-measure, compared with
no imbalanced data processing. This can be explained by
the fact that the under-sampling method makes the number
of majority samples (i.e., code gadgets that are not vulner-
able) become less, thus greatly reduces the amount of data,
which causes a markedly higher FPR than other methods.
Second, using SMOTE method is 0.7% lower in terms of
FNR, 0.6% higher in terms of FPR, and 0.7% lower in
terms of Fl-measure, compared with no imbalanced data
processing. The over-sampling method achieves a little less
overall effectiveness than using no imbalanced method by
increasing the number of minority samples (i.e., vulnerable
code gadgets). In spite of this, using SMOTE method achieves
the best overall effectiveness among three imbalanced data
processing methods due to the increased number of sam-
ples. Third, the FPR of using OHEM method is reduced
by only 0.3% at the cost of a substantial increase of FNR

103192

TABLE 4. Effectiveness of BLSTM using different imbalanced data
processing methods (with the code gadgets involving data dependency
and control dependency and with the last time step as the selection
strategy of output).

Imbalanced data FPR | FNR A P F1
processing method | (%) | (%) | (%) | (%) | (%)

None 2.5 6.2 96.7 | 90.9 | 92.4
NearMiss-2 41.0 4.8 66.7 | 38.6 | 55.0
SMOTE 3.1 5.5 96.3 | 89.0 | 91.7
OHEM 2.2 459 | 885 | 869 | 66.7
VulDeePecker [16] 2.0 374 | 924 | 849 | 72.1
SySeVR [17]
with BGRU 2.2 6.8 96.8 | 91.9 | 92,5

(i.e., 39.7%) and a significant decline of Fl-measure (i.e.,
25.7%), compared with no imbalanced data processing. The
hard negative mining method does not change the number of
samples. It only selects the samples that are more likely to
cause false positives in the back propagation for parameter
tuning, which causes a lower FPR but markedly higher FNR
than other methods. Fourth, for other deep learning-based
methods, VulDeePecker [16] has much higher FNR which
causes a much lower F1-measure than SMOTE and no imbal-
anced data processing methods for code gadgets with data
dependency and control dependency, because VulDeePecker
only uses data dependency as the semantic information in the
code gadget. SySeVR [17] with BGRU is not significantly
better than the BLSTM with no imbalanced data process-
ing method, though SySeVR with BGRU has a little higher
Fl-measure (0.1%); their differences mainly caused by the
different neural network.

Summarizing the preceding discussions, we draw:

Insight 2: The imbalanced data processing methods are
not effective for the dataset of code gadgets we create using
the method in Section IV-B, and the over-sampling method
SMOTE is better than other imbalanced data processing
methods.

E. EXPERIMENTAL RESULTS FOR RQ3

1) COMPARISON AMONG DIFFERENT NEURAL NETWORKS
In order to show the effectiveness of different neural net-
works, we adopt a 5-fold cross validation to train an MLP,
a CNN, an LSTM, a GRU, a BLSTM, and a BGRU. We
test the above six neural networks using code gadgets with
data dependency and control dependency, no imbalanced data
processing, and the last time step as the selection strategy of
output for recurrent neural networks (as VulDeePecker [16]
does). We choose the values of hyper-parameters that lead
to the highest Fl-measure for each neural network. The
hyper-parameters we mainly tune are those which have a
greater impact on the results according to the deep learning
community. We use the minibatch stochastic gradient descent
together with ADAMAX with the learning rate of 0.01,
and set the number of epochs to 10. The final selected
values of hyper-parameters that we tune are listed in Table 5.
For other hyper-parameters, we choose their default
values.

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

IEEE Access

TABLE 5. Values of hyper-parameters that are chosen for six neural
networks.

Hyper-

MLP | CNN | LSTM | GRU | BLSTM | BGRU
parameter
Output g5 | 256 | 256 | 256 256
dimension
Filters - 32 - - - -
Batch 16 | 16 32 16 32 32
S1Ze
Dropout 0.1 0.2 0.1 0.1 0.4 0.2
#Hidden 5 5 5 | 3 5
layers

TABLE 6. Comparison among the effectiveness of six neural networks
(with the code gadgets involving data dependency and control
dependency, with no imbalanced data processing, and with the last time
step as the selection strategy of output for RNNs).

Neural network | FPR (%) | FNR (%) | A (%) | P (%) | F1 (%)
MLP 2.5 15.5 94.9 89.3 86.8
CNN 1.8 9.9 96.5 93.3 91.6

LSTM 33 9.9 95.3 88.1 89.1

GRU 2.9 5.8 96.5 89.7 91.9
BLSTM 2.5 6.2 96.7 90.9 92.4
BGRU 2.2 6.8 96.8 91.9 92.5

Table 6 summarizes the results of the above six neural net-
works. We observe that when compared with unidirectional
RNNs (i.e., LSTM and GRU), the bidirectional RNNs (i.e.,
BLSTM and BGRU) can increase the F1-measure by 2.0% on
average. This phenomenon might be caused by the following:
unidirectional RNNs can only accommodate the information
about the statements that appear before or after (not both) the
statement in question. In fact, a vulnerable statement may
be affected by earlier statements in the program and may
be also affected by later statements. Therefore, bidirectional
RNNs which can accommodate more information about the
statements in two directions are better. The architectures of
bidirectional RNNs make them more suitable for coping with
sequential data. Moreover, there is no great difference in
most metrics between BLSTM and BGRU (i.e., one is not
significantly better than the other), though BGRU has a little
higher Fl-measure than BLSTM. We also observe that the
MLP with the F1-measure of 86.8% is worse than other neural
networks, which demonstrates that the feed-forward neural
network in which neurons in each layer are fully connected
to the neurons in the next layer does not do well in learning
the semantics of code gadgets. We further observe that CNN,
which is good at modeling position-invariant features, is in
between bidirectional RNNs and MLP.

