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ABSTRACT A new iterative learning control (ILC) approach combined with an open-closed-loop PD
scheme is presented for a flexible manipulator with a repeatable motion task in the case that only the endpoint
pose of the flexible link is measurable. This approach takes advantage of the fact that the ILC performance
is independent of the model used, thereby overcoming the drawback of the heavy reliance of PD controllers
on the modeling accuracy. The open-closed-loop PD controller is mainly used to simultaneously reduce the
effects of the modeling error and disturbances to enhance the controller’s robustness. Meanwhile, an angular
correction term is introduced by using the angular relationship of the system outputs to reward or penalize the
ILC law. Specifically, when the current output tends toward the expected trajectory, the ILC law is enhanced
accordingly; otherwise, it is penalized. The convergence conditions for the proposed approach are obtained
through theoretical analysis, and experiments using a real flexible manipulator are presented. The results
show that the proposed ILC scheme can overcome the impact of the endpoint error caused by link flexibility
and has a good control effect.

INDEX TERMS Flexible manipulator, angular relationship, PD, open-closed-loop, iterative learning control.

I. INTRODUCTION
A flexible manipulator [1]–[3] consisting of light, flexible
rods offers several advantages over traditional rigid manipu-
lators [4]–[7], including a higher ratio of load to mass, lower
inertia, and a faster system response. Thus, flexible manipula-
tors have come to occupy an important position in the field of
robotics, especially in recent years, and the study of flexible
manipulators has received extensive attention in many fields.
Using Hamilton’s principle, Choi and Krishnamurthy [8]
established a dynamic model of a flexible mechanical arm
composed of one flexible bar and two rigid bars and discussed
the nonlinear characteristics of the equation using mathemat-
ical tools. Damaren [9] proposed a combination of rigid posi-
tioning and flexible vibration that achieved a good control
effect and applied this concept to develop a multilink flexible
mechanical arm, which was verified through simulation and
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experimentation. Ulrich and Jurek [10] constructed a more
accurate nonlinear flexible joint model and applied a design
method based on singular perturbation theory to develop a
flexible joint arm.

However, a flexible manipulator is a non-minimum-phase
system with high nonlinearity and a high coupling uncer-
tainty; consequently, trajectory tracking is very difficult.
Together with the corresponding computational complexity
and equipment cost, this is a disadvantage that hinders flexi-
ble robotic manipulators in performing jobs requiring a high
accuracy and speed. Therefore, we propose a novel iterative
learning control (ILC) scheme for the trajectory tracking of
a flexible manipulator that can enable such a manipulator to
follow an expected trajectory by means of iterative learning
without requiring an accurate model. ILC [11]–[14] is a feed-
forward control technique that improves the performance of
a system performing repetitive tasks by reducing the tracking
error from trial to trial. The basic idea behind an iterative
algorithm is that a skill can be improved and ultimately
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perfected through constant practice. The performance of sys-
tems that execute repetitive tasks can be improved by learn-
ing from previous executions. The concept of ILC was first
presented by Arimoto et al. [15] in 1984, who proposed a
learning control scheme called the improvement process, and
since then, many researchers [16], [17] have addressed flexi-
ble manipulator control in combination with ILC. By using
an iterative learning method, Qu [18] obtained the bound-
ary control conditions for a flexible manipulator system.
Gunnarsson et al. [19] used an ILC algorithm to estimate the
angle of a flexible mechanical arm by measuring the motor
angle and the angular acceleration of the arm. There are some
other methods that we can learn from [20]–[23].

In this paper, a combination of ILC and open-closed-loop
PD control is established. Iterative learning methods reduce
the requirements for the system accuracy and can compen-
sate for the inadequacy of a flexible manipulator model.
Open-closed-loop PD [24]–[26] controllers can effectively
reduce the uncertainty of the structure and parameters and
the influence of unknown disturbances. Thus, a combination
of the two can not only greatly reduce system error but also
improve tracking accuracy over the entire working period.
In addition, an angular correction term is introduced for the
online adjustment of the gain coefficients of the open-closed-
loop PD-ILC algorithm. Compared with traditional learning
laws with a fixed learning gain, this approach allows further
exploitation of the beneficial information contained in the
system outputs, thereby improving the dynamic performance.
The proposed algorithm improves the robustness and reduces
the vibration of a flexible manipulator system.

