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ABSTRACT This paper presents an approach and analysis for performing decentralized cooperative control
of a team of decoys to achieve the Honeypot Ambush tactic. In this tactic, the threats are successfully lured
into a designated region where they can be easily defeated. The decoys learn to cooperate by incorporating
a game-theory-based online-learning method, known as regret minimization, to maximize the team’s global
reward. The decoy agents are assumed to have physical limitations and to be subject to certain stringent
range constraints required for deceiving the networked threats. By employing an efficient coordination
mechanism, the agents learn to be less greedy and allow weaker agents to catch up on their rewards to
improve team performance. Such a coordination solution corresponds to achieving convergence to coarse
correlated equilibrium. The numerical results verify the effectiveness of the proposed solution to achieve a
global satisfaction outcome and to adapt to a wide spectrum of scenarios.

INDEX TERMS Multi-agent system, cooperative control, online learning, regret minimization.

I. INTRODUCTION
Multi-agent reinforcement learning must factor in the col-
lective behavior of participating agents. When teaming con-
ditions are to be satisfied, agent coordination is essential.
Without this coordination mechanism, each agent often aims
to maximize its individual reward without due concern for
the obtainable rewards of the other agents and the joint team
reward. Therefore, cooperation among all the agents is crucial
in a multi-agent setting with teaming requirements.

Despite previous efforts to develop models and mech-
anisms to enhance cooperative behaviors in MAS [1], [2],
many open questions about this research remain. In general,
the convergence of reinforcement learning assumes a stable
training environment where the outcome for an action is
consistent. However, under a standard multi-agent reinforce-
ment learning (RL) approach, an agent treats other agents
as a part of the environment. Consequently, the environment
under this treatment is non-stationary as the feedback an
agent receives from this shared environment is more likely
affected by the decisions of the other agents. Additionally,
while an agent may decide its action based on some prior
information and assumptions about the other agents, such

The associate editor coordinating the review of this manuscript and
approving it for publication was Yichuan Jiang.

information will most likely change over time as the others
adapt their behaviors while learning. In turn, this will affect
how each agent needs to respond through re-adapting. The
speed of re-adapting appropriately is a critical consideration.
Therefore, there is still an open research problem in terms of
designing suitable learning goals, supporting scalability and
accommodating the non-stationary conditions.

This study focuses on the design of an effective decen-
tralized coordination mechanism that enables multiple agents
to learn collaboratively and guarantees task completion.
In particular, a decentralized multi-agent algorithm based on
regret minimization [3] is proposed to learn a cooperative
joint-policy. Unlike conventional RL algorithms (such as Q-
learning) that must be trained offline, the regret minimization
method is able to learn online. An online learning algorithm
can continue to learn over time, and adapt rationally. This
feature offers flexible to accommodate scenarios which may
be missing in an offline training.

In addition, an enhancement for updating the regret com-
putation is provided through a forgetting factor so that the
learning agent is able to adapt quickly to its most recent
observations when the shared environment changes rapidly.
The proposed method preserves the convergence guarantee to
an equilibrium solution for all the agents, despite modifying
the standard regret minimization technique. Theoretical proof
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for the convergence guarantee is provided. The regret mini-
mization incorporated as part of the multi-agent RL solution
to enable the online learners to make non-myopic optimal
decisions. Such decision making avoids greedy decisions that
may not be optimal when factoring in near future implica-
tions. Note that the result presented in this paper is applicable
not only to multi-UAV systems, but also to MAS of different
unmanned vehicles, such as mobile robots and autonomous
underwater vehicles.

The contribution of this paper is summarized as follows:
1) In contrast to most of game-theory based approaches,

this paper proposes a multi-agent learning strategy for
‘‘cooperation’’ to handle a type of team tasks in which
the mission goal will be a failure if any of the agents
do not succeed to perform their tasks. Focus is shifted
to ensure that the rewards are evenly distributed to
all the member agents (satisfaction-based rather than
optimization-based).

2) This paper develops an easy-to-construct ‘‘model free’’
design that incorporates a simple joint reward function
which exhibits robust performance, especially against
highly dynamic changes in the learning environment.
Using this model, a cooperative multi-agent algorithm
using regret matching strategy is proposed to achieve
both individual and collective goals. The paper demon-
strates that the regret minimization based technique is
applicable not only to non-cooperative game settings
(which most existing regret-based algorithms focus on)
but also to large-scale coordination games.

3) This paper proposes a novel way of adapting the regret
matching update rule by using a recency bias and pro-
vides analytical proof for a guarantee of convergence
and adaptation to a rapidly changing environment. This
is a new contribution to the body of works since the
majority of previous works on multi-agent learning are
restricted to validate their solutions via simulation only.

II. RELATED WORK
This section reviews the major differences between the pro-
posed approach and the relevant works.

A. MULTI-AGENT REINFORCEMENT LEARNING
Multi-agent reinforcement learning (MARL) is a relatively
recent and expanding research endeavor. It encompasses
the contributions made by the reinforcement learning and
game theory communities. Single-agent RL has been solved
using algorithms that display convergence and consistency
properties. However, learning in a decentralized multi-agent
setting is non-trivial since the agents update their states asyn-
chronously and need to consider the global performance of all
other agents when making an individual decision. The core
issue for multi-agent learning with teaming requirements is
how to learn an optimal cooperative policy by balancing the
trade-off between individual and group rewards.

