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ABSTRACT Facing with the absence of supervised information to guide the search of relevant features
and the grid-search of model/hyper-parameters, it is more preferred to develop parameter-free methods and
avoid additional hyper-parameters tuning. In this paper, we propose a new simple and effective parameter-
free unsupervised feature selection algorithm by minimizing the linear reconstruction weight between the
nearest neighbor graphs constructed from all candidate features and each single feature. The obtained global
optimal reconstruction weights actually select those features with highest relevance and lowest redundancy
simultaneously. The experimental results on many benchmark data sets demonstrate that the proposed
method outperforms many of the state-of-the-art unsupervised feature selection methods.

INDEX TERMS Local graph reconstruction, parameter free, global optimal, redundancy minimization.

I. INTRODUCTION
Real world applications usually involve big data with high
dimensionality, presenting great challenges such as the
curse of dimensionality, huge computation and storage cost.
To tackle these difficulties, feature selection techniques are
developed to keep a few relevant and informative features
from the original high-dimensional features for the sub-
sequent tasks. Based on a small number of representative
features, not only the learning process of the model could
be accelerated, but also the generalization ability could be
improved.

According to the availability of supervised informa-
tion, feature selection methods can be categorized into
supervised [1]–[6] semi-supervised [7]–[9] and unsuper-
vised algorithms [10], [11]. Compared to supervised or
semi-supervised counterparts, unsupervised feature selection
is generally more challenging due to the lack of supervised
information to guide the search of relevant features.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shangce Gao.

Generally speaking, unsupervised feature selection meth-
ods can be further categorized into two types: filter and
embedded [12]–[29]. The filter-based feature selection algo-
rithms rank the features in terms of a predefined criterion,
which is completely independent on the learning methods.
The embedded-based methods consider the feature evalua-
tion criterion by incorporating into the learning procedure.
Since embedded-based methods take the learning model into
consideration, they usually perform better than filter-based
ones. However, these methods often involve more parameters
for tuning, it is hard to effectively perform unsupervised
model selection due to the absence of supervised information.
Besides, the embedded algorithms are also computationally
expensive thereby impeding their uses in the tasks where the
dimensionality and the amount of the data are large.

In this paper, we are particularly interested in the
parameter-free (or at least the hyper-parameters can be
easily set to a certain constant value) feature selection
methods, in which data variance, Laplacian score [30],
sparsity score [31], Multi Cluster Feature Selection [11],
the Local and Global Discriminative algorithm [32], and LLE
score [33] are representatives. However, the quadratic score
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function in [30], [32] have several drawbacks as pointed
out [33]. The LLE score [33] also requires fine tuning of
the regularization parameter as suggested by the authors.
Moreover, these aforementioned algorithms usually neglect
the correlations of candidate features by evaluating the impor-
tance of features one by one and lead to sub-optimal result.

Facing with such difficulties, it is more preferred to
develop parameter-free methods or methods without addi-
tional hyper-parameter tuning. In this paper, we propose a
new simple and effective parameter free unsupervised fea-
ture selection algorithm, where we adopt the simple nearest
neighbor graph to characterize the local structure of data.
The importance of each feature is evaluated by minimizing
the reconstruction weight between the weight matrices of all
features and single feature. It can be further verified that our
method actually selects highly relevant and lower redundant
features [32], [34]. Experimental results on many benchmark
data sets demonstrate that the proposed method outperforms
many state-of-the-art parameter-free unsupervised methods.

The rest of the paper is organized as follows. In Section 2,
we review the most closely related filter-based unsupervised
algorithms. The proposed algorithm is derived in Section 3.
In Section 4, we evaluate the proposed method on many data
sets. We make concluding remarks in Section 5.

II. RELATED WORK
In this section, we will first review some related unsupervised
feature selection methods.

A. LAPLACIAN SCORE
Laplacian score is a filter-based unsupervised feature selec-
tion method. The main idea of Laplacian score is that the
data points which locate nearby are probably related to the
same class. Therefore, the local structure of the data is more
important than the global structure. In this way, Laplacian
score evaluates the feature by its ability of preserving the local
structure of data.