This paper is organized as follows. In Section II, a dynamic
model of a single-link flexible manipulator system is pre-
sented. In Section III, a novel ILC algorithm with an angular
correction term is proposed. A convergence analysis is pre-
sented in Section IV. In Section V, a comparative experimen-
tal study is reported to verify the effectiveness of the proposed
algorithm. Finally, conclusions are drawn in Section VI.

II. DYNAMIC MODEL OF A SINGLE-LINK
FLEXIBLE MANIPULATOR
As shown in Fig. 1, under a direct-drive DC servo-
motor [27]–[29], a single-link flexible mechanical armmoves
around the centerline of the motor rotor in the horizontal
plane. One end is fixed to the motor rotor shaft, while the
other end is loaded with a mass block. The fixed frame XOY
is an inertial frame, and XPOYP is a tangent frame, in which
the OXP axis is always tangent to the flexible arm at point O.
The motion of the flexible arm in the horizontal plane can be
described as the superposition of the motion of a rigid body
over a large range and themotion of elastic deformation over a
small range. The rigid angle of the flexible arm is represented
by θ (t), and the amplitude of the superposed small elastic
deformation varies with the position and time for each point
along the arm. The elastic deformation at any point P on the
arm at time t is expressed asω (x, t), where x is the horizontal
coordinate of P in the XPOYP coordinate system.

FIGURE 1. Schematic diagram of a single-link flexible mechanical arm.

The unit vector along theOX axis is i0, the unit vector along
the OY axis is j0, the unit vector along the OXP axis is iP, and
the unit vector along the OYP axis is jP; thus, the position
vector of any point on the arm can be expressed as

OP = xPiP + yPjP = xPoio + yPojo (1)

The velocity vector at P is

vP
dOP
dt
=
dxP
dt

iP +
dyP
dt

jP =
dxPo
dt

io +
dyPo
dt

jo (2)

Under the assumption of no longitudinal deformation of
the flexible arm, it may be stated that ẋP = 0, and the absolute
speed at P is

v2P=
(
x2P+ω

2 (x, t)
)
θ̇2 (t)+ω̇2 (x, t)+2xPθ2 (t) ω2 (x, t)

(3)

where θ̇ is the speed of the rigid motion of the flexible arm
and ω̇ (x, t) is the speed of the lateral deformation motion.

We use the Lagrangian equations [30]–[32] to establish a
dynamic model of a single-link flexible arm. The total kinetic
energy of the single-link flexible manipulator system is T , the
kinetic energy of the motor rotor is T1, and the kinetic energy
of the flexible arm itself is T2:

T = T1 + T2

T1 = Ir θ̇2
/
2 (4)

where Ir is the moment of inertia of the motor rotor with
respect to the rotor centerline.

The kinetic energy of the flexible manipulator is

T2 =
1
2
ρA
∫ l

0

[(
x2 + ω2

)
θ̇2 + ω̇2

+ 2xθ̇ ω̇
]
dx (5)

The elastic potential energy of the bending deformation is

V =
1
2
EI
∫ l

0

(
∂2ω

∂x2

)2

dx (6)

Using the small deformation hypothesis
(
x2 � ω2

)
,

ω =
∞∑
k=1

ϕk (x) qk (t) and the orthogonality of the modal

167816 VOLUME 7, 2019



J. Dong et al.: Open-Closed-Loop PD ILC Corrected With the Angular Relationship of Output Vectors

functions, the simplified Lagrangian function is expressed as

L =
1
2

(
Ir +

ρAl3

3

)
θ̇2 +

1
2
ρA

∞∑
k=1

q̇2k (t)

+ ρAθ̇
∞∑
k=1

q̇2k (t)γi −
1
2
ρA

∞∑
k=1

q̇2k (t)ω
2
i (7)

The work performed by the driving torque τ on the flexible
arm is

G = τθ (t) (8)

where θ is a generalized coordinate and qk (qk (t)) corre-
sponds to the generalized force:

Fθ = ∂G
/
∂θ = τ

Fqk = ∂G
/
∂qk = 0 (9)

The Lagrangian equations of the flexible manipulator
system are

d
dt

(
∂L

∂θ̇

)
−
∂L
∂θ
= Fθ

d
dt

(
∂L
∂ q̇k

)
−
∂L
∂qk
= Fqk (10)

According to the above formulas, the dynamic equations
for the single-link flexible mechanical arm in component
form are

q̈k (t)+ ω2
k (x) qk (t)+ γk θ̈ (t) = 0

Ir θ̈ (t)+ ρS
∞∑
k=1

γk q̈k (t) = τ (11)

where S is the cross-sectional area of the rod, ρ is the volume
density, qk (t) represents the elastic mode coordinates, ωk (x)
are themodal functions, γk are the position vectors of the arm,
τ is the driving torque acting on the flexible mechanical arm,
Ir is the moment of inertia of the motor rotor with respect
to the rotor centerline, θ̈ (t) is the angular acceleration of the
rigid body motion, t is the time variable, and k is the order of
the equation.