There are multiple decentralized coordination studies
using Q-learning, policy gradients and deep learning to

formulate a joint policy by considering the combined obser-
vations from the multiple agents [4]–[8]. The algorithms pro-
duced have been applied to devise cooperative or competitive
or mixed behaviors. In [9], the authors investigate a deep
learning approach, in which agents learn the policies by
continuous communication among the parties involved to col-
laborate their behaviors in order to achieve a joint objective.
Achieving this objective requires all agents to synchronize
their observation histories with others. In [10], a coordina-
tion mechanism for solving single-agent tasks using multiple
agents was proposed. The reward function of each agent is
explicitly designed to take into account the actions of the
other agents. This framework allows each agent to flexibly
control its coordination action depending on the context. For
example, an agent may act independently in situations with
high environment reward while engaging in an appropriate
relationship with others to satisfy reward expectations for
situations of low environment reward.

One common feature of those earlier studies on decentral-
ized coordination is that the agents balance their behaviors
between the policy that is being learned and the communica-
tion with the other agents. It appears that these studies rely
on simulations to evaluate the performance of their proposed
solutions, while the associated theoretical analyses have not
been fully addressed. In addition, the training is offline.

B. REGRET-BASED LEARNING FRAMEWORK FOR MAS
The design of RL-based algorithms using regret minimiza-
tion technique [11]–[20] with global convergence guarantees
has attracted significant attention in recent years. The idea
behind regret-based algorithm is to adapt the decision-making
policy according to changes in the environment. In this
online-learning approach, an agent decides its action strat-
egy (policy) probabilistically and observes the new regret to
evaluate the policy. As time progresses, the agent enhances
the repetition for making good decisions while attempting to
minimize the number of times selecting unsuitable or wrong
decisions which result in low instantaneous rewards and
potentially lead to hazards in real-world situations. Through
its online learning provisions, the agent can adapt its deci-
sions as the environment changes.

Most of existing regret-based learning algorithms for
MAS are based on non-cooperative approaches [16]–[20]
and designed to reach a no-regret equilibrium point for all
agents [12]–[15]. In such a situation, the average reward is
no less than the corresponding amount that would have been
achieved if other fixed strategies were chosen in all decisions.
However, having convergence towards a no-regret solution is
not necessarily a desirable outcome for a MAS in general.
There is no guarantee that the MAS converges to a solution
that meets the desired global objective.

The solution proposed in this paper follows the
regret-based principles. Unlike most of the existing
non-cooperative approaches, this solution focuses on the
learning of a cooperative strategy by developing a simple joint
reward model to improve coordination among autonomous
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agents. It is shown that under certain assumptions about the
learning environment, the agents’ joint action converges to
the set of no-regret solutions in a cooperative fashion. Both
theoretical and experimental studies are provided to support
the solution. Simulation results verify the effectiveness of
the proposed learning algorithm in deriving complex and
adaptive team-based tactics in a set of real world scenarios.

C. COORDINATED CONTROL OF MAS
Multiple spatially-distributed agents need coordination or
cooperation when an individual agent has insufficient sens-
ing, knowledge, or capability to execute a decision. Some
application examples are in cooperative search and rescue,
bushfire fighting, defense against salvo of threats, and traf-
fic control. Recent developments in autonomous vehicles
have seen the coordinated control of MAS being applied
to unmanned aerial vehicles, robots and aircraft [21]. Cur-
rent techniques for the coordinated control of MAS include
dynamic programming [22], fuzzy-based model [23], model
predictive control [24]–[26], machine learning [27]–[29].

This paper focuses on the application of coordinated
control techniques for multi-UAV systems. Cooperative
multi-UAV control problems are solved by centralized
and decentralized approaches. The centralized approach
(i.e., [30]) uses a controller to solve the global optimization
problem. Here, each UAV uploads its state parameters and
environmental information to the controller. The controller
computes a solution in terms of the requirement for each
UAV’s flight path and speed. This information is then com-
municated to the respective UAVs and executed in order to
achieve the collective goal. The advantage of this approach
is that it can find a globally optimal solution for coopera-
tive control problems. However, the solution can be com-
munication bandwidth intensive. Furthermore, the bandwidth
requirements can scale up rapidly with additional UAVs.

In decentralized approaches, such as [31], the large
optimization problem is decomposed into multiple smaller
problems which are easier to solve. Each UAV can obtain
environmental information from its neighboring UAVs but
calculates its own flight path independently. On the whole,
optimal flight path of each UAV can ensure that the whole
system will achieve the best result. The advantage of this
approach is that it spreads out the computation which can
reduce local computation per UAV as well as the communica-
tion bandwidth requirement. Furthermore, robustness for the
entire UAV system against single point of failure is greatly
increased. The disadvantage relates to achieving coordination
among different UAVs which are no longer considered alto-
gether during the solving of the path-planning.