It computes the neighborhood relationship according to

wij =

e−
‖xi−xj‖

2

t2 if xi and xj are neighbors,
0 otherwise.

(1)

Then, the score of each feature is computed as follows

LapScorer =

∑n
i=1

∑n
j=1(fri − frj)

2wij∑n
i=1(fri − µr )2dii

(2)

where dii =
∑n

j=1 wij and µr is the average of r-th feature.

B. LGD SCORE
The LGD score [32] takes an unsupervised Local and Global
Discriminative (LGD) feature selection criterion. The score
of each feature is defined as the ratio between global variance
and local variance:

LGDr =

∑n
i=1(fri − µr )

2∑
j
∑

fri∈o(frj)(fri − f̄rj)
2

(3)

where fri is the r-th feature of the i-th sample, µr is the mean
of the r-th feature, o(frj) is the set of neighbor points of the
j-th sample. f̄rj is the mean computed from the set of neighbor
points.

The LGD score prefers to select features with large global
variance and small local variance. Such features are expected
to be discriminative for classification/clustering tasks.

C. LLE SCORE
LLE score [33] takes the Local Linear Embedding
method [35] to characterize the local structure of data. It eval-
uates the importance of each feature according to the dif-
ference of reconstruction weights computed from the single
feature and all the features.

The optimal reconstruction weight M ∈ Rn×n with all the
candidate features is computed by solving

min
M

‖xi −
∑
j∈Ni

mijxj‖2, s.t.
∑
j∈Ni

mij = 1, (4)

where Ni is the neighbor of i-sample. The reconstruction
weight captured by the r-th feature is also computed by

min
Mr
‖fri −

∑
j∈N r

i

mrijfrj‖
2
+ γ

∑
j∈N r

i

(mrij)
2,

s.t.
∑
j∈N r

i

mrij = 1, (5)

where N r
i is the neighbor of i-sample from r-th feature.

Given the reconstruction weight of all features M and the
reconstruction weight of r-th feature Mr , the LLE score is
computed by

LLEScorer = ‖M−Mr
‖
2. (6)

For each feature, the above criterion of LLE score evaluates
the ability to preserve the local linear structure.

III. THE PROPOSED METHOD
The generic problem of unsupervised feature selection is to
find the most informative features. Given a set of points X =
{x1, . . . , xn} ∈ Rd×n, finding a feature subset with size m
which contains the most informative features. In other words,
the points{x′1, x

′

2, . . . , x
′
n} represented in the m-dimensional

spaceRm can well preserve the intrinsic structure as the data
represented in the original d-dimensional space.

It has been well recognized that the local structure of
the data space is more important than the global structure
for the task of clustering and classification [28]. Several
approaches have been developed for local structure charac-
terization. In order to model the local geometric structure,
we construct a simple and effective nearest neighbor graph
A, which is generated from all the candidate features without
additional parameter except for the neighborhood size. The
weight matrix can be obtained according to

Aij =


1
ni

if xi and xj are neighbors,

0 otherwise.
(7)

where ni is the neighbor size of i-th sample.
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Given the local structure captured by the affinity graph,
most existing filter-based algorithms take the quadratic func-
tion to evaluate the importance of each feature such as in
Eq. (2) and Eq. (3). However, it has been pointed out that such
score function suffers from at least three drawbacks [33]: 1) it
fails when the elements of all the samples are equal; 2) it lacks
the scaling invariant property; 3) it cannot well capture the
change of the graph for each element. These weaknesses will
greatly degrade its performance in feature selection.