The single-link flexible arm is taken as the control object,
and the state vector x (t) is taken to be

x (t)=
[
θ (t) , θ̇ (t) , q1 (t) , q̇1 (t) , · · · , qk (t) , q̇k (t) , · · ·

]T
(12)

where q̇k (t) is the elastic mode speed.
The complete state-space expression for the flexible

mechanical arm is{
ẋ (t) = Ax (t)+ Bu (t)
y (t) = Cx (t)

(13)

whereA,B andC are correspondingmatrices, x (t) is the state
vector of the system, u (t) is the input to the system, and y (t)
is the output of the system (the end position of the flexible
manipulator).

FIGURE 2. Diagram of the ILC system.

III. DESIGNED ILC ALGORITHM WITH AN ANGULAR
CORRECTION TERM
The control algorithm designed in this paper can be
expressed as

ui+1 (t)= ui (t)+ (1+ cosβi) [ϕ2 (t) ėi (t)+92 (t) ei (t)]

+ (1+ cosβi+1) [ϕ1 (t) ėi+1 (t)+91 (t) ei+1 (t)]

(14)

where i denotes the iteration number; ϕ1 (t) , ϕ2 (t) ,91 (t)
and 92 (t) are the learning gain matrices; and ei (t) = yd
(t)− yi (t). A system block diagram of the iterative learning
controller designed based on the simplified model derived in
this paper is shown in Fig. 2.

The aim of ILC is to find the ideal control input ud (t)
for the system by modifying the control quantity such that
the output yd (t) exactly tracks the desired output. Since the
expected input is unknown, there is no standard reference for
whether the system input is good or bad in each iteration; only
the output can reveal the quality of the input. Although the
general ILC algorithm uses the output deviations to correct
the input, this approach is subject to considerable blindness.
Therefore, we also impose a special coefficient on the ILC
law to determine an appropriate reward or punishment for the
control law in accordance with its effect. When the system
output yi (t) is close to the expected output yd (t), the cor-
responding ILC correction can be enhanced through this
coefficient. When the system output yi (t) deviates from the
expected output yd (t), the ILC correction can be weakened.
In this paper, we consider not only the error between the sys-
tem output and the reference trajectory but also the spatial ori-
entation relationship among the three variables in the output
vector space.

As shown in Fig. 3, the vector
→

OA represents the expected

trajectory yd (t), the vector
→

OB represents the output yi (t)

in the i-th iteration, and the vector
→

OC represents the output

yi+1 (t) in the i+1-th iteration; thus, the vector
→

BA represents
the error ei (t) = yd (t) − yi (t) in the i + 1-th iteration. The
desired output trajectory is constant, and the purpose of the
iterative process is to make yi (t) gradually approach yd (t).
The error ei (t) is the error in the i-th iteration. It is believed
that when the direction of development of the output in the
i+ 1-th iteration lies above the dotted line BD, the correction
of the input should be strengthened, whereas if the opposite

VOLUME 7, 2019 167817



J. Dong et al.: Open-Closed-Loop PD ILC Corrected With the Angular Relationship of Output Vectors

FIGURE 3. Angular relationship in the output vector space.

is true, it should be weakened. Let us set 6 ABC = βi.

cosβi =
ei (t) (yi+1 (t)− yi (t))
‖ei (t)‖ ‖yi+1 (t)− yi (t)‖

cosβi+1 =
ei+1 (t) (yi+2 (t)− yi+1 (t))
‖ei+1 (t)‖ ‖yi+2 (t)− yi+1 (t)‖

(15)

The above expressions serve as a basis for judging the
quality of the ILC law based on vector analysis. When
cosβi < π

/
2, the correction should be strengthened, which

is equivalent to the reward for the ILC law discussed previ-
ously. The correction will be continuously enhanced with the
decreasing βi. When βi = 0, the reward is the largest. When
cosβi > π

/
2, the modification should be weakened, which

is equivalent to the punishment of the ILC law discussed
previously. When βi = π , the correction is completely
eliminated; that is, the penalty reaches its maximum.