In this work, a decentralized approach is used to address
the problem of controlling multiple UAVs for a defense
application, in which a high-value asset (HVA) is escorted
by a group of UAV decoys as it travels to its destination
in a hostile environment. The task of the UAV team is to
protect the HVA from simultaneous attack by a group of
high-speed networked aerial threats. For the rest of the paper,

we refer to the HVA as target and the threats that attempt
to hit the target as attackers. Several works address a sim-
ilar problem [20], [32]. In these works, the multiple UAVs
deployed countermeasures to deflect enemy attackers, but did
not cooperate. The work in [33] accounted the possibility of
coordination between UAVs in order to maximize their own
safety and the safety of the othermembers of the group but did
not address a joint task among the participant UAVs, which
is a focus of this work. Also note that while this paper seeks
to address a particular application of a multi-UAV system,
the proposed algorithm is general and can be applied to a
range of large-scale decentralized MASs.
Remark 1: The system considered here is a decentralized

multi-agent control system. It does not rely on a master agent
to impose individual decisions. The control actions for the
agents are implemented in a distributed manner since each
agent updates its own control input based on information from
its neighboring agents in order to coordinate [1]. There is
no requirement for tightly coupled actions between agents
to fulfill their joint mission. Note that under game theory
concept, the proposed game-based algorithm is classified as
a partially distributed learning approach due to the fact that
each player (agent) must use information about the other
players (i.e., chosen actions) to update its decision-making
strategy. It is considered partially distributed only because in
a fully distributed learning approach, players are able to make
decisions based solely on their local observations, without
extra knowledge about the other players or the complete
system information [34].

III. PROBLEM FORMULATION
A. SYSTEM DYNAMICS AND ASSUMPTIONS
For a concept demonstration, it is assumed that the target is
moving due North at a constant speed ν. Each UAV decoy
(a RL agent) processes the attacker radar signal and radiates
back to the attacker a target-like radio frequency signature.
This will make the attacker see a false target (FT) placed some
distance behind the decoy. Since the networked attackers are
homing onto a single target, the decoys must coordinate their
motion to present a single consistent FT to all of the attackers.
To do so, the real target and the FT need to be in the same
range gate (similar distances away from the attacker). This
is important in terms of not triggering the threats’ electronic
countermeasure (ECM) logic. Ourwork focuses on proposing
an effective decentralized cooperative solution for controlling
the UAV decoys to deceive and steer all the networked threats
into a honeypot trap location. Figure 1 provides a 2D graph-
ical representation of the deception for two attackers using
two UAV decoys.

Let pit denote the location of the FT generated by the decoy
agent i at time step t . Then, its dynamic model is given by

pit+1 = pit +1t × ‖v
i
t (θ )‖

[
cos(θ )
sin(θ )

]
,

where 1t is the time interval between discrete position
update, θ is the heading angle which is also used as the
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FIGURE 1. Deception for two attackers using two UAV decoys.

decision variable for the RL model, and vit is the velocity
vector which has a constant magnitude (i.e., ‖vit (θ )‖ = ν

for all θ ∈ [0, 2π ]) but a changing direction.1 The heading
angle θ is decided by the agent i with the aim to obtain the
best next waypoint for its respective FT.

An attacker is assumed to have locked onto the FT which
is initially co-located with the HVA. The attacker is also
assumed to be fully observable by the associated RL agent.
The dynamics of an attacker m ∈ M (the attacker set)
is modeled by a constant-velocity model with time-varying
heading angle

pmt+1 = pmt +1t × vmt (p
i
t+1),

where the attacker’s velocity vector vmt is defined using the
proportional navigation guidance law [35].

To enable collaboration across the agents, it is assumed that
agents share their own states and the states of their respective
attackers in real-time. Thus, at a given time t , the following
global state information is available to all of the RL agents:[

pst ,p
h
t ,p

i
t ,p

m
t , v

m
t

]
for all i ∈ N and m ∈M,

where pst and pht are the positions of the target and the hon-
eypot at time t , respectively. All measurements of the FT and
the attacker dynamics are assumed to be noise-free.2 Based
on this available information, each agent makes its decision
independently without depending on the decisions made by
the others. An action decided by an agent is the heading angle
θ of its generated FT. The set of available actions controlled
by an agent varies over time depending on its previous action,
due to the following two constraints:

(i) The maximum difference in turning angle must not
exceed π

2 rad, which means the next action θ ′ given the
current action θ must satisfy: θ − π

2 ≤ θ
′
≤ θ + π

2 .

1Note that the FT is required to move with the same speed as the target
to make it indistinguishable from the target. Thus, while the speed of the FT
stays constant, its direction changes when selecting a different action.

2Note that a probabilistic model which takes into account noisy observa-
tions is more realistic but is outside the scope of this work.

(ii) Each agent must maintain its generated FT within a
sufficient range when the target is contained inside the field-
of-view (FOV)3 range of its assigned attackers. A chosen
action θ under this situation has to satisfy the constraint
that: D(θ ) =

∣∣‖pmt+1 − pit+1‖ − ‖p
m
t+1 − pst+1‖

∣∣ ≤ λ, where
λ > 0 is a certain threshold specified by the UAV team.