Instead of using the quadratic function, we adopt similar
idea as LLE score by constructing the local structure, i.e. Ar ,
for each single feature. The weight matrix for r-th feature is
computed by

Ar
ij =


1
nri

if f ri and f rj are neighbors,

0 otherwise.
(8)

where nri is the neighbor size of i-th sample with r-th feature.
Here, since both the weight matrices A and {Ar

}
m
r=1 cap-

ture the local structure of data, the importance of each feature
then can be evaluated by their reconstruction weights to the
consensus weight matrix A. The corresponding problem can
be formulated as

min
w
‖A−

d∑
r=1

wiAi
||
2

s.t.
d∑
i=1

wi = 1, w ≥ 0. (9)

It is obvious that the above formulation does not introduce
additional hyper-parameter for certain regularization, such
as sparse regularization, which is often adopted by other
embedded unsupervised feature selection algorithms. Such
merit of parameter free is especially helpful for the task of
unsupervised feature selection without supervision.

We first introduce H ∈ Rd×d by denoting

Hij = tr((Ai)TAj), (10)

where Hij is used to characterize the similarity between fea-
ture i and j, and introduce b ∈ Rd×1 with

bi = tr(ATAi) (11)

where bi represents the similarity between feature i and all
the candidate features. Then, the problem in Eq. (9) can be
reformulated as

min
w

wTHw− 2wTb

s.t.
d∑
i=1

wi = 1, w ≥ 0. (12)

Clearly, the above problem is a convex quadratic program-
ming with linear constraints, which can be easily solved by
off-the-shelf optimization toolbox.

Now, we can fully investigate why the proposed algorithm
is suitable for the task of unsupervised feature selection. The

first term in the objective function wTHw can be rewritten as∑d
i,j=1Hijwiwj. WhenHij is large, it indicates that the feature

i and j have the similar neighborhood structure. That is to say,
they are redundant features. By minimizing

∑d
i,j=1Hijwiwj,

the value of wi and wj can not be large simultaneously.
In this case, we will get one large value and one small
value for these two highly redundant features. Consequently,
the ranking of one feature is kept and the ranking of the other
feature decreases, when these two features are highly similar
with each other. The second term in the objective function
is equivalent to maximizing

∑d
i=1 wibi. It actually selects

those features which have similar neighbor structure with the
structure constructed from all the candidate features, i.e., A.
Given the optimal reconstruction weight of Eq. (9) or Eq (12),
we can use it to evaluate the ability of each feature to preserve
the local structure. It can be seen that the features with higher
scores are better for the preserving of the local structure.
We list the details of the proposed method in Algorithm 1.

Algorithm 1 The Proposed Filter-Based Unsupervised Fea-
ture Selection Algorithm

Require: Data matrix X ∈ Rd×n, the number of selected
features m
1) Construct the k-nearest neighbor matrix A using all

the candidate features according to Eq. (7).
2) Construct the k-nearest neighbor matrix Ar using the

r-th feature according to Eq. (8).
3) Compute the score for each feature by solving Eq. (9)

or Eq. (12).
4) Ranking featuresw in descending order, select the top

m features.
Ensure: top m features

Although the above algorithm is simple and easy to under-
stand, it still brings several nice properties for the task of
unsupervised feature selection. It is worthwhile to highlight
several aspects of the proposed approach here:
• It is parameter free. It can be seen that only one param-
eter, i.e., the neighborhood size, is involved. In practice,
we set the neighborhood size to be 5 in our experiment.
It is vital important to point out that the parameter
or model selection is often unrealistic for the task of
unsupervised feature selection due to the absence of
supervised information. That is also one of the main
advantages of our method compared to other filter-based
methods and embedded approaches.
Comparatively speaking, Laplacian score, LGD [32],
MCFS [11] and LLE score [33] both need the neighbor-
hood size. Besides, they often require additional hyper-
parameters, such as the kernel width for Gaussian kernel
function in Laplacian score, the regularization parameter
in MCFS and LLE score.

• It evaluates the importance of each feature by consider-
ing both the relevance and redundancy simultaneously.
As a result, the redundancy of the select feature subset
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is large alleviated and features with more relevant infor-
mation can be further selected.

• The global optima of the optimization problem in Eq. (9)
can be easily obtained. Thus, we can avoid the greedy
search or the local optimal which are often encountered
by other counterparts.