IV. CONVERGENCE ANALYSIS
The complete state-space expression for the single-link flex-
ible mechanical system is{

ẋi (t) = f (xi, t)+ B (t) ui (t)+ ωi (xi, t)
yi (t) = C (t) xi (t)+ νi (t)

(16)

where i and t are the iteration number and the run time,
respectively; xi ∈ Rm is the state variable, while ui (t) ∈ Rm

is the control variable; yi (t) ∈ Rm is the system output; ωi (t)
and νi (t) are the uncertainty term and interferential term,
respectively; and f (·), B (·), and w (·) are functions.
Assumption 1: Functions f and ω are uniformly Lipschitz

with respect to x, � ∈ Rm × Rm × [1,T ],

‖f (xi+1, t)− f (xi, t)‖ ≤ kf ‖xi+1 − xi‖

‖ω (xi+1, t)− ω (xi, t)‖ ≤ kω ‖xi+1 − xi‖ (17)

where kf > 0 and kω > 0 are the Lipschitzian constants.
Assumption 2: The control input matrix C (t) is first-order

differentiable and continuous, and B (t) and C (t) exist.
Assumption 3: There exist a ud (t) and an xd (t) that make

the desired trajectory yd (t) first-order differentiable and
continuous.
Assumption 4: The initial value of the system satisfies the

following criterion:

‖xi+1 (0)− xi (0)‖ ≤ bx0 , ∀i (18)

Theorem: Under the action of the ILC algorithm (14), the
convergence conditions for the system are

ρ1 = max
t∈[0,T ]

‖I + ϕ1 (t) (1+ cosβi+1)B (t)C (t)‖−1 < 1

ρ2 = max
t∈[0,T ]

‖I − ϕ2 (t) (1+ cosβi)B (t)C (t)‖ < 1 (19)

Then, the tracking error bound converges to within a small
neighborhood of the origin, andwe can conclude that yi (t)→
yd (t) (i→∞).
Let us define the following variables:

1xi (t) = xd (t)− xi (t)

1ui (t) = ud (t)− ui (t)

1fi (t) = fd (t, xd (t))− fi (t, xi (t)) (20)

where xd (t) is the state input on the desired trajectory and
ud (t) is the control input on the desired trajectory.

Proof: From (16) and (20), the system output error can
be obtained as follows:

ei (t) = yd (t)− yi (t) = C (t) xd (t)− C (t) xi (t)

= C (t)1xi (t)− νi (t) (21)

The derivative of (21) can be expressed as

ėi (t) = C (t)1ẋi (t)+ Ċ (t)1xi (t)− ν̇i (t) (22)

From (14), we obtain

1ui+1 (t) = 1ui (t)− ϕ1 (t) (1+ cosβi+1) ėi+1 (t)

−ϕ2 (t) (1+ cosβi) ėi (t)

−91 (t) (1+ cosβi+1) ei+1 (t)

−92 (t) (1+ cosβi) ei (t) (23)

Substituting (22) into (23) yields

1ui+1 (t)

= 1ui (t)−91 (t) (1+ cosβi+1)C (t)1xi+1 (t)

−ϕ1 (t) (1+ cosβi+1) [C (t)1ẋi+1 (t)

+ Ċ (t)1xi+1 (t)− ν̇i+1 (t)
]

−ϕ2 (t) (1+cosβi)
[
C (t)1ẋi (t)+Ċ (t)1xi (t)−ν̇i (t)

]
−92 (t) (1+ cosβi)C (t)1xi (t)

+91 (t) (1+cosβi+1) νi+1 (t)+92 (t) (1+cosβi) νi (t)

(24)

From (16) and (20), we obtain

1ẋi (t) = 1fi (t)+ B (t)1ui (t)+1ωi (t)

1ẋi+1 (t) = 1fi+1 (t)+ B (t)1ui+1 (t)+1ωi+1 (t) (25)

Substituting (25) into (24) yields

[I + (1+ cosβi+1) ϕ1 (t)C (t)B (t)]1ui+1 (t)

= [I − ϕ2 (t) (1+ cosβi)C (t)B (t)]1ui (t)

−ϕ1 (t) (1+cosβi+1)
[
C (t)1fi+1 (t)+Ċ (t)1xi+1 (t)