B. MULTI-AGENT GAME-THEORETIC FRAMEWORK
Consider a group of N ≥ 2 agents, denoted by the finite
set N = {1, . . . ,N }, that performs a team mission in a
common environment. Each agent i ∈ N has a finite set of
states S i, a finite action set Ai, and a local reward function
U i
: A × S → R, where S = 5`∈NS` is the global state

space shared by all the agents, andA = 5`∈NA` is their joint
action set. More precisely, the reward function of an agent i
can be expressed in the formU i(ait , a

−i
t , st ). Besides its action

ait , the reward of agent i depends on the global state of the
world st = (s1t , . . . , s

N
t ) and the action a−it = {a

`
t }`∈N \i of

all other agents in the team. The multi-agent game then can
be denoted by G = (N , (S i)i∈N , (Ai)i∈N , (U i)i∈N ).
Now, suppose the game G is being repeatedly played over

time. At each time step t , all the agents observe the global
state st ∈ S and perform a joint action at = (ait , a

−i
t ) ∈ A,

where ait ∈ Ai denotes the pure action of an agent i and
a−it ∈ A−i = 5 6̀=iA` denotes the action combination of
the other agents. It is also assumed that agents exchange their
current states and chosen actions globally but only observe
their rewards locally. Also, the agents know their local reward
functions. Therefore, knowing the action profile of other
agents and the current global state, each agent is able to
compute it expected reward. The reward observed by an agent
i at time t can be denoted by U i

t (a
i
t , a
−i
t ) = U i(ait , a

−i
t , st ).

Denote by 1(A) the set of all probability mass func-
tions (pmf) on A, and similarly, for each i ∈ N , 1(Ai) as
the set of pmf over Ai, and 1(A−i) as the set of pmf over
A−i. Let π i ∈ 1(Ai) (i.e., a probability distribution over the
set Ai) denote a strategy for agent i with π i(ai) equal to the
probability that i chooses the pure action ai ∈ Ai. A strategy
π i is called a pure strategy if π i(ai) = 1 for some ai ∈ Ai.
A strategy is called a mixed strategy if it is not a pure strategy.
Let π−i ∈ 1(A−i) denote the joint strategy of all the other
agents (except i). Similarly, let π ∈ 1(A) denote the joint
mixed strategy of all agents, with π (a) is a joint probability
on the set A, where a = (ai, a−i) is a joint action profile
of all the agents. In this context, under randomized actions
with overall probability π = (π i, π−i) ∈ 1(A), the expected
reward obtained by an agent i is defined by extending the
domain of definition of U i to 1(A) according to4

U i(π ) =
∑
a∈A

π (a) U i(a).

In this work, the focus is on investigating the use of a prob-
abilistic game-theoretic concept, known as coarse correlated

3FOV is the angular extent observed by the attacker, which allows it to
find an object with increased location uncertainty.

4Notice that U i(·) is a linear function.
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equilibrium (CCE) [36]–[38]. A CCE point is a mixed joint
action profile (probability distribution over the joint action),
where no agents can obtain any expected gain by deviating
from said strategy. Unlike Nash equilibrium (NE) which
might not exist in certain games, CCE not only always exist
but also are easy to compute in arbitrary finite games with two
or more players [36]. The main advantage of reaching a CCE
solution is that by enabling the players to coordinate their
actions, CCE provide a balance between the non-cooperative
solution (where all the players work independently but yield
poor collective behavior) and the fully cooperative solution
(which requires stringent coordination between players but
can be highly efficient in team performance). Thus, CCE are
expected to provide superior collective behavior for the MAS
compared to a NE solution where only the non-cooperative
aspect is considered [38].
Definition 1: A probability distribution π∗ ∈ 1(A) is said

to be a CCE for the game G if for every agent i ∈ N and for
every action θ ∈ Ai of player i, it holds that [37]∑

a∈A
π∗(a)

(
U i(θ, a−i)− U i(a)

)
≤ 0. (1)

The proposed algorithm for obtaining a CCE for the problem
introduced in Section III-A is presented in Section IV.

C. DESIGN OF REWARD FUNCTION
The next step is to define a suitable reward function to
obtain cooperative behaviors among the agents. In this prob-
lem, one objective for an agent is to keep the perpendicular
distance from its assigned attacker to the true target (the
miss-distance) as large as possible subject to its kinematic
constraints. In addition, to behave as a unique single FT,
it is also important to have all the FTs generated by the
agents maintaining at the same locations over time and move
to the honeypot simultaneously. To achieve those objectives
together, the reward function at a time t is defined as follows:

U i
t (at )=min

i∈N

{
d it (at )

}
−ω1 × max

i,j∈N

{
r i,jt (at )

}
−ω2 × `

i
t (at ).

(2)

In (2), at = (ait , a
−i
t ) is the joint action of all agents at time

t . As a result of the joint action at , d it (at ) is the miss-distance
obtained by the agent i, r i,jt (at ) is the relative distance between
the FTs generated by the agent i and an agent j ∈ N , and
`it (at ) is the distance from the agent i’s FT to the honeypot
location. Here, [ω1, ω2] are positive weight parameters. The
geometry for determining d it , r

i,j
t and `it is illustrated graphi-

cally in Figure 2.
The reward function can be interpreted as an obtain-

able payoff for completing the joint task by each team
player (agent) at the current point in time. This individual
payoff measures the amount of penalty given as a weighted
sum of: (1) minimum predicted miss distance assuming
straight line trajectory of the threats, (2) measure of aggrega-
tion of the false targets, and (3) distance-to-go to the desired
destination. The rationale here is that the relative distances

FIGURE 2. Geometry for determining the reward function.

between all FT pairs as well as the direct distance from the
false target to the honeypot position must be included in
the reward function to obtain the cooperative team behav-
ior. Specifically, the major differences between this pro-
posed cooperative approach and a non-cooperative approach
using regret-based learning framework, i.e., [20], are as
follows:

(a) First, by using the minimum function of all the
miss-distances instead of an individual measure of the
miss-distance obtained by each agent, this reward provides
a feedback on the effectiveness of a joint action taken by all
agents rather than the selfish action of a single agent.