We take CNN and BLSTM as examples to show the time
complexity of training and detection. It takes 45,204 sec-
onds to train a CNN and 2,410 seconds to detect vulner-
abilities, and it takes 106,829 seconds to train a BLSTM
and 4,431 seconds to detect vulnerabilities. Not surprisingly,
the training time is much larger than the detection time.
The CNN spends much shorter time for training and detec-
tion than the BLSTM, as the neural networks themselves
imply.

VOLUME 7, 2019

TABLE 7. Impact of / on the effectiveness of average of I-max.

Il | FPR(%) | FNR (%) | A(%) | P(%) | F1 (%)
1 1.6 9.9 96.6 93.7 91.9
2 2.0 8.2 96.7 92.5 92.1
3 2.1 9.5 96.3 92.0 91.2
4 3.1 10.2 95.4 88.7 89.3
5 5.5 43.8 86.3 73.5 63.7

Insight 3: Bidirectional RNNs are more effective than uni-
directional RNNs and CNN, which in turn are more effective
than MLP.

2) COMPARISON AMONG DIFFERENT SELECTION
STRATEGIES OF OUTPUTS

For RNNs, different selection strategies of outputs corre-
sponding to time steps may impact on the effectiveness of
deep learning-based vulnerability detection. In order to test
the impact of different selection strategies of outputs, we
take BLSTM as an example, and test two selection strategies
which are used for back propagation to train the neural net-
work without imbalanced data processing, while noting that
similar phenomenon is observed for other recurrent neural
networks. One is using the output corresponding to the last
time step for a code gadget (denoted as “‘last time step””); the
other one is using the average of / largest outputs correspond-
ing to time steps for a code gadget (denoted as ““average of
[-max’’).

For the selection strategy of average of [-max, Table 7
shows the impact of different values of / on the effectiveness
of vulnerability detection. Using the average of two largest
outputs corresponding to time steps (i.e., [= 2) achieves
the highest overall effectiveness F1-measure (i.e., 92.1%) and
the lowest FNR (i.e., 8.2%), while using the largest output
corresponding to the time step (i.e.,/ = 1) achieves the lowest
FPR (i.e., 1.6%). For [(I > 2), the larger [is, the less effective
in terms of all five metrics. In what follows, we select [= 2
since it achieves the highest overall effectiveness for the
selection strategy of average of I-max.

Table 8 summarizes the results for two selection strategies
of outputs corresponding to time steps. We observe that the
average of l-max (I = 2) achieves a 0.5% lower FPR and a
1.6% higher precision at the cost of a 2.0% higher FNR and
a 0.3% lower F1-measure, compared with the last time step.
As can be seen from the overall effectiveness F1-measure,
the last time step is a little better. We speculate the higher FNR
of the average of [-max (I = 2) is caused by the following:
the time steps with the [largest outputs may correspond
to any intermediate time steps, thus the average of [-max
cannot better grasp the overall information for all time steps,
compared with the last time step. Local information limits
the scope of learning vulnerability features, especially for
long code gadgets. Therefore, some vulnerability features
cannot be learned, which causes a higher FNR. In addition,
VulDeePecker [16] with last time step is less effectiveness

103193

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

TABLE 8. Effectiveness of BLSTM using different selection strategies of
outputs corresponding to time steps (with the code gadgets involving
data dependency and control dependency and with no imbalanced data
processing).

FPR | FNR A P F1
(%) | () | (%) | (%) | (%)
Last time step 2.5 6.2 96.7 | 909 | 92.4

Aver";lg:’;‘max 20 | 82 | 967 | 925 | 921

VulDeePecker [16] 2.0 374 | 924 | 849 | 72.1

SySeVR [17]
ith BGRU 22 | 68 | 968 | 91.9 | 925

Selection strategy

in most metrics, especially with 31.2% higher FNR and
20.3% lower Fl-measure compared with the method using
the last time step. This is mainly caused by using only data
dependency as the semantic information in the code gadget.
SySeVR [17] with BGRU uses the last time step and is not
significantly better than the BLSTM with last time step,
though SySeVR with BGRU has a little higher F1-measure
(0.1%). The difference between BLSTM with last time step
and SySeVR with BGRU is mainly caused by different neural
network. In summary, we draw:

Insight 4: Different selection strategies of outputs corre-
sponding to time steps for recurrent neural networks can
influence the effectiveness of vulnerability detection. Specif-
ically, using the last output corresponding to the time step
for BLSTM can reduce the FNR by 2.0% at the price of
increasing the FPR by 0.5%.

V. RELATED WORK

As discussed in Section I, there are mainly two types
of approaches to static vulnerability detection for source
code: code similarity-based approaches and pattern-based
approaches. The code similarity-based approaches detect the
vulnerabilities caused by code clone, i.e., the vulnerable
pieces of code which are similar to the code of given vul-
nerabilities. When they are used to detect vulnerabilities that
are not caused by code clones, high false negatives occur.
The pattern-based approaches detect a type of vulnerabilities
through matching vulnerability patterns which can be gen-
erated manually or automatically. Deep learning-based vul-
nerability detection belongs to the pattern-based approaches.
In this section, we review the prior work on the pattern-based
vulnerability detection approaches, which mainly involve
three categories: rule-based, traditional machine learning-
based, and deep learning-based methods.

