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ABSTRACT Fuzzy entropy (FuzEn) was introduced to alleviate limitations associated with sample
entropy (SampEn) in the analysis of physiological signals. Over the past decade, FuzEn-based methods have
been widely used in various real-world biomedical applications. Several fuzzy membership functions (MFs),
including triangular, trapezoidal, Z-shaped, bell-shaped, Gaussian, constant-Gaussian, and exponential
functions have been employed in FuzEn. However, these FuzEn-based metrics have not been systematically
compared yet. Since the threshold value r used in FuzEn is not directly comparable across different MFs,
we here propose to apply a defuzzification approach using a surrogate parameter called ’center of gravity’
to re-enable a fair and direct comparison. To evaluate these MFs, we analyze several synthetic and three
clinical datasets. FuzEn using the triangular, trapezoidal, and Z-shaped MFs may lead to undefined entropy
values for short signals, thus providing a very limited advantage over SampEn. When dealing with an equal
value of the center of gravity, the Gaussian MF, as the fastest algorithm, results in the highest Hedges’
g effect size for long signals. Our results also indicate that the FuzEn based on exponential MF of order
four better distinguishes short white, pink, and brown noises, and yields more significant differences for
the short real signals based on Hedges’ g effect size. The triangular, trapezoidal, and Z-shaped MFs are not
recommended for short signals. We propose to use FuzEn with Gaussian and exponential MF of order four
for characterization of short (around 50–400 sample points) and long data (longer than 500 sample points),
respectively. We expect FuzEn with Gaussian and exponential MF as well as the concept of defuzzification
to play prominent roles in the irregularity analysis of biomedical signals. The MATLAB codes for the FuzEn
with different MFs are available at https://github.com/HamedAzami/FuzzyEntropy_Matlab.

INDEX TERMS Fuzzy entropy, defuzzification, centre of gravity, fuzzy membership functions, irregularity.

I. INTRODUCTION
Entropy is a powerful and popular nonlinear metric used
to assess the dynamical characteristics of time series [1].
Entropy-based approaches have been broadly used in many
biomedical applications, such as epilepsy, and Alzheimer’s
and Parkinson’s diseases [2]–[6]. Shannon entropy (ShEn)
and conditional entropy (ConEn), which are two common
concepts in the analysis of biomedical signals, respectively
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quantify the amount of information and the rate of informa-
tion production in signals [1], [3], [7].

The concept of entropy of a fuzzy set was first introduced
by De Luca and Termini [8], who defined entropy as a ‘‘mea-
sure of the degree of fuzziness of a generalized set’’. This
definition of entropy is different from the one of ShEn and
ConEn, since no probabilistic concept is required to define it.
This function provides a global measure of the ‘‘indefinite-
ness’’ of the situation of interest. This function can also be
considered as the ‘‘average intrinsic information’’ received
when one decides to classify ensembles of patterns described
by means of fuzzy sets [8]. They also provided a set of
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properties for which the entropy of a fuzzy set should satisfy
them. Yager also introduced a measure of entropy that can be
used to calculate the amount of uncertainty [9]. Additionally,
to deal with both the ShEn and fuzzy sets, Shannon fuzzy
entropy was developed [10]. For more information about
the combination of ShEn and fuzzy set theory, and its main
characteristics and limitations, please see the survey provided
by Al-Sharhan et al. [11].
However, ShEn-based approaches, unlike ConEn-based

ones, are relatively insensitive to signal bandwidth and
high-frequency components of a signal [12]. High frequency
oscillations of time series are used in many applications;
for example, localizing seizure generating regions in epilep-
tic brain [5], [13], [14]. Change in different bands in sig-
nals can be used in characterization of some diseases, such
as Alzheimer’s disease (AD) [6], [15]. Thus, we focus on
ConEn-based entropy techniques in this paper.

Sample entropy (SampEn), which is based on ConEn,
quantifies the irregularity of signals and it has been widely
used in many physiological and non-physiological applica-
tions [2], [7], [16]–[19]. SampEn denotes the negative nat-
ural logarithm of the conditional probability that two series
similar for m sample points remain similar at the next sam-
ple, where self-matches are not considered in calculating the
probability [2].