• It is scale invariant. For example, let f1 = 2f2, f1 and f2
have the same graph structure and the score for f1 and f2
are equal. It has been pointed out that Laplacian score
has different results for such features [30]. The LGD
algorithm also has such problem [32].

• It is distinguished for features with equal values. The
local structure of the feature with equal values does not
contain any meaningful structure, and will get smaller
reconstruction weight. Both the Laplacian score and the
LGD algorithmwill give the best score for such features.

• It is less sensitive to the change of local weight, which
would be largely influenced by heavily data corruption.
The binary graph weighting used in Eq. (7) only cap-
tures the neighborhood relationship while ignoring the
relative sensitive closeness weights. It is believed that
such weighting schema is also robust to data corruption
in certain extent. It captures the change of local structure
efficiently. Once the local neighborhood is changed for
certain feature, it will be penalized by Eq. (9).

Now, we analyze the time complexity of the proposed
method. The cost of computing the Euclidean distances
between the i-th sample and the other samples isO(nd), then
finding its k-nearest neighbors costs O(nk). Thus, the total
computational complexity of computing A is O(n2d + n2k).
The computational complexity for Ar is O(n log n). The
selection of top features is O(dm), where m is the number of
selected features. In most cases, d > k , in this way, the com-
putational complexity can be written into O(n2d + dn log n).
The quadratic optimization problem in (12) can be solved in
O(d3). The time complexity of the proposed method is also
comparable with other methods.

IV. EXPERIMENT
In this section, extensive experiments are conducted
on 6 real-world datasets to validate the effectiveness of the
proposed method. Four state-of-art relevant unsupervised
feature selection methods are adopted as competitors.

A. DATA SETS
We collect a variety of data sets, including 5 image data sets
and 1 text corpora and 1 biological data, most of which have
been frequently used to evaluate the performance of different
feature selection algorithms. The statistics of these data sets,
including the number of data samples, the dimension of each
sample, the types and categories of each dataset and the num-
ber of selected features are summarized in Table 1.We further
present the details of these 6 data set as follows

• COIL20 dataset from Columbia University Image
Library contains 20 classes, and each class has

TABLE 1. The details of data sets in our experiments.

72 images. Each image is of 32 × 32 pixels with some
rotation.

• JAFFE. This database contains 213 images of 7 facial
expressions (6 basic facial expressions + 1 neutral)
posed by 10 Japanese female models.

• UMIST. Face Database consists of 575 images
of 20 people. Each covering a range of poses from
profile to frontal views. Subjects cover a range of
race/sex/appearance.

• YALEB. The Extended Yale-B database contains
16128 face images of 38 human subjects under 9 pose
and 64 illumination conditions. In our experiment,
we choose the frontal pose and use all the images under
different illumination, thus we get 2414 images in total.
They are resized to 32 × 32 pixels, with 256 gray levels
per pixel.

• PIE is a gray (32 × 32 pixels) scale face images. In
addition, the dataset has 68 persons and each person
images have different illuminations and poses.

• LUNG [6] data set contains in total 203 samples in
five classes, which have 139, 21, 20, 6,17 samples,
respectively. Each sample has 12600 genes. The genes
with standard deviations smaller than 50 expression
units were removed and we obtained a data set with
203 samples and 3312 genes.

B. COMPARED ALGORITHMS
To validate the effectiveness of our proposed method,1 we
compare it with one baseline (i.e., AllFea) and states-of-
the-art almost parameter free unsupervised feature selection
methods,

• Max Variance which selects those features of maximum
variances in order to obtain the best expressive power.

• Laplacian Score [30] which selects the features most
consistent with the Gaussian Laplacian matrix.

• MCFS2 performs eigen-decomposition regarding the
Laplacian matrix, and evaluates the importance of

1For the purpose of reproducibility, we provide all the dataset and the code
at https://gitee.com/csliangdu/LGRUFS

2 http://www.cad.zju.edu.cn/home/dengcai/Data/code/MCFS_p.m
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TABLE 2. Clustering accuracy on different datasets with k = 5 (mean ± std).

TABLE 3. Clustering NMI on different datasets with k = 5 (mean ± std).