A. RULE-BASED METHODS

Rule-based methods are based on vulnerability rules (i.e.,
patterns) which are manually defined by human experts. The
present static vulnerability detection tools, which provide the
corresponding rules for each vulnerability type, belong to this
group. This category includes the lightweight methods that
generate patterns from source code (e.g., open source tools
Flawfinder [4], RATS [34], ITS4 [35], and commercial tool

103194

Checkmarx [5]) and the more comprehensive methods that
generate patterns based on intermediate code (e.g., commer-
cial tools Fortify [6] and Coverity [7]). These tools can report
the locations and the types of vulnerabilities, but cannot
accurately distinguish between various vulnerable code and
non-vulnerable code, resulting in high false positives or high
false negatives [16], [36].

B. TRADITIONAL MACHINE LEARNING-BASED METHODS
Traditional machine learning-based methods rely on human
experts for defining features to characterize vulnerabilities,
and use traditional machine learning techniques [37], such
as k-nearest neighbor and support vector machine, to clas-
sify vulnerable code and non-vulnerable code. Ghaffarian
and Shahriari [38] reviewed the approaches of vulnerabil-
ity analysis and discovery using machine-learning tech-
niques, most of which are traditional machine learning-based
methods. Traditional machine learning-based methods can
be characterized by the granularity and attributes. Granu-
larity describes the ‘“atomic” unit of code that is treated
as a whole. Many granularities have been investigated,
including program [9], package [39], component [10], [40],
file [11], [41], and function [12], [42], [43]. Attributes are
the features that are defined to characterize pieces of
code, including terms and their occurrence frequencies [10],
imports and function calls [40], complexity, code churn,
and developer activity [41], dependency relation [39], API
symbols and subtrees [12], [42], system calls [9], and the
combination of some features above [43]. Therefore, these
approaches rely on human experts to manually define
features, and cannot pin down the precise locations of
vulnerabilities because programs are represented in some
coarse-grained granularities.

C. DEEP LEARNING-BASED METHODS

Deep learning-based methods do not need to manually define
features to characterize vulnerabilities, and can learn the
features of vulnerable code automatically. Lin et al. [13]
presented an approach to automatic learning high-level rep-
resentations of functions based on their abstract syntax trees
for vulnerability discovery. Russell et al. [14] proposed a
large-scale function-level vulnerability detection system to
learn deep feature representation of source code after lexi-
cal analysis. It combined the neural feature representations
of function source code with random forest as a classifier.
Harer et al. [15] used machine learning methods to perform
the data-driven vulnerability detection, and compared the
effectiveness of using the source code and the compiled
code. The granularity of above approaches is function-level
involving large numbers of statements which are not related
to vulnerabilities. Therefore, they are coarse-grained and
cannot pin down the precise locations of vulnerabilities.
The recently proposed VulDeePecker [16] is the first to use
deep learning to detect vulnerabilities at the slice level (finer
than function level), effectively excluding the statements
which are not related to vulnerabilities. SySeVR [17] is a

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System I E E E ACC@SS

TABLE 9. 811 security-related C/C++ library/API function calls corresponding to all kinds of known vulnerabilities, where “+" is the wildcard.