In the SampEn algorithm, the similarity of embedded vec-
tors is based on the Heaviside function [2]. The Heaviside
function can be considered as a conventional two-state clas-
sification method. However, in the real-world applications,
boundaries between classes may be vague and it is difficult
to determine whether an input pattern belongs totally to
a class [20]. Furthermore, in spite of its popularity, Sam-
pEn leads to either undefined or unreliable results for short
signals [4], [21], [22].

To deal with these deficiencies of SampEn, fuzzy
entropy (FuzEn) was introduced based on the concept of
fuzzy sets and SampEn [23]. It was illustrated that the soft and
continuous boundaries of fuzzy functions ensure the continu-
ity. It was found that FuzEn has a stronger relative consistency
and less dependence on data length [24]. Accordingly, FuzEn
approaches have been used in a wide range of real-world
applications ranging from neuroscience and biomedical engi-
neering to mechanical and financial studies [23], [25]–[28].

To assess the similarity of two embedded vectors in Sam-
pEn, the distance between these vectors is calculated [2].
However, in the first algorithm of FuzEn [23], the average
of each vector (baseline) is first removed from each vector.
Then, the differences between these vectors are calculated.
In fact, a local trend removal is employed before calculat-
ing distances [23]. A balanced quantification of local- and
global-similarity was considered in a new definition of FuzEn
which is called fuzzy measure entropy (FuzMEn) [29].

Depending on the local and global characteristics
of signals, three main FuzEn methods are available [23],
[30], [31], but have not been systematically compared.

Moreover, several fuzzy membership functions (MFs) can be
used in these algorithms [23], [32], [33].

In this article, we first survey uses of FuzEn drawn from the
fields of biomedical engineering. We then detail the advan-
tages and disadvantages of three main forms of FuzEn. The
characteristics and limitations of each MF are described as
well (e.g., in terms of having smooth shape, being nonzero at
all points, and computational time) and their effects on FuzEn
are discussed.

A change in parameters used in a fuzzyMF varies its shape,
leading to different FuzEn-based results. In addition, there are
different numbers and types of parameters for the classical
MFs. Accordingly, there is a real need to unify these MFs and
establish direct relationships between the parameters used
in the MFs. In fact, a direct comparison between the MFS
used for FuzEn is not available. Therefore, we propose to
use the concept of defuzzification in this article. This allows
us to reliably compare the FuzEn with different MFs. The
FuzEn metrics with different MFs are compared in terms of
sensitivity of themethods to the length of signals, dependency
of FuzEn metrics on the periodicity and the degree of ran-
domness in time series, discrimination of short RR interval
signals recorded from healthy young vs. elderly subjects, long
focal vs. non-focal electroencephalograms (EEGs), and stride
interval fluctuations for 3-4 vs 6-7 years old healthy children,
and computational time. We finally draw the conclusions and
suggest several lines of future research.

II. SURVEY ON BIOMEDICAL APPLICATIONS OF
FUZZY ENTROPY METHODS
FuzEn approaches have been used in numerous biomedical
applications. Hu studied EEG data for gender recogni-
tion [34]. For this purpose, the data were processed with sev-
eral entropymethods: approximate entropy, SampEn, spectral
entropy, and FuzEn. The features given by these entropymea-
sures were then used with six types of classifiers. The results
showed that FuzEn and support vector machine give the best
results for gender classification – an accuracy of 0.995 and
an area under the curve (AUC) of 0.995. Using the Boosting
and vote method, classification performances are even better
(an accuracy of 0.996 and 0.998, respectively) [34].

FuzEn on EEG data was also used for person authentica-
tion [35]. Thus, Mu et al. used four types of entropy measures
to obtain EEG signal features for person recognition. They
revealed that FuzEn achieves the best performance for this
task and outperforms the other state-of-the-art methods [35].
Mu et al. carried out another study for person authentica-
tion [36]. For this purpose, they proposed the stimuli of
self-photos and non-self-photos. FuzEn was used to deter-
mine and choose the minimum number of EEG electrodes to
identify individuals. The results revealed that two electrodes
(FP1 and FP2) in the frontal area can lead to interesting results
for human recognition [36].

Tibdewal et al. studied EEG data – recorded in epileptic
and non-epileptic subjects – with Renyi entropy, Shannon
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entropy, approximate entropy, SampEn, and FuzEn [37].
They reported that FuzEn outperforms the other entropy
measures in terms of discrimination of epileptic from
non-epileptic EEG recordings [37]. Xiang et al. also studied
state inspection of epileptic seizures based on FuzEn [38].
Their results illustrated that FuzEn leads to higher classifi-
cation accuracy values in comparison with SampEn-based
techniques [38].