TABLE 4. Clustering purity on different datasets with k = 5 (mean ± std).

features via sparse spectral regression [11]. The neigh-
bor size is set to 5.

• The local and global discriminative (LGD) feature selec-
tion criterion [32]. The score of feature is determined by
the ratio between global variance and local variance.

• LLEScore [33]. It is a filter-based unsupervised fea-
ture selection method, which is based on LLE and the
graph-preserving feature selection framework. The dif-
ference between structures of the graphs constructed by
each feature and the original data was used to measure
the importance of each feature.

C. EVALUATION METRICS
To evaluate their performance, we compare the generated
clusters with the ground truth by computing the following
three performance measures.

Clustering accuracy (ACC). The first performance
measure is the clustering accuracy, which discovers the

one-to-one relationship between clusters and classes. Given
a point xi, let pi and qi be the clustering result and the ground
truth label, respectively. The ACC is defined as follows:

ACC =
1
n

n∑
i=1

δ(qi,map(pi)), (13)

where n is the total number of samples and δ(x, y) is the
delta function that equals 1 if x = y and equals 0 otherwise,
and map(·) is the permutation mapping function that maps
each cluster index to a true class label. The best mapping
can be found by using the Kuhn-Munkres algorithm [36].
The greater clustering accuracy means the better clustering
performance.

Normalized mutual information (NMI). Another eval-
uation metric that we adopt here is the normalized mutual
information, which is widely used for determining the quality
of clustering. Let C be the set of clusters from the ground truth
and C′ obtained from a clustering algorithm. Their mutual
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FIGURE 1. Clustering results w.r.t. different number of selected features on COIL.

FIGURE 2. Clustering results w.r.t. different number of selected features on JAFFE.

FIGURE 3. Clustering results w.r.t. different number of selected features on UMIST.

informationMI (C, C′) is defined as follows:

MI(C, C′) =
∑

ci∈C,c′j∈C′
p(ci, c′j) log

p(ci, c′j)

p(ci)p(c′j)
, (14)

where p(ci) and p(c′j) are the probabilities that a data point
arbitrarily selected from the data set belongs to the cluster ci
and c′j, respectively, and p(ci, c

′
j) is the joint probability that

the arbitrarily selected data point belongs to the cluster ci as
well as c′j at the same time. In our experiments, we use the
normalized mutual information as follows:

NMI(C, C′) =
MI(C, C′)

max(H (C),H (C′))
, (15)

where H (C) and H (C′) are the entropies of C and C′, respec-
tively. Again, a larger NMI indicates a better performance.

Puritymeasures the extent to which each cluster contained
data points from primarily one class. The purity of a clus-
tering solution is obtained as a weighted sum of individual
cluster purity [37] values and is given by

Purity =
c∑
i=1

ni
n
P(Si), P(Si) =

1
ni
maxj(n

j
i) (16)

where Si is a particular cluster of size ni, n
j
i is the number of

samples of the i-th input class that were assigned to the j-th
cluster, c is the number of clusters and n is the total number
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FIGURE 4. Clustering results w.r.t. different number of selected features on YALEB.

FIGURE 5. Clustering results w.r.t. different number of selected features on PIE.

FIGURE 6. Clustering results w.r.t. different number of selected features on LUNG.

of points. In general, the larger the values of purity, the better
the clustering solution is.

In order to measure the redundancy [38] among the
selected features, the following formula is adopted as

Red(S) =
1

m(m− 1)

∑
fi,fj∈S,i6=j

ρij (17)

where ρij is the Pearson correlation between two features fi
and fj. The measurement assesses the averaged correlation
among all feature pairs, and a large value indicates that
many selected features are strongly redundant. In general,

the smaller the values of redundancy or correlation, the better
the selected features.