StrNCat, getaddrinfo, _ui64toa, fclose, pthread_mutex_lock, gets_s, sleep, _ui64tot, freopen_s, _ui64tow, send, Istrcat, HMAC_Update, _ fxstat, StrCatBuff, _mbscat,
_mbstok_s, _cprintf_s, ldap_search_init_page, memmove_s, ctime_s, vswprintf, vswprintf_s, _snwprintf, _gmtime_s, _tccpy, *RC6x%, _mbslwr_s, random, __wcstof_internal,
_weslwr_s, _ctime32_s, wesncat, MDS5_Init, _ultoa, snprintf, memset, syslog, _vsnprintf_s, HeapAlloc, pthread_mutex_destroy, ChangeWindowMessageFilter, _ultot,
crypt_r, _strupr_s_l, LoadLibraryExA, _strerror_s, LoadLibraryExW, wvsprintf, MoveFileEx, _strdate_s, SHAI, sprintfW, StrCatNW, _scanf_s_l, pthread_attr_init,
_wtmpnam_s, snscanf, _sprintf_s_1, dlopen, sprintfA, timed_mutex, OemToCharA, 1dap_delete_ext, sethostid, popen, OemToCharW, _gettws, vfork, _wcsnset_s_l, sendmsg,
_mbsncat, wvnsprintfA, HeapFree, _wcserror_s, realloc, _snprintfx, westok, _strncats, StrNCpy, _wasctime_s, pushx, _Ifind_s, CC_SHAS512, ldap_compare_ext_s, wescat_s,
strdup, _chsize_s, sprintf_s, CC_MD4_Init, wcsncpy, _wfreopen_s, _wcsupr_s, _searchenv_s, ldap_modify_ext_s, _wsplitpath, CC_SHA384_Final, MD2, RtIiCopyMemory,
IstrcatW, MD4, MD5, _wcstok_s_1, _vsnwprintf_s, ldap_modify_s, strerror, _lsearch_s, _mbsnbcat_s, _wsplitpath_s, MD4_Update, _mbccpy_s, _strncpy_s_I, _snprintf_s,
CC_SHAS512_Init, fwscanf_s, _snwprintf_s, CC_SHAI, swprintf, fprintf, EVP_Digestlnit_ex, strlen, SHA1_Init, strncat, _getws_s, CC_MD4_Final, wnsprintfW, lcong48,
Irand48, write, HMAC_Init, _wfopen_s, wmemchr, _tmakepath, wnsprintfA, IstrcpynW, scanf_s, _mbsncpy_s_l, _localtime64_s, fstream.open, _wmakepath, Connection.open,
_tecat, valloc, setgroups, unlink, fstream.put, wsprintfA, *SHA1x, _wsearchenv_s, ualstrcpyA, CC_MDS5_Update, strerror_s, HeapCreate, ualstrcpyW, __xstat, _wmktemp_s,
StrCatChainW, ldap_search_st, _mbstowcs_s_l, ldap_modify_ext, _mbsset_s, strncpy_s, move, execle, StrCat, xrealloc, wcsnepy_s, _tesnepy*, execlp, RIPEMD160_Final,
Idap_search_s, EnterCriticalSection, _wctomb_s_1, fwrite, _gmtime64_s, sscanf_s, wcscat, _strupr_s, wertomb_s, VirtualLock, ldap_add_ext_s, _mbscpy, _localtime32_s,
Istrepy, _wesnepy*, CC_SHAI _Init, _getts, _wfopen, __ xstat64, strcoll, _fwscanf_s_l, _mbslwr_s_l, RegOpenKey, makepath, seed48, CC_SHA256, sendto, execv,
CalculateDigest, memchr, _mbscpy_s, _strtime_s, ldap_search_ext_s, _chmod, flock, __fxstat64, _vsntprintf, CC_SHA256_Init, _itoa_s, __wcserror_s, _gcvt_s, fstream.write,
sprintf, recursive_mutex, strrchr, gethostbyaddr, _wcsupr_s_I, strcspn, MD5_Final, asprintf, _wcstombs_s_l, _tcstok, free, MD2_Final, asctime_s, _alloca, _wputenv_s,
_wesset_s, _wceslwr_s_l, SHA1_Update, filebuf.sputc, filebuf.sputn, SQLConnect, ldap_compare, mbstowcs_s, HMAC_Final, pthread_condattr_init, _ultow_s, rand,
ofstream.put, CC_SHA224_Final, IstrcpynA, bcopy, system, CreateFilex, wcscpy_s, _mbsnbcepy, open, _vsnwprintf, strncpy, getopt_long, CC_SHAS512_Final, _vsprintf_s_1,
scanf, mkdir, _localtime_s, _snprintf, _mbccpy_s_l, memcmp, final, _ultoa_s, IstrcpyW, LoadModule, _swprintf_s_l, MD5_Update, _mbsnset_s_l, _wstrtime_s, _strnset_s,
IstrcpyA, _mbsnbepy_s, mlock, IsBadHugeWritePtr, copy, _mbsnbcpy_s_l, wnsprintf, wescpy, ShellExecute, CC_MD4, _ultow, _vsnwprintf_s_l, Istrcpyn, CC_SHA1_Final,
vsnprintf, _mbsnbset_s, _i64tow, SHA256_Init, wvnsprintf, RegCreateKey, strtok_s, _wctime32_s, _i64toa, CC_MDS5_Final, wmemcpy, WinExec, CreateDirectory=,
CC_SHA256_Update, _vsnprintf_s_l, jrand48, wsprintf, Idap_rename_ext_s, filebuf.open, _wsystem, SHA256_Update, _cwscanf_s, wsprintfW, _sntscanf, _splitpath, fscanf_s,
strpbrk, westombs_s, wscanf, _mbsnbcat_s_l, strcpynA, pthread_cond_init, wesrtombs_s, _wsopen_s, CharToOemBuffA, RIPEMD160_Update, _tscanf, HMAC, StrCCpy,
Connection.connect, Istrcatn, _mbstok, _mbsncpy, CC_SHA384_Update, create_directories, pthread_mutex_unlock, CFile.Open, connect, _vswprintf_s_l, _snscanf_s_I,
fputc, _wscanf_s, _snprintf_s_I, strtok, _strtok_s_I, IstrcatA, snwscanf, pthread_mutex_init, fputs, CC_SHA384_Init, _putenv_s, CharToOemBuffW, pthread_mutex_trylock,
__westoul_internal, _memccpy, _snwprintf_s_l, _strncpy*, wmemset, MD4_Init, *RC4x, strcpyW, _ecvt_s, memcpy_s, erand48, IsBadHugeReadPtr, strcpyA, HeapReAlloc,
memcpy, ldap_rename_ext, fopen_s, srandom, _cgetws_s, _makepath, SHA256_Final, remove, _mbsupr_s, pthread_mutexattr_init, __wcstold_internal, StrCpy, ldap_delete,
wmemmove_s, _mkdir, strcat, _cscanf_s_l, StrCAdd, swprintf_s, _strnset_s_l, close, ldap_delete_ext_s, ldap_modrdn, strchr, _gmtime32_s, _ftcscat, IstrcatnA, _tcsncat,
OemToChar, mutex, CharToOem, strcpy_s, IstrcatnW, _wscanf_s_I, __Ixstat64, memalign, MD2_Init, StrCatBuftW, StrCpyN, CC_MD35, StrCpyA, StrCatBuffA, StrCpyW,
tmpnam_r, _vsnprintf, strcatA, StrCpyNW, _mbsnbset_s_I, EVP_DigestInit, _stscanf, CC_MD2, _tcscat, StrCpyNA, xmalloc, _tcslen, *MD4s, vasprintf, strxfrm, chmod,
Idap_add_ext, alloca, _snscanf_s, IsBadWritePtr, swscanf_s, wmemcpy_s, _itoa, _ui64toa_s, EVP_DigestUpdate, _ wcstol_internal, _itow, StrNCatW, strncat_s, ualstrcpy,
execvp, _mbccat, EVP_MD_CTX _init, assert, ofstream.write, ldap_add, _sscanf_s_I, drand48, CharToOemW, swscanf, _itow_s, RIPEMD160_Init, CopyMemory, initstate,
getpwuid, vsprintf, _fcvt_s, CharToOemA, setuid, malloc, StrCatNA, strcat_s, srand, getwd, _controlfp_s, olestrcpy, __wcstod_internal, _mbsnbcat, Istrncat, des_x,