EEG time series were processed with fuzzy approximate
entropy and fuzzy SampEn to detect the abnormality of irreg-
ularity and chaotic behavior in the AD brain signals [39].
The results reported by the authors show that fuzzy SampEn
leads to higher group differences (AD vs. healthy subjects)
in different brain regions and higher average classification
accuracy [39]. Fuzzy and SampEn methods were also used
for characterization of EEGs in AD [40]. AD patients had
significantly lower FuzEn values than control subjects (Stu-
dent’s t-test - p < 0.01) at several electrodes. The results
illustrated the superiority of FuzEn over SampEn in terms
of discrimination of 11 disease patients’ from 11 healthy
subjects’ EEGs [40].

In another study, FuzEn was utilized to monitor EEG
recordings during physical exercise [41]. For this purpose,
FuzEn was applied to EEG signals during physical exercise
workload quantified by the average-to-maximal heart rate
ratio (AMHRR). The results illustrated that EEG spectral
power and FuzEn show a similar increasing pattern with
AMHRR. Nevertheless, FuzEn led to a higher specificity in
selecting effective frequency bands (i.e., theta, alpha, and
beta) [41]. Other authors used FuzEn and SampEn to char-
acterize and classify EEG sleep stages [42]. The results illus-
trated that FuzEn leads to better results than SampEn for this
task [42].

FuzEn has also been used in a detection system for driver
fatigue [43], [44]. Thus, Hu and Wang evaluated sample,
fuzzy, approximate, and spectral entropy, to process EEG
signals on which noise was added. This led to several fea-
ture sets. Classification and ensemble methods were then
used to detect driver fatigue. The results showed that the
classification accuracy of FuzEn and the combined feature
set were better than those obtained with the other feature
sets [43]. Another study was carried out in this application
as well [44]. A single EEG channel was processed and the
results revealed that the best performance is achieved using a
combination of channel CP4, FuzEn feature, and the random
forest classifier [44].

Monge et al. studied the neural dynamics in attention-
deficit/hyperactivity disorder (ADHD) [45]. To this end,
magnetoencephalographic (MEG) background activity was
analyzed with FuzEn. The results obtained reveal that
MEG activity is more regular in ADHD patients than in
controls. Moreover, statistically significant differences are
observed with FuzEn results in the posterior and left temporal
regions [45].

FuzEn also led to interesting findings to re-evaluate
the relation between surface electromyogram (EMG) and

muscle contraction torque in biceps brachii muscles of
healthy subjects [46]. Thus, authors computed the root mean
square (RMS), SampEn, and FuzEn of EMG data recorded
during a series of elbow flexion tasks following different
isometric muscle contraction levels. The results obtainedwith
the FuzEn indicated that this measure is able to estimate
biceps brachii muscle strength: FuzEn of EMG exhibits an
improved linear correlation with the muscle torque com-
pared to the RMS amplitude of EMG [46]. In another study,
authors found that FuzEn is a better choice than SampEn to
quantify muscle fatigue through the slope of the regression
line [29]. Chen et al. inspected how approximate, sample,
and fuzzy entropy can characterize surface EMG signals for
four different motions: hand grasping, hand opening, fore-
arm supination, and forearm pronation. It was found that
the FuzEn-based features, compared with those based on
sample and approximate entropy, led to the highest classifi-
cation accuracy [24]. Authors investigated the mechanisms
underlying the aging-related changes in the coordination of
agonist and antagonist muscles [47]. For this purpose, nor-
malized muscle activation and FuzEn were used to analyze
the activities of biceps and triceps. The results showed that
FuzEn values for agonist EMG are similar for young and
elderly subjects. However, during elbow extension, FuzEn
of antagonist EMG is significantly higher for the elderly
group [47].

FuzEn was employed for automated detection of coro-
nary artery disease using electrocardiogram (ECG) sig-
nals [48]. The results showed that the FuzEn of coronary
artery disease ECGs is higher than that of controls’ record-
ings. This fact may be associated with reduced heart pump
function [48].

FuzEn was also used in the domain of prediction of defib-
rillation success. Thus, by analyzing ECG during ventricu-
lar fibrillation, authors used, adapted, and characterized six
entropy indices for ventricular fibrillation shock outcome
prediction [49]. The performance of the entropy measures
was characterized regarding the embedding dimension m and
matching tolerance or threshold r . Six classical predictors
were also evaluated as baseline prediction values. The best
predictions were given by FuzEn [49].