(b) Second, as included in the second term of (2), the pro-
posed solution tries to bring together the FTs whenever pos-
sible by adding in a new penalty term as a linear function
of maximum inter-FT separation. The weight ω1 is used to
influence the inter-FT separation.

(c) Third, each agent not only tries to reach a large
miss-distance but also aims to move towards the honeypot
such that it reduces its direct distance to the honeypot. This is
obtained by discouraging the action that drags the FTs away
from the honeypot. The weight ω2 is used to penalize the
unsuitable behaviors.

In this study, an agent learns to minimize the loss between
prediction and actual reward obtained at each time step using
a regret minimization based strategy rather than a reward
maximization mechanism. The outcome is that the expected
average reward (or long-term payoff) for a learning agent
is guaranteed to be no worse than choosing the best fixed
policy at any time while it is learning. Note that the polarity
of the reward function values is irrelevant for the algorithm
analyzed in this paper. It is also worthwhile to mention that
the specific setting of the reward function presented in (2)
is only one among possible designs that can factor in the
impact of other agents’ actions to encourage cooperation and
to improve overall team performance. The solution proposed
in this work is general and can flexibly support a wide range
of team-reward functions.
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IV. PROPOSED ALGORITHM AND ANALYSIS
A. REGRET MINIMIZATION BASED LEARNING
The proposed algorithm is based on the regret matching
procedure in [3], in which agents choose their actions based
on their ‘‘regrets’’ for not having selected other available
options. In particular, at each iteration t ≥ 1, an agent i
calculates the average regret for not having played a particular
action θ ∈ Ai in all the previous time steps using the
following recursive formula:

R̄it (θ ) =
1
t

t∑
τ=1

Riτ (θ ) =
(
1−

1
t

)
R̄it−1(θ )+

1
t
Rit (θ ). (3)

In (3), Rit (θ ) = U i
t (θ, a

−i
t ) − U i

t (at ) is the immediate regret,
in whichU i

t (at ) is the actual received reward andU
i
t (θ, a

−i
t ) is

the potential reward that agent i could have obtained at time
t if choosing the other action θ 6= ait instead of its chosen
action ait assuming that all the actions of the other agents are
unchanged. R̄it−1(θ ) corresponds to the cumulative average
regret experienced up until time (t − 1). In order to compute
this regret, each agent is assumed to have access to a common
dataset that records the global state space for all agents and
their chosen actions.

In a multi-agent environment, the reward obtained by an
agent for choosing a particular action will vary if the other
agents deviate from the assumed strategies. As a result, past
regrets may become irrelevant or outdated when making
decisions at the current state. Thus, to enhance the learning
process for the dynamic situation, a discount factor is used in
the regret updating formula as follows:

R̄it (θ ) = (1− ρ)R̄it−1(θ )+ ρ R
i
t (θ ), (4)

where (1−ρ) ∈ (0, 1) is a discounted weight used to regulate
the influence of outdated values of past regrets with respect
to its immediate value. It follows that a chosen value of ρ
close to 1 will make the agent ‘‘myopic’’ by only consid-
ering instantaneous regret, while a ρ factor approaching 0
will make the agent factors in more strongly on the past
observed regrets rather than just the instantaneous regret.
Similar approaches can be found in [12], [18]. The proposed
algorithm to compute the CCE solution is summarized in
Algorithm 1. Note that we use the notation |x|+ = max{x, 0}
for any x ∈ R and |Ai

| to denote the cardinality of the action
set Ai.

The regret-based decision-makingmechanism presented in
Algorithm 1 belongs to a well-known class of no-regret algo-
rithms which guarantee that the payoff of a learning agent
in the long run is close to the maximum it could expect
to achieve by consistently deviating from the algorithm’s
suggested action. No-regret was chosen in order to ensure
that all agents are able to choose sequential actions such that
mission objectives could be met. Failure of any one agent
in performing its role amounts to a team-failure. All agents
were required to progressively make better decisions over
time which translated to minimizing their respective regrets.

Algorithm 1 No-Regret Multi-Agent Learning Algorithm

1: Initialization: Generate random π i1(θ ) for all θ ∈ Ai.
2: for t = 1, 2, . . . do
3: Action Selection: Select action ait according to π it .
4: Reward Observation: Obtain U i

t (at ) and compute
U i
t (θ, a

−i
t ) for all θ using equation (2).

5: Regret Update: Compute the regret vector R̄it using
equation (4) for all θ 6= ait .