CC_SHA224_Init, setx, vsprintf_s, SHA1_Final, _umask_s, gets, setstate, wvsprintfW, LoadLibraryEXx, ofstream.open, calloc, _mbstrlen, _cgets_s, _sopen_s, IsBadStringPtr,
wesncat_s, addx, nrand48, create_directory, ldap_search_ext, _i64toa_s, _ltoa_s, _cwscanf_s_l, wmemcmp, __Ixstat, Istrlen, pthread_condattr_destroy, _ftcscpy, westok_s,
__xmknod, pthread_attr_destroy, sethostname, _fscanf_s_l, StrCatN, RegEnumKey, _tcsncpy, strcatW, AfxLoadLibrary, setenv, tmpnam, _mbsncat_s_l, _wstrdate_s,
_wctime64_s, _i64tow_s, CC_MD4_Update, ldap_add_s, _umask, CC_SHA1_Update, _wcsset_s_l, _mbsupr_s_l, strstr, _tsplitpath, memmove, _tcscpy, vsnprintf_s,
stremp, wvnsprintfW, tmpfile, 1dap_modify, _mbsncat, mrand48, sizeof, StrCatA, _ltow_s, xdesencrypt*, StrCatW, _mbccpy, CC_MD?2_Init, RIPEMD160, 1dap_search,
CC_SHA224, mbsrtowcs_s, update, ldap_delete_s, getnameinfo, *RC5s%, _wcsncat_s_l, DriverManager.getConnection, socket, _cscanf_s, ldap_modrdn_s, _wopen,
CC_SHA256_Final, _snwprintf*, MD2_Update, strcpy, _strncat_s_l, CC_MD5_Init, mbscpy, wmemmove, LoadLibraryW, _mbslen, *alloc, _mbsncat_s, LoadLibraryA,
fopen, StrLen, delete, _splitpath_s, CreateFileTransacted*, MD4_Final, _open, CC_SHA384, wcslen, wcsncat, _mktemp_s, pthread_mutexattr_destroy, _snwscanf_s,
_strset_s, _wcesncpy_s_l, CC_MD?2_Final, _mbstok_s_l, wctomb_s, MySQL_Driver.connect, _snwscanf_s_l, *_des_sx, LoadLibrary, _swscanf_s_l, ldap_compare_s,
Idap_compare_ext, _strlwr_s, GetEnvironmentVariable, cuserid, _mbscat_s, strspn, _mbsncpy_s, ldap_modrdn2, LeaveCriticalSection, CopyFile, getpwd, sscanf, creat,
RegSetValue, ldap_modrdn2_s, CFile.Close, *SHA_1:x, pthread_cond_destroy, CC_SHAS512_Update, *RC2x%, StrNCatA, _mbsnbcpy, _mbsnset_s, crypt, excel, _vstprintf,
xstrdup, wvsprintfA, getopt, mkstemp, _wcsnset_s, _stprintf, _sntprintf, tmpfile_s, OpenDocumentFile, _mbsset_s_I, _strset_s_l, _strlwr_s_I, ifstream.open, xcalloc, StrNCpyA,
_wctime_s, CC_SHA224_Update, _ctime64_s, MoveFile, chown, StrNCpyW, IsBadReadPtr, _ui64tow_s, IsBadCodePtr, getc, OracleCommand.ExecuteOracleScalar,
AccessDataSource.Insert, IDbDataAdapter.FillSchema, IDbDataAdapter.Update, GetWindowText*, SendMessage, SqlCommand.ExecuteNonQuery, streambuf.sgetc, stream-
buf.sgetn, OracleCommand.ExecuteScalar, SqlDataSource.Update, _Read_s, IDataAdapter.Fill, _wgetenv, _RecordsetPtr.Openx, AccessDataSource.Delete, Recordset.Opens,
filebuf.sbumpc, DDX_*, RegGetValue, fstream.reads*, SqlCeCommand.ExecuteResultSet, SqlCommand.ExecuteXmlReader, main, streambuf.sputbacke, read, m_IpCmdLine,
CRichEditCtrl.Getx, istream.putback, SqlCeCommand.ExecuteXmlReader, SqlCeCommand.BeginExecuteXmlReader, filebuf.sgetn, OdbcDataAdapter.Update, filebuf.sgetc,
SQLPutData, recvfrom, OleDbDataAdapter.FillSchema, IDataAdapter.FillSchema, CRichEditCtrl.GetLine, DbDataAdapter.Update, SqlCommand.ExecuteReader,
istream.get, ReceiveFrom, _main, fgetc, DbDataAdapter.FillSchema, kbhit, UpdateCommand.Executex, Statement.execute, fgets, SelectCommand.Executex,
getch, OdbcCommand.ExecuteNonQuery, CDaoQueryDef.Execute, fstream.getline, ifstream.getline, SqlDataAdapter.FillSchema, OleDbCommand.ExecuteReader,
Statement.execute*, SqlCeCommand.BeginExecuteNonQuery, OdbcCommand.ExecuteScalar, SqlCeDataAdapter.Update, sendmessage, mysqlpp.DBDriver, fstream.peek,
Receive, CDaoRecordset.Open, OdbcDataAdapter.FillSchema, _wgetenv_s, OleDbDataAdapter.Update, readsome, SqlCommand.BeginExecuteXmlReader, recv,
ifstream.peek, _Main, _tmain, _Readsome_s, SqlCeCommand.ExecuteReader, OleDbCommand.ExecuteNonQuery, fstream.get, IDbCommand.ExecuteScalar,
filebuf.sputbacke, IDataAdapter.Update, streambuf.sbumpe, InsertCommand.Executex, RegQueryValue, IDbCommand.ExecuteReader, SqlPipe.ExecuteAndSend,
Connection.Executex, getdlgtext, ReceiveFromEx, SqlDataAdapter.Update, RegQueryValueEx, SQLExecute, pread, SqlCommand.BeginExecuteReader, AfxWinMain,
getchar, istream.getline, SqlCeDataAdapter.Fill, OleDbDataReader.ExecuteReader, SqlDataSource.Insert, istream.peek, SendMessageCallback, ifstream.reads,
SqlDataSource.Select, SqlCommand.ExecuteScalar, SqlDataAdapter.Fill, SqlCommand.BeginExecuteNonQuery, getche, SqlCeCommand.BeginExecuteReader, getenv,
streambuf.snextc, Command.Executex, _CommandPtr.Executex, SendNotifyMessage, OdbcDataAdapter.Fill, AccessDataSource.Update, fscanf, QSqlQuery.execBatch,
DbDataAdapter.Fill, cin, DeleteCommand.Executex, QSqlQuery.exec, PostMessage, ifstream.get, filebuf.snextc, IDbCommand.ExecuteNonQuery, Winmain,
fread, getpass, GetDlgltemTextCCheckListBox.GetCheck, DISP_PROPERTY_EX, pread64, Socket.Receivex, SACommand.Executex, SQLExecDirect, Sql-
CeDataAdapter.FillSchema, DISP_FUNCTION, OracleCommand.ExecuteNonQuery, CEdit.GetLine, OdbcCommand.ExecuteReader, CEdit.Get*, AccessDataSource.Select,
OracleCommand.ExecuteReader, OCIStmtExecute, getenv_s, DB2Command.Executex, OracleDataAdapter.FillSchema, OracleDataAdapter.Fill, CComboBox.Get,
SqlCeCommand.ExecuteNonQuery, OracleCommand.ExecuteOracleNonQuery, mysqlpp.Query, istream.read+, CListBox.GetText, SqlCeCommand.ExecuteScalar,
ifstream.putback, readlink, CHtmlEditCtrl. GetDHtmlDocument, PostThreadMessage, CListCtrl.GetltemText, OracleDataAdapter.Update, OleDbCommand.ExecuteScalar,
stdin, SqlDataSource.Delete, OleDbDataAdapter.Fill, fstream.putback, IDbDataAdapter.Fill, _wspawnl, fwprintf, sem_wait, _unlink, ldap_search_ext_sW, signal, PQclear,
PQfinish, PQexec, PQresultStatus.