FuzEn has led to some interesting findings in speech signal
endpoint detection under low signal-to-noise ratio (SNR)
circumstance [50], [51]. Thus, Zhang andNi proposed a voice
activity detection algorithm based on FuzEn and improved
relevance vector machine [50]. The results showed good
performances in detecting speech under various noisy envi-
ronments [50]. Another study used FuzEn for voice activity
detection [51]. Thus, Elton et al. utilized the FuzEn measure
as a feature extracted from noise-reduced speech signals
to train a support vector machine model for speech/non-
speech classification. The results illustrated that the proposed
method is more efficient than previous standardized voice
activity detection algorithms as well as recently devel-
oped methods in detecting speech under various noisy
environments [51].
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TABLE 1. Ability to compute FuzEn with m = 1, consideration of the local and global characteristics of embedded vectors, and computational time for
FuzEn(Glb), FuzEn(Loc), and FuzMEn in comparison with the popular SampEn.

The fuzzy measure entropy (a variant of the FuzEn that
uses the fuzzy local and fuzzy global measure entropy) was
used to analyze heart rate variability (HRV) signals recorded
from healthy subjects and patients suffering from heart fail-
ure [30]. It has proved to give good results for clinical HRV
applications [30].

FuzEn with constant-Gaussian MF was proposed by
Ji et al. [52]. The new measure was utilized to evaluate clini-
cal short-term (5 min) HRV and cardiac diastolic period vari-
ability (DPV) of the patients with coronary artery stenosis and
healthy volunteers. The results showed that the new measure
applied to clinical DPV outperforms SampEn and FuzEn in
distinguishing the patient group and the healthy group [52].

III. REVIEW OF FUZZY ENTROPY METHODS
This Section first details three FuzEn methods based on the
local and global characteristics of signals. How to choose the
parameters of these approaches is next described.

A. FUZZY ENTROPY METHODS
Assume a univariate time series of length N: x =

{x1, x2, . . . , xj, . . . , xN }. All the template vectors xm,d3 (3 =
1, 2, . . . ,N − (m− 1)d) are first created as follows:

xm,d3 = {x3, x3+d , . . . , x3+(m−1)d }, (1)

where m and d respectively denote the embedding dimen-
sion and time delay. Next, the distance between each of
xm,d3 and xm,dλ is defined as 1(Loc)

3,λ = ChebDist[xm,d3 −

x0(3), xm,dλ − x0(λ)],3 6= λ, where x0(3) is the average of
{x3, x3+d , . . . , x3+(m−1)d } to remove the baseline [23]. Loc
denotes the local characteristics of embedded vectors.

This algorithm of FuzEn deals with the local characteristics
of the sequence, without considering their global character-
istics [30]. This is in contrast with the SampEn algorithm,
which does consider the global characteristics of the sig-
nals. For example, assume x3,13 = {1, 0.5, 1.5}, x3,1λ =

{3, 2.5, 3.5}, and SD of x is equal to 1. Thus, 1(Loc)
3,λ is equal

to 0, although x3,13 and x3,1λ are far from each other. This is,
in fact, in contradiction with the approach of SampEn [2].

Therefore, we decide to take into account only the global
average of the signal (x). As 1(Glb)

3,λ = ChebDist[xm,d3 −

x, xm,dλ − x] = ChebDist[xm,d3 , xm,dλ ], we do not need to
consider the global average as well.

Given a FuzEn power ne and threshold r, the sim-
ilarity degree is calculated through the exponential MF

θ (13,λ, r) = exp
(
−
1
ne
3,λ

r

)
. Of note is that several

well-known fuzzy MFs are described in Subsection III-D.
The functionψm,d (ne, r) is then calculated as follows [23]:

ψm,d (ne, r)

=
1

(N − md)(N − md − 1)

N−md∑
3=1

N−md∑
λ=1,λ6=3

exp

(
−
1
ne
3,λ

r

)
.