6: Dynamic Constraint Checking: Limit the available
action set Ai at the next time step by{
θ − π

2 ≤ θ
′
≤ θ + π

2
D(θ ) =

∣∣‖pmt+1 − pit+1‖ − ‖p
m
t+1 − pst+1‖

∣∣ ≤ λ
7: Policy Learning: Update the action selection strategy

π it+1(θ ) = P
(
ait+1 = θ |st

)
according to

if ∃ Rit (θ ) > 0 then π it+1(θ ) =
|R̄it (θ )|

+∑|Ai|

θ ′=1 |R̄
i
t (θ ′)|+

else π it+1(θ ) =

1 if θ = argmin
θ ′∈Ai

D(θ ′)

0 otherwise
end if

8: end for

B. MAIN RESULT
Algorithm 1 has similar convergent results as Theorem B
of [3]. However, due to themodificationmade in (4) to update
R̄it (k) compared to its original form, it becomes necessary to
revisit the convergence proof for this algorithm. Differential
inclusion framework introduced in [39], [40] is used for ana-
lyzing the convergence properties of the proposed algorithm.
Note that the convergence of the proposed algorithm does not
rely on an explicit form of the reward function being used.
The following theorem is the main result of the paper.
Theorem 1: If all agents apply Algorithm 1, the empirical

distributions of the joint actions converges to the set of coarse
correlated equilibrium (CCE), in which the regrets of all
the agents vanish simultaneously and thus no agent has an
incentive to deviate from the CCE solution.
Remark 2: Within the scope of this paper, we only deal

with homogeneous multi-agent systems, which assumes that
all agents apply the same learning rule.

Proof: We view the game from the point of view of
an arbitrary agent i. For simplicity of notation, we drop the
subscript i on R̄i, Ri, and U i; and thus write R̄, R, and U in
the remainder of the paper. Define the Lyapunov function:

P(R̄t ) =
1
2

(
dist[R̄t ,R−]

)2
=

1
2

∑
θ

(
|R̄t (θ )|+

)2
. (5)

In (5), dist[R̄t ,R−] is the distance from R̄t (the time average
vector of R) to the negative orthant set R−.

Taking the time-derivative of (5) yields

d
dt
P(R̄) =

∑
θ

|R̄(θ )|+ ×
d
dt
R̄(θ ). (6)
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First, we find dR̄(θ )/dt by rewriting R̄(θ ) from (4) in the
following form

R̄t (θ ) = R̄t−1(θ )+ ρ
[
Rt (θ )− R̄t−1(θ )

]
. (7)

It can be seen that (7) has the form of a stochastic approxi-
mation algorithm, where ρ > 0 serves as a constant step size,
and satisfies Theorem 17.1.1 of [41]. Therefore, its dynamics
can be characterized by an ordinary differential equation and
the system can be approximated by replacing Rt (θ ) with its
expected value. Thus, R̄t (θ ) converges in distribution to the
averaged system corresponding to (7)

d
dt
R̄(θ ) = Eπ

{
R(θ )− R̄(θ )

}
= Eπ

{[
U (θ, a−i)− U (a)

]
− R̄(θ )

}
=

∑
a

π (a)
[
U (θ, a−i)− U (a)

]
− R̄(θ )

=

∑
a−i

π−i(a−i)U (θ, a−i)−
∑
a

π (a)U (a)− R̄(θ )

=

[
U (θ, π−i)− U (π )

]
− R̄(θ ).

Next, substituting dR̄(θ )/dt into (6), we obtain

d
dt
P(R̄) =

∑
θ

|R̄(θ )|+ ×
[
Ui(θ, π−i)− Ui(π )

]
−

∑
θ

|R̄(θ )|+ × R̄(θ ). (8)

Also, recall that the action selection strategy of agent i is
defined based on its average non-negative regret function

π i(θ ) =
|R̄(θ )|+∑|Ai|

θ ′=1 |R̄(θ
′)|+

.

Thus, substitute |R̄(θ )|+ = π i(θ )
∑|Ai

|

θ ′=1 |R̄(θ
′)|+ into the

first term on the right hand side of (8), we obtain∑
θ

|R̄(θ )|+ ×
[
U (θ, π−i)− U (π )

]

=

|Ai
|∑

θ ′=1

|R̄(θ ′)|+
∑
θ

π i(θ )×
[
U (θ, π−i)− U (π )

]
.

Since
∑
θ π

i(θ ) ×
[
U (θ, π−i)− U (π )

]
= 0 by the linearity

of U (as a function of probability distributions), then the first
term in (8) is equal to zero.

Now consider the last term on the right hand side of (8)∑
θ

|R̄(θ )|+ × R̄(θ ) =
∑
θ

(
|R̄(θ )|+

)2
= 2P(R̄) (9)

by substituting
∑
θ

(
|R̄(θ )|+

)2
= 2P(R̄) from (5).

Therefore, combining (8) and (9), we obtain

d
dt
P(R̄) = −2P(R̄).

Consequently,

P
(
R̄(t)

)
= P(R̄(0)) exp(−2t).

This implies that P
(
R̄(t)

)
approaches zero at an exponential

rate. Thus,

lim
t→∞

dist
[
R̄(t),R−

]
= 0.

This proves that the approachability of the regrets of the agent
i to the negative orthant (i.e., all the regrets approach zero).