deep learning-based framework which uses syntax-based,
semantics-based, and vector representations to detect various
types of vulnerabilities at the slice level. Nevertheless, there
is no systematic comparative study to show the quantitative
impact of different factors on the effectiveness of vulnerabil-
ity detection.

VOLUME 7, 2019

The present study follows VulDeePecker and more specif-
ically studies the impact of control dependency in the code
gadget, the imbalanced data processing, and the neural net-
works on the deep learning-based vulnerability detection. As
discussed above, the extension is based on a completely new
implementation using an extended open source tool Joern,

103195

IEEE Access

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System

because a straightforward extension cannot accommodate
new semantic information for VulDeePecker which is based
on the commercial tool Checkmarx.

VI. CONCLUSION AND FUTURE WORK

We conduct a comparative study to evaluate the quanti-
tative impact of different factors on the effectiveness of
deep learning-based vulnerability detection, involving more
semantic information, imbalanced data processing, and dif-
ferent neural networks. For this purpose, we collect a dataset
from the programs involving 126 types of vulnerabilities
and implement the deep learning-based vulnerability detec-
tion system. Experimental results show using the code rep-
resentation with data dependency and control dependency,
no imbalanced data processing, BRNNs, and the last output
corresponding to the time step is the best selection for deep
learning-based vulnerability detection.

However, the present study has several limitations.
First, we focus on detecting the vulnerabilities related to
library/API function calls; future research needs to accom-
modate other kinds of vulnerabilities for comparative study.
Second, the present implementation for code gadgets gen-
eration focuses on dealing with C/C++ programs; future
comparative study will consider introducing the intermediate
language to support multiple programming languages. Third,
hot map can help identify important code elements in the
code gadgets for vulnerability detection and speculate what
features the deep learning model has learned; more investiga-
tions are needed to explain the deep learning model in detail.

APPENDIX

A. LIST OF C/C++ LIBRARY/API FUNCTION CALLS

Table 9 lists the 811 security-related C/C++ library/API
function calls according to all kinds of known vulnerabilities.

B. LIST OF THE 126 TYPES OF VULNERABILITIES

The 126 types of vulnerabilities (i.e., CWE IDs) covered in
the programs of present study are as follows:

CWE-015, CWE-020, CWE-022, CWE-023, CWE-036,
CWE-078, CWE-080, CWE-088, CWE-089, CWE-090,
CWE-114, CWE-119, CWE-120, CWE-121, CWE-122,
CWE-123, CWE-124, CWE-126, CWE-127, CWE-129,
CWE-134, CWE-170, CWE-176, CWE-188, CWE-190,
CWE-191, CWE-194, CWE-195, CWE-196, CWE-197,
CWE-222, CWE-223, CWE-242, CWE-244, CWE-252,
CWE-253, CWE-256, CWE-259, CWE-272, CWE-284,
CWE-319, CWE-321, CWE-325, CWE-327, CWE-338,
CWE-345, CWE-362, CWE-363, CWE-364, CWE-366,
CWE-367, CWE-369, CWE-377, CWE-398, CWE-400,
CWE-401, CWE-404, CWE-412, CWE-414, CWE-415,
CWE-416, CWE-426, CWE-427, CWE-457, CWE-459,
CWE-464, CWE-467, CWE-468, CWE-469, CWE-475,
CWE-476, CWE-479, CWE-489, CWE-506, CWE-510,
CWE-526, CWE-534, CWE-535, CWE-543, CWE-562,
CWE-571, CWE-587, CWE-588, CWE-590, CWE-591,
CWE-605, CWE-606, CWE-609, CWE-617, CWE-620,
CWE-663, CWE-665, CWE-666, CWE-672, CWE-674,

103196

CWE-675, CWE-680, CWE-681, CWE-682, CWE-685,
CWE-688, CWE-690, CWE-704, CWE-758, CWE-761,
CWE-762, CWE-765, CWE-771, CWE-773, CWE-774,
CWE-775, CWE-780, CWE-785, CWE-789, CWE-805,
CWE-806, CWE-821, CWE-822, CWE-824, CWE-828,
CWE-831, CWE-833, CWE-834, CWE-835, CWE-839,
CWE-843.