(2)

Finally, the FuzEn of the signal is defined as the neg-
ative natural logarithm of the ratio of ψm,d (ne, r) and
ψm+1,d (ne, r) (computed following the same procedure for
the embedding dimension m+ 1) [23]:

FuzEn(x,m, r, ne, d) = − ln
(
ψm+1,d (ne, r)
ψm,d (ne, r)

)
. (3)

As mentioned before, this algorithm of FuzEn focuses only
on the local characteristics of the embedded vectors of time
series. In fact, no global fluctuation is taken into account [30].
This is why the FuzMEnwas introduced in 2013 by Liu et al.:
the fuzzy measure entropy integrates both local and global
characteristics and can reflect the entire irregularity in a sig-
nal [30]. It has been reported that fuzzy measure entropy has
better discrimination ability than FuzEn [30]. To overcome
the same problem, Zhu et al. proposed FuzEn based on the
global characteristics of the embedded vectors of a signal
(FuzEn(Glb)) [53].

A shortcoming of FuzMEn and FuzEn(Loc) is that the
embedding dimension m should be larger than 1. Otherwise,
1

(Loc)
3,λ is always equal to 0. This is particularly relevant when

working with short signals. To sum up, the characteristics
and limitations of FuzEn(Glb), FuzEn(Loc), FuzMEn, and Sam-
pEn are explained in Table 1. In this article, we consider
FuzEn(Glb) as the direct extension of SampEn.

B. FUZZY ENTROPY-BASED COMPLEXITY METHODS
The algorithm of MFE includes the following two steps:

1) Univariate coarse-graining process: Assume we
have a univariate signal of length L: u =

{u1, u2, . . . , ui, . . . , uL}. In the coarse-graining pro-
cess, the original signal u is first divided into
non-overlapping segments of length τ , named scale
factor. Then, the average of each segment is calculated
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to derive the coarse-grained signals as follows [54]:

xj(τ ) =
1
τ

jτ∑
i=(j−1)τ+1

ui, 1 ≤ j ≤
⌊
L
τ

⌋
= N . (4)

2) Calculation of FuzEn: The FuzEn value is calculated
for each coarse-grained signal x(τ ) = {x(τ )j }.

C. PARAMETERS OF FUZZY ENTROPY METHODS
There are three main parameters for the FuzEn methods,
including the embedding dimension m, threshold r (or equiv-
alently, Cr, as in our formulation below), and time delay d .
It is advisable to use d > 1 for oversampled signals. However,
some information regarding the frequency of time series may
be ignored and the phenomenon of aliasing may also occur
for d > 1 [4]. Thus, like previous studies about entropy
methods [2], [23], d is set to 1 for simplicity.
The embedding dimension m is the length of sequences to

be compared. Largerm allowsmore detailed reconstruction of
the dynamic process, while a large value of m is unfavorable
because of the need of a very large number of sample points
(10m− 20m), which is hard to meet for physiological or even
non-physiological data [2], [23].

The parameter r is chosen to balance the quality of logarith-
mic likelihood estimates with the loss of signal information.
When r is too small, poor conditional probability estimates
are achieved. Furthermore, to avoid the effect of noise on
data, larger r is recommended. In contrast, for a large r value,
too much detailed data information is lost. Therefore, a trade-
off between large and small r values is needed [2], [23].
Lake et al. proposed an approach to optimally select r [55].
However, since it is needed to calculate SampEn for a range
of r and then pick the value that leads to best performance of
FuzEn, this may be too time-consuming [56]. To alleviate this
problem, a method based on the heuristic stochastic model
was proposed to automatically determine r [56]. However,
this approach still considers a number of r values leading to
computational burden.

For SampEn, it is quite common to set the threshold r
as a constant (usually 0.2) multiplied by the standard devi-
ation (SD) of the original signal [2], [23], [54]. This strategy
makes SampEn a scale-invariant measure [2], [55]. However,
its equivalent values for FuzEn with different fuzzyMFs have
not been studied yet. Furthermore, a change in parameters
used in a fuzzy MF varies its shape, leading to different
FuzEn-based results. Moreover, there exist different numbers
and kinds of parameters for the classical MFs. Therefore, it is
required to unify these MFs and establish direct relationships
between these parameters. To this end, we use the concept of
‘‘defuzzification.’’

A defuzzification process maps a fuzzy set and its
corresponding membership degrees into a quantifiable
value [57]. In fact, defuzzification is the inverse process of
fuzzification [58]. There are a number of defuzzification
approaches [57], [59]. In this paper, we use the centroid
technique (also called centre of area or gravity), as the most

prevalent and physically appealing of all the defuzzification
approaches [59], [60]. The centre of gravity for the fuzzy set
θ (13,λ, r) is calculated as follows [59]:

Cr(θ (13,λ, r)) =

∑
13,λ

13,λθ (13,λ, r)∑
13,λ

θ (13,λ, r)
, (5)

where the centroid Cr is a function of the threshold r.