We now prove that the empirical distribution of the joint
actions converges to the CCE set if all agents use the same
policy. Let π̄t denote the empirical frequency of joint action
by all agents, which can be defined using the stochastic
approximation recursion as follows

π̄t
(
at = a

)
= π̄t−1

(
at−1 = a

)
+ ρ

[
1{at = a} − π̄t−1(at−1 = a)

]
= ρ

∑
τ≤t

(1− ρ)t−τ 1{aτ = a}, (10)

where 1{·} denotes the indicator function. The main result is
immediate from the definition of ‘‘regret’’ in (4) as follows

R̄t (θ ) = R̄t−1(θ )+ ρ
(
Rt (θ )− R̄t−1(θ )

)
= ρ

∑
τ≤t

(1− ρ)t−τRτ (θ )

= ρ
∑
τ≤t

(1− ρ)t−τ
(
U (θ, a−iτ )− U (aτ )

)
=

∑
a

ρ
∑
τ≤t

(1−ρ)t−τ1{aτ = a}
(
U (θ, a−i)− U (a)

)
=

∑
a

π̄t
(
at = a

) (
U (θ, a−i)− U (a)

)
.

In the last line, we substituted π̄t (at = a) from (10). Note
that π̄t denotes the time average empirical distribution of the
joint action of all agents and π̄t (at = a) is the pmf defined on
1(A) with all mass at a specific joint action a ∈ A. On any
convergent subsequence lim

t→∞
π̄t → π∗, then

lim
t→∞

R̄t (θ ) =
∑
a

π∗(a)
(
U (θ, a−i)− U (a)

)
≤ 0.

Finally, comparing with the definition of the CCE as defined
in (1), the desired result follows. This completes the proof.

V. SIMULATION RESULTS
In the simulation setup, the HVA traveling due North is
protected by a group of four UAV decoys. These decoys
are used to seduce the range-gate networked attackers into
a honeypot zone. The honeypot is predefined as an area of
a circle with a diameter of 50 m, located 300 m diagonally
behind the moving HVA and moving at half the speed of the
HVA. The initial distance between the attackers and the HVA
is set at 18 km. The attackers, HVA and FT are traveling at
306.27m/s, 10.28m/s, and 10.28m/s, respectively. The range
threshold D(θ ) to satisfy the range gate constraint is chosen
at λ = 50 m. The weight coefficients in the reward function
are set at w1 = w2 = 20. The results of the simulation are
presented in 2D environment.
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FIGURE 3. UAV team defends four attackers diagonally from behind.

FIGURE 4. UAV team defends four attackers diagonally from front.

Remark 3: The performance of the proposed algorithm
is evaluated under the assumption that the communication
topology between the agents is fully-connected (complete)
and undirected, and all communications can be performed
concurrently without delays at each time-step. Other commu-
nication topologies could be considered but are beyond the
scope of this study and is left as part of future research.

Figures 3 and 4 respectively show the trajectories of the
four UAVs defending against simultaneous attacks by four
attackers diagonally from behind and front. As shown, to act
cooperatively, the UAVs start moving from their initial posi-
tions that generate all the FTs at the same location of theHVA.
Each UAV decoy then moves in a way to always maintain a
position on a straight line connecting its generated FT and
its associated attackers, with a fixed distance of 100 m from
the FT. It can be seen that all the UAV decoys successfully
seduce the four networked attackers to a same location within
the honeypot region. Similar performance was observed for
various approach angles of the attackers.

FIGURE 5. Separation distance between each FT pair versus time.

FIGURE 6. Range threshold constraint by each UAV decoy versus time.

Figures 5 and 6 show the simulation results in term of the
separation distance between the FTs and themaintained range
thresholds by all the UAV decoys, respectively. The results
show that in the time frame from 0 s to 15 s, all the UAVs are
able to maintain their corresponding FTs moving together in
the direction that increases the obtained miss-distances for
all team members. However, when moving together violates
the range constraint that each UAV needs to comply with,
the UAV agents have no other options than to separate their
FTs. Sometime later, from the 36th second onwards in the
simulation as illustrated in Figures 5, the UAV team is able to
regroup all the FTs at the same location again and continue to
move this combined ‘‘single FT’’ toward the desired honey-
pot. This is achievable from the 36th second point as their
protected target is already located outside the FOV ranges
of all the enemy attackers, and thus the FTs no longer need
to maintain the range constraints under 50 m as required
previously as shown in Figure 6.

Figures 7 and 8 show the simulation results in term of the
obtained miss-distance and the individual reward achieved by
each agent versus time, respectively. The results illustrated
in Figure 7 demonstrate that while completing the joint task

103026 VOLUME 7, 2019



D. D. Nguyen et al.: Adaptive Regret Minimization for Learning Complex Team-Based Tactics

TABLE 1. Performance comparison of the proposed algorithm with a non-cooperative scheme under different metrics.

FIGURE 7. Miss-distance obtained by each UAV decoy versus time.