REFERENCES

[1] (2019). Common Vulnerabilities Exposures (CVE). [Online]. Available:
http://cve.mitre.org/

[2] S.Kim,S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable approach for vul-
nerable code clone discovery,” in Proc. IEEE Symp. Secur. Privacy (SP),
San Jose, CA, USA, May 2017, pp. 595-614.

[3] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: An auto-
mated vulnerability detection system based on code similarity analysis,”
in Proc. 32nd Annu. Conf. Comput. Secur. Appl., Los Angeles, CA, USA,
Dec. 2016, pp. 201-213.

[4] (2019). FlawFinder. [Online]. Available: http://www.dwheeler.com/
flawfinder

[5] (2019). Checkmarx. [Online]. Available: https://www.checkmarx.com/

[6] (2019). HP Fortify. [Online]. Available: https://www.hpfod.com/

[7]1 (2019). Coverity. [Online]. Available: https://scan.coverity.com/

[8] Z. Fang, Q. Liu, Y. Zhang, K. Wang, Z. Wang, and Q. Wu, “A static
technique for detecting input validation vulnerabilities in Android apps,”
Sci. China Inf. Sci., vol. 60, no. 5, May 2017, Art. no. 052111.

[9] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward large-scale vulnerability discovery using machine learning,” in
Proc. 6th ACM Conf. Data Appl. Secur. Privacy, New Orleans, LA, USA,
Mar. 2016, pp. 85-96.

[10] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Trans. Softw. Eng.,
vol. 40, no. 10, pp. 993-1006, Oct. 2014.

[11] S.Moshtari and A. Sami, “Evaluating and comparing complexity, coupling
and a new proposed set of coupling metrics in cross-project vulnerability
prediction,” in Proc. 31st Annu. ACM Symp. Appl. Comput., Pisa, Italy,
Apr. 2016, pp. 1415-1421.

[12] F Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proc. 28th Annu. Comput.
Secur. Appl. Conf., Orlando, FL, USA, Dec. 2012, pp. 359-368.

[13] G.Lin,J. Zhang, W. Luo, L. Pan, and Y. Xiang, “POSTER: Vulnerability
discovery with function representation learning from unlabeled projects,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Dallas, TX, USA,
2017, pp. 2539-2541.

[14] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. W. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in Proc. 17th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Orlando, FL, USA, Dec. 2018,
pp. 757-762.

[15] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A.Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood,
E. Antelman, A. Mackay, M. W. McConley, J. M. Opper, S. P. Chin,
and T. Lazovich, “Automated software vulnerability detection with
machine learning,” Aug. 2018, arXiv:1803.04497. [Online]. Available:
https://arxiv.org/abs/1803.04497

[16] Z.Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in Proc. NDSS, San Diego, CA, USA, 2018, pp. 1-15.

[17] Z.Li,D.Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A framework
for using deep learning to detect software vulnerabilities,” Sep. 2018,
arXiv:1807.06756. [Online]. Available: https://arxiv.org/abs/1807.06756

[18] F Yamaguchi, N. Golde, D. Arp, and K. Rieck, ‘““Modeling and discovering
vulnerabilities with code property graphs,” in Proc. IEEE Symp. Secur.
Privacy, Berkeley, CA, USA, May 2014, pp. 590-604.

[19] J.Liand M. D. Ernst, “CBCD: Cloned buggy code detector,” in Proc. 34th
Int. Conf. Softw. Eng., Zurich, Switzerland, Jun. 2012, pp. 310-320.

[20] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., Antwerp, Belgium, Sep. 2010, pp. 447-456.

[21] (2019). National Vulnerability Database. [Online]. Available: https://nvd.
nist.gov/

VOLUME 7, 2019

Z. Li et al.: Comparative Study of Deep Learning-Based Vulnerability Detection System IEEEACC@SS

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(2019). Software Assurance Reference Dataset. [Online]. Available:
https://samate.nist.gov/SRD/index.php

T. Fushiki, “Estimation of prediction error by using «-fold cross-
validation,” Statist. Comput., vol. 21, no. 2, pp. 137-146, 2011.

I. Mani and I. Zhang, “kNN approach to unbalanced data distributions:
A case study involving information extraction,” in Proc. Workshop Learn.
Imbalanced Datasets, Aug. 2003, pp. 42—48.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321-357, 2002.

A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 761-769.

K. K. Sung, “Learning and example selection for object and pattern detec-
tion,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., MIT, Cambridge,
MA, USA, 1996.

M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Conf. Operating Syst. Design Implement., Savannah,
GA, USA, Nov. 2016, pp. 265-283.

M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, p. 62, Dec. 2016.
W. Qiang, Y. Liao, G. Sun, L. T. Yang, D. Zou, and H. Jin, ‘Patch-related
vulnerability detection based on symbolic execution,” IEEE Access, vol. 5,
pp. 20777-20784, 2017.