]
−ϕ2 (t) (1+ cosβi)

[
C (t)1fi (t)+ Ċ (t)1xi (t)

]
167818 VOLUME 7, 2019



J. Dong et al.: Open-Closed-Loop PD ILC Corrected With the Angular Relationship of Output Vectors

−91 (t) (1+ cosβi+1)C (t)1xi+1 (t)

−92 (t) (1+ cosβi)C (t)1xi (t)

+ϕ1 (t) (1+ cosβi+1) (ν̇i+1 (t)−1ωi+1 (t))

+ϕ2 (t) (1+ cosβi) (ν̇i (t)−1ωi (t))

+91 (t) (1+cosβi+1) νi+1 (t)+92 (t) (1+cosβi) νi (t)

(26)

According to Assumption 1, we obtain

‖1fi (t)‖ ≤ kf ‖1xi (t)‖ (27)

Taking the λλ-norm, we can obtain

‖1ui+1 (t)‖λ

≤ η1η2 ‖1ui (t)‖λ

+ η1
[
Pd1kf PC2 + Pd1PC1 + PP1PC2

]
‖1xi+1 (t)‖λ

+ η1
[
kf Pd2PC2 + Pd2PC1 + PP2PC2

]
‖1xi (t)‖λ

+ η1 [(Pd1 + Pd2) (bcν − bω)+ (PP1 + PP2) bν] (28)

where

η1 = ‖I + ϕ1 (t) (1+ cosβi+1)C (t)B (t)‖−1 ,

η2 = ‖I − ϕ2 (t) (1+ cosβi)C (t)B (t)‖ ,

PC1 = max
t∈[0,T ]

∥∥Ċ (t)∥∥ ,
Pd1 = max

t∈[0,T ]
‖ϕ1 (t) (1+ cosβi+1)‖ ,

PC2 = max
t∈[0,T ]

‖C (t)‖ ,

Pd2 = max
t∈[0,T ]

‖ϕ2 (t) (1+ cosβi)‖ ,

PP2 = max
t∈[0,T ]

‖92 (t) (1+ cosβi)‖ ,

PP1 = max
t∈[0,T ]

‖91 (t) (1+ cosβi+1)‖ ,

bν = max
t∈[0,T ]

{sup ‖νi (t)‖ , sup ‖νi+1 (t)‖} ,

bcν = max
t∈[0,T ]

{sup ‖ν̇i (t)‖ , sup ‖ν̇i+1 (t)‖} , and

bω = max
t∈[0,T ]

{sup ‖ωi (t)‖ , sup ‖ωi+1 (t)‖} .

From (16), the state vector xi (t) can be written as

xi (t) =
∫ 1

0
[f (xi (τ ) , τ )+ B (τ ) ui (τ )+ ωi (xi (τ ) , τ )]dτ

+ xi (0) (29)

The expected state vector of the system can be written as

xd (t)=
∫ 1

0
[f (xd (τ ) , τ )+B (τ ) ud (τ )+ωd (xd (τ ) , τ )]dτ

+ xd (0) (30)

By combining (29) and (30), we obtain

1xi (t) =
∫ 1

0
[1fi (τ )+ B (τ )1ui (τ )+1ωi (τ )]dτ

+1xi (0) (31)

According to Assumptions 3 and 4, taking the norm on
both sides of (31) yields

‖1xi (t)‖ =
∫ 1

0

[
kf ‖1xi (τ )‖ + ‖B (τ )1ui (τ )‖

+ kω ‖1xi (τ )‖]dτ (32)

According to the definition of the λ-norm, we set λ > kf +
kω and obtain

‖1xi (t)‖λ ≤
PB

λ− kf − kω
‖1ui (t)‖λ (33)

where PB = max
t∈[0,T ]

‖B (t)‖.

Similarly,

‖1xi+1 (t)‖λ ≤
PB

λ− kf − kω
‖1ui+1 (t)‖λ (34)

Applying (33) and (34) to (28), we obtain[
1−

η1PB (Pd1MPC2+Pd1PC1+PP1PC2)
λ− kf − kω

]
‖1ui+1 (t)‖λ

=

[
η1η2 +

η1PB (MPd2PC2 + Pd2PC1 + PP2PC2)
λ− kf − kω

]
× ‖1ui (t)‖λ + κ (35)

where κ = η1 [(Pd1 + Pd2) (bcν − bω)+ (PP1 + PP2) bν].
From (35), we obtain

‖1ui+1 (t)‖λ ≤ ρ̃ ‖1ui (t)‖λ + ξ (36)

where ρ̃ = η1η2(λ−kf−kω)+η1PB(kf Pd2PC2+Pd2PC1+PP2PC2)
λ−kf−kω−η1PB(Pd1kf PC2+Pd1PC1+PP1PC2)

and

ξ =
κ(λ−kf−kω)

λ−kf−kω−η1PB(Pd1kf PC2+Pd1PC1+PP1PC2)
.