FIGURE 8. Individual reward obtained by each UAV decoy versus time.

the UAV team also achieves the worst-case miss-distance
above a minimum desirable value of 100 m. This is known
as the satisfaction threshold an agent should obtain to keep
its protected target at a safe distance from an attacker. Also,
as can be seen through the redistribution of the rewards
shown in Figure 8, the weaker agent (UAV #1) is able to
catch up on its reward through coordination with the other
stronger agents, which would otherwise act selfishly if not
cooperating. As a result of cooperation, the whole UAV team
obtains a globally desired outcome acceptable to all the decoy
agents.

Table 1 compares the performance of the proposed algo-
rithm with the non-cooperative scheme proposed in [20]
in terms of the time required to complete the joint task
(time to reach honeypot), the smallest obtained miss-distance
among all the agents (worst-case miss-distance) and the
largest separation between all pair of FTs (maximum sep-
aration). As can be seen from the reported results, apart
from the capability of successfully seducing all the networked
attackers to the desired honeypot, the proposed solution also
outperforms the non-cooperative scheme in maintaining a
small separation between all the FTs, which is also another
important task in term of decoy maneuvers as explained in
Section III-A.

In our simulation, when the threats maneuver, the agents
must adapt their actions rapidly in order to maximize their
payoffs. Thus, a value for the discount factor closer to 1 is
chosen to prioritize the recent observed rewards in response
to rapid changes in threat behaviors. There is further scope
to auto-tune the ρ-values which is a topic for future inves-
tigation. As a result, by using a fixed discounted weight
ρ = 0.95, the proposed algorithm obtains a better perfor-
mance in terms of the time it takes to complete the joint
task and also slightly improves the worst-case miss-distance
obtained by all the agents in comparison with the traditional
regret matching proposed in [3]. This achieved improvement
is because the influence of observations that each agent has
learned in the past is reduced. Thus, each agent is able to
adapt quickly to the most recent changes in the learning
environment due to the autonomous behaviors of the other
agents. In return, the cost for this improvement is a slightly
larger separation of the FTs. This cost is acceptable since all
the FTs finally regroup and move together when the target is
no longer in the FOV ranges of the attackers as illustrated in
Figures 5.

For further evaluation of the computation cost of the
proposed algorithm in comparison with the non-cooperative
scheme in [20], computational complexities of the two algo-
rithms in term of the size of the agent team are summarized as
follows. Let T be the number of time steps (between discrete
position updates) until a certain simulation time is reached.
Assume that η bits are used to represent the data of position
or velocity vector of any moving object.

• Non-cooperative scheme [20]:To compute its expected
rewards at every time step, each agent needs two pieces
of data (position and velocity) from three objects: the
ship, its associated threat, and itself – (6η bits). Thus the
computation cost per agent is independent of the size of
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FIGURE 9. UAV team defends against the networked threats that perform curved attack trajectories.

the team. The total computation cost of the whole team
with N agents is of order 6ηNT (bits) ∼ O(TN ).

• Proposed algorithm: To compute its expected rewards
at every time step, each agent also needs two pieces
of data (position and velocity) from (2N + 2) objects,
including the ship, the honeypot, the N agents, and their
corresponding N threats – (2η(2N + 2) bits). Thus,
the computation cost per agent depends on the number of
team members. The total computation cost of the whole
team is of order 4η(N + 1)NT (bits) ∼ O(TN 2).

The complexity analysis reveals that the proposed algorithm
requires an order of magnitude more information exchange
to implement because its complexity is quadratic whereas
the complexity of the algorithm in [20] is linear. This cost is
caused by the computation of the joint team reward to enable
the cooperative behavior between the learning agents. The
algorithm in [20] does not support coordination among agents
and hence requires less computational cost.

The performance of the proposed algorithm is further eval-
uated in a more challenging scenario in which the threats
perform curved attack trajectories instead of heading directly
toward their target. Under this circumstance, all the threats
follow curved trajectories while their radars are still tracking
their (same) target. This is an attempt to distinguish whether
they are seeing a real target or actually chasing an unreal
target. Therefore, it is important that all the FTs generated
by the decoy agents must maintain their corresponding range
thresholds within 50 (m) to make the networked attackers
into believing they have locked on to a unique and consistent
target. Simulation results illustrated in Figures 9(a) and 9(b)
confirm that the UAV team implementing the proposed solu-
tion can adapt successfully to this situation and accomplishes
the team task in term of attracting all the enemy threats
into the honeypot trap concurrently. This is achieved without
violating the range constraint when the real target (HVA) is
still within the FOV of its attackers.

VI. CONCLUSION
This paper presents a decentralized threat deflection solution
for a team of autonomous decoy agents. A multi-agent coop-
erative solution was proposed using a regret minimization
based learning framework. Each decoy agent learns to coop-
eratively adapt its behavior by considering joint actions and
rewards, and it was theoretically proven that the convergence
is guaranteed and the achieved equilibrium equates to the
optimum response of every decoy in terms of maximizing
the team reward. The proposed reinforcement learning model
was tested in a variety of defense scenarios, including honey-
pot ambush tactics against saturation attacks, and it demon-
strated success even in the challenging cases in which the
threats followed curved trajectories. Given its online learning
capability, this solution can adapt better than the offline learn-
ing techniques and also scales well with increasing number
of entities. The next planned activity is to address the uncer-
tainties and increased number of defended assets, extending
to the area defense rather than point defense, which will add
another dimension to the solution space.
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