(2018). Common Weakness Enumeration. [Online]. Available: http://cwe.
mitre.org/

Y. Jung, “Multiple predicting «-fold cross-validation for model selection,”
J. Nonparam. Statist., vol. 30, no. 1, pp. 197-215, 2018.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Dec. 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

(2014). Rough Audit Tool for Security. [Online]. Available: https://code.
google.com/archive/p/rough-auditing-tool-for-security/

J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “ITS4: A static vulnera-
bility scanner for C and C++ code,” in Proc. 16th Annu. Comput. Secur.
Appl. Conf., New Orleans, LA, USA, Dec. 2000, pp. 257-267.

F. Yamaguchi, ““Pattern-based vulnerability discovery,” Ph.D. dissertation,
Dept. Comput. Sci., Univ. Géttingen, Gottingen, Germany, 2015.

Y. Cao, Y. Zou, Y. Luo, B. Xie, and J. Zhao, “Toward accurate link between
code and software documentation,” Sci. China Inf. Sci., vol. 61, no. 5,
May 2018, Art. no. 050105.

S. M. Ghaffarian and H. R. Shabhriari, “Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey,”
ACM Comput. Surv., vol. 50, no. 4, p. 56, Nov. 2017.

S. Neuhaus and T. Zimmermann, “The beauty and the beast: Vulnerabili-
ties in red hat’s packages,” in Proc. USENIX ATC, San Diego, CA, USA,
2009, pp. 1-14.

S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, ““Predicting vulner-
able software components,” in Proc. 14th ACM Conf. Comput. Commun.
Secur., Alexandria, VA, USA, 2007, pp. 529-540.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772-787,
Dec. 2011.

F. Yamaguchi, F. F. Lindner, and K. Rieck, “Vulnerability extrapolation:
Assisted discovery of vulnerabilities using machine learning,” in Proc.
WOOT, San Francisco, CA, USA, 2011, p. 13.

B. Chernis and R. Verma, “Machine learning methods for software vulner-
ability detection,” in Proc. 4th ACM Int. Workshop Secur. Privacy Anal.,
Tempe, AZ, USA, Mar. 2018, pp. 31-39.

ZHEN LI received the B.E. and M.E. degrees in
computer science and technology from Hebei Uni-
versity, Baoding, China, in 2003 and 2006, respec-
tively. She is currently pursuing the Ph.D. degree in
cyberspace security with the Huazhong University
of Science and Technology, Wuhan, China. Her
research interests include vulnerability detection
and software security.

VOLUME 7, 2019

DEQING ZOU received the Ph.D. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2004. He is currently a Pro-
fessor of cyberspace security with the Huazhong
University of Science and Technology. He has
been the leader of one “863” project of China
and three National Natural Science Foundation of
China (NSFC) projects, and core member of sev-
eral important national projects, such as National
973 Basic Research Program of China. His current
research interests include system security, trusted computing, virtualization,
and cloud security.

JING TANG received the B.E. degree in intelli-
gence science and technology from Central South
University, Changsha, China, in 2018. She is cur-
rently pursuing the M.E. degree in cyberspace
security with the Huazhong University of Sci-
ence and Technology. Her current research inter-
ests include vulnerability detection and machine
learning.

ZHIHAO ZHANG is currently pursuing the bach-
elor’s degree in cyberspace security with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His current research inter-
ests include vulnerability detection and machine
learning.

MINGQIAN SUN is currently pursuing the bach-
elor’s degree in cyberspace security with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His current research interest
includes software security.

HAI JIN received the Ph.D. degree in computer
engineering from the Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 1994, where he is currently a Cheung Kung
Scholars Chair Professor of computer science
and engineering. He is also the Chief Scientist
of ChinaGrid, the largest grid computing project
in China, and the Chief Scientists of National
973 Basic Research Program Project of Virtualiza-
tion Technology of Computing System and Cloud
Security. He has coauthored 22 books and published more than 700 research
papers. His research interests include computer architecture, virtualization
technology, cluster computing and cloud computing, peer-to-peer comput-
ing, network storage, and network security. He is a Fellow of the CCF and
a member of the ACM. He received the Excellent Youth Award from the
National Science Foundation of China, in 2001.

103197

	INTRODUCTION
	PRELIMINARIES
	A BRIEF REVIEW ON VULDEEPECKER
	 CODE GADGET
	DEEP LEARNING-BASED VULNERABILITY DETECTION

	BLSTM
	COMPARISON WITH VULDEEPECKER

	COMPARATIVE STUDY METHODOLOGY
	OVERVIEW
	GENERATING CODE GADGETS
	DATA PROCESSING WITH IMBALANCED TECHNIQUES
	TRAINING A NEURAL NETWORK
	LEVERAGING HARD NEGATIVE MINING
	 DIFFERENT NEURAL NETWORKS
	DIFFERENT SELECTION STRATEGIES OF OUTPUTS FOR RNNs

	APPLYING THE TRAINED NEURAL NETWORK TO CLASSIFY THE CODE GADGETS

	EXPERIMENTS AND RESULTS
	EVALUATION METRICS
	PREPARING THE DATASET
	EXPERIMENTAL RESULTS FOR RQ1
	EXPERIMENTAL RESULTS FOR RQ2
	EXPERIMENTAL RESULTS FOR RQ3
	COMPARISON AMONG DIFFERENT NEURAL NETWORKS
	COMPARISON AMONG DIFFERENT SELECTION STRATEGIES OF OUTPUTS

	RELATED WORK
	RULE-BASED METHODS
	TRADITIONAL MACHINE LEARNING-BASED METHODS
	 DEEP LEARNING-BASED METHODS

	CONCLUSION AND FUTURE WORK
	LIST OF C/C++ LIBRARY/API FUNCTION CALLS
	LIST OF THE 126 TYPES OF VULNERABILITIES

	REFERENCES
	Biographies
	ZHEN LI
	DEQING ZOU
	JING TANG
	ZHIHAO ZHANG
	MINGQIAN SUN
	HAI JIN