We set ρ̃ < 1; then,

0<
η1η2

(
λ−kf −kω

)
+η1PB

(
kf Pd2PC2+Pd2PC1+PP2PC2

)
λ−kf −kω−η1PB

(
Pd1kf PC2+Pd1PC1+PP1PC2

)
<1 (37)

According to the previous assumption λ > kf + kω,
we obtain

η1η2 < 1−
η1PB

(
Pd1kf PC2 + Pd1PC1 + PP1PC2

)
λ− kf − kω

+
η1PB

(
kf Pd2PC2 + Pd2PC1 + PP2PC2

)
λ− kf − kω

(38)

According to the norm definition given in (28), we obtain

η1PB (Pd1MPC2 + Pd1PC1 + PP1PC2)

+ η1PB (MPd2PC2 + Pd2PC1 + PP2PC2) > 0 (39)

Because η1η2 < 1, we obtain

lim
i→∞
‖1ui (t)‖λ ≤ ξ

/
(1− ρ̃) (40)

Substituting (40) into (34), we obtain

lim
i→∞
‖1xi (t)‖λ ≤ ξ

/
(1− ρ̃) (41)
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FIGURE 4. Single-link planar flexible robotic manipulator.

From (34), we obtain

lim
i→∞
‖1ei (t)‖λ ≤ ξ

/
(1− ρ̃) (42)

Consequently, we find that if the condition η1η2 < 1
holds, then the tracking error bound converges to within a
small neighborhood of the origin, and we can conclude that
yi (t)→ yd (t) (i→∞).

V. EXPERIMENT
To verify the feasibility and effectiveness of the ILC algo-
rithm, we conducted an experimental study. The single-link
planar flexible arm used in the experiments is shown in Fig. 4.
The whole flexible arm is fixed to the base; the arm is
composed of a light alloy material, the end of the arm is
equipped with a clamping hand with a powerful sensor, and
the joint is equipped with an encoder to detect the angular
displacement. The desired reference trajectory for the flex-
ible mechanical arm was defined as q (t) =

[
sin
(
π
/
3
)
t
]
.

The mechanical parameters of the flexible manipulator are
shown in Table 1.

TABLE 1. Mechanical parameters of the flexible manipulator.

It is easy to verify that the end point trajectory approached
the desired trajectory as the iterative learning process pro-
ceeded. Fig. 5 illustrates the trajectory tracking process in
the experiment, and it is clear from these images how the
iterative learning process recovered from the offset due to

FIGURE 5. Trajectory movement of the flexible robotic arm with a load.

FIGURE 6. Trajectory tracking of the flexible arm during the process of
iterative operation.

FIGURE 7. Maximum absolute tracking error in each iteration.

the flexibility of the link, showing that it is possible for the
proposed controller to successfully cope with the difficult
problem of trajectory tracking. Fig. 6 clearly shows the effec-
tiveness of the open-closed-loop PD-ILC scheme with the
angle correction term in terms of the tracking error reduction
and resistance to disturbances. Fig. 7 presents the maximum
tracking errors from one iteration to the next under ILC.
These plots clearly demonstrate that the proposed algorithm
can ensure lower tracking errors and faster convergence rates
in comparison with the traditional open-closed-loop PD-ILC.
These results strongly illustrate the importance of the angular
correction term. During the last iteration, the system had an
acceptably small tracking error due to the nonminimum phase
of the flexible arm.

VI. CONCLUSION
A control algorithm based on open-closed-loop PD-ILC
corrected with the angular relationship of the output vec-
tors, which can take full advantage of the error information
and achieve self-adjustment based on the output angular
relationship, has been developed for a single-link flexible
manipulator. Through experiments, we have found that in the
presence of disturbances and uncertainties, the algorithm can
still achieve accurate trajectory tracking and has a high anti-
interference ability. The algorithm has a simple structure and
is easy to implement in real systems. In the future, we will
apply this algorithm in other control fields.
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