D. PARAMETERS SETTINGS
There are some parameters to be set in advance. We set the
size of neighborhoods k = 5 on all the datasets for all these
compared feature selection algorithms except MAXVAR.
The weight of k-nn graph for LapScore is based on the
Gaussian kernel, where the kernel width is set to the mean
distance between any two data examples as suggested in [39].
For LLEScore, the regularization parameter is set to 10−5 as
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FIGURE 7. Redundancy of the selected features with k = 5 on COIL, JAFFE, UMIST, YALEB, PIE and LUNG, respectively.

TABLE 5. Redundancy on different datasets with k = 5 (mean ± std).

in [33]. Compared to most embedded unsupervised feature
selection methods which often have the difficulty of unre-
alistic grid-search of several parameters, it can be seen that
the parameters for all these compared unsupervised feature
selection can be relatively easy to set in advance.

E. CLUSTERING WITH SELECTED FEATURES
With the selected features, we evaluate the performance
in terms of k-means clustering by three widely used met-
rics, i.e., Accuracy (ACC) and Normalized Mutual Infor-
mation (NMI) and Purity. The results of k-means clustering
depend on the initialization. For all the compared algorithms
with different parameters and different number of selected
features, we first repeat the clustering 20 times with random
initialization and record the average results.

Since the optimal number of selected features is unknown
in advance, to better evaluate the performance of unsuper-
vised feature selection algorithms, we finally report the aver-
aged results over different number of selected features (the
range of selected features for each data set can be found
in Table 1) with standard derivation.

The clustering results in terms of ACC, NMI and Purity
are reported in Table 2, Table 3 and Table 4, respectively.
For different feature selection algorithms, the results in each
cell of Table 2, Table 3 and 4 are the mean ± standard
deviation. The last row of Table 2, Table 3 and 4 show the
averaged results of all the algorithms over the 6 datasets. The
best results with highest value of these unsupervised feature
selection algorithms are highlighted in boldface.

Compared with clustering using all features, our method
can achieve comparable results with less than 50 features.
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These results can well demonstrate the effectiveness and
efficiency of unsupervised feature selection algorithm. These
unsupervised feature selection algorithms not only can
largely reduce the number of features facilitating the latter
learning process, but can also often improve the clustering
performance. It can also be observed that our method con-
sistently produces better performance than the other unsuper-
vised feature selection algorithms. In particular, our method
achieves 20.87%, 19.85% and 14.29% improvement in terms
of accuracy, NMI and purity respectively with the second best
algorithm.

The details of clustering results on each data set have been
shown in Fig 1, 2, 3, 4, 5, 6. The squared black line denotes
the proposedmethod, other methods include AllFea,MaxVar,
LapScore, MCFS, LGD and LLEScore. It can be observed
that our method largely improves the clustering results under
most of the feature numbers.

F. COMPARISON OF REDUNDANCY
To fully investigate the effectiveness of the proposed method,
we take the redundancy metric to measure the redundancy
of the selected subset of features. The results in terms of
redundancy are reported in Table 5. For different feature
selection algorithms, the results in each cell of Table 5 are the
mean± standard deviation. The last row of Table 5 shows the
averaged results of all the algorithms over the 6 datasets. The
best results with lowest value of these unsupervised feature
selection algorithms are highlighted in boldface.

From Table 5, we can see that: our method achieves
the lowest redundancy on selected features. Compared with
the second lowest algorithm MCFS, we further get 25.83%
improvement. The details of redundancy on different number
of selected features are provided in Fig. 7. The redundancy
for features selected by filter-based methods, i.e., MaxVar,
LapScore and LLE score are higher than other two methods.
These results well demonstrate that the clustering results
could be improved with more compact subset of features by
redundancy minimization.

V. CONCLUSION
In this paper we construct the simple k-nearest neighbor
graphs using all candidate features and single feature to char-
acterize the local structure of data. We further propose to
minimize the linear reconstruction weight between the near-
est neighbor graphs constructed from all candidate features
and each single feature. Our method with the global optimal
weights actually selects those features with highest relevance
and lowest redundancy simultaneously, which makes it more
suitable for the task of unsupervised feature selection. Exper-
imental results on many benchmark data sets demonstrate
that the proposed method outperforms many state-of-the-art
unsupervised feature selection methods.
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