D. FUZZY MEMBERSHIP FUNCTIONS
Different types of fuzzy MFs are shown in Fig. 1. The
definition, centre of gravity, and advantages and disadvan-
tages of each of them are discussed in this Subsection.
To compare the fuzzy MFs, we consider different centroids
(Cr = 0.05, 0.1, 0.15, 0.2, and 0.25). The results are shown
in Fig. 2.

As mentioned before, finding the optimum value of Cr (or
equivalently r) is time-consuming. Since r = 0.2 for SampEn
corresponds to Cr = 0.1, herein, we set Cr = 0.1 for all
the FuzEn-based simulations below to fairly compare these
techniques.

1) TRIANGULAR MEMBERSHIP FUNCTION
As a piecewise linear, triangular function is one of the sim-
plest fuzzy MFs [61], [62]. This fuzzy MF is defined as
follows:

θ (13,λ, r) =

1−
13,λ

r
, 13,λ ≤ r

0, 13,λ > r
(6)

The centroid of this fuzzy MF is calculated based on Equa-
tion (5) as follows:

Cr =
r
3
. (7)

However, FuzEn based on triangular MFmay lead to unde-
fined results for short signals (please see Fig. 3) because it is
possible for the count ψm,d (ne, r) in Equation 3 to have a
value of exactly 0.

2) TRAPEZOIDAL MEMBERSHIP FUNCTION
As another piecewise linear function, the trapezoidal MF
and its corresponding centroid are respectively computed
as [61], [63]:

θ (13,λ, r) =


1, 13,λ ≤ r
−13,λ

r
+ 2, r ≤ 13,λ ≤ 2r

0, 13,λ > 2r

(8)

and

Cr =
7
9
r . (9)

Due to their simple formulas and low computational
time, both the triangular and trapezoidal MFs have been
used extensively, especially in real-time applications [64].
Nevertheless, as these MFs are composed of straight line
segments, they are not smooth at the corner points.
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FIGURE 1. Different types of fuzzy membership functions with different r values.

3) Z-SHAPED MEMBERSHIP FUNCTION
As a spline-based function, the Z-shaped MF is calculated as
follows [32]:

θ (13,λ, r) =



1, 13,λ ≤ r

1− 2
(
13,λ − r

r

)2

, r ≤ 13,λ ≤ 3
2 r

2
(
13,λ − 2r

r

)2

, 3
2 r ≤ 13,λ ≤ 2r

0, 13,λ > 2r
(10)

The relationship between the centroid Cr and threshold r
for the Z-shaped MF is calculated as:

Cr =
55
72
r . (11)

This MF is not smooth at the corner points as well.
In the following, we introduce other types of MFs defined
by smooth and nonlinear functions.

4) GENERALIZED BELL-SHAPED MEMBERSHIP FUNCTION
Because of their smoothness, nonzero at all points and
concise notation, bell-shaped, Gaussian, and exponential
MFs are becoming increasingly popular for specifying fuzzy
sets [65], [66]. The generalized bell-shaped MF (also called

CauchyMF) is a direct generalization of the Cauchy distribu-
tion used in probability theory [64]. The bell-shaped function
is defined as follows [67]:

θ (13,λ, r, nb) =
1

1+
∣∣∣13,λr ∣∣∣2nb , (12)

where nb is the fuzzy power of the generalized bell-shaped
function. The relationship between the centroid Cr and
threshold r is illustrated as follows:

Cr = r
sin( π2nb )

sin( πnb )
. (13)

5) GAUSSIAN MEMBERSHIP FUNCTION
The Gaussian MF is defined as follows [32], [63]:

θ (13,λ, r) = exp

(
−
12
3,λ

2r2

)
. (14)

The centroid Cr of this fuzzy MF is calculated as:

Cr = r

√
2
π
. (15)
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FIGURE 2. Different types of fuzzy membership functions with different Cr values.

6) CONSTANT-GAUSSIAN MEMBERSHIP FUNCTION
The constant-Gaussian MF is defined as follows [33]:

θ (13,λ, r)=


1, 13,λ ≤ r

exp

(
−ln(2)

(
r −13,λ

r

)2
)
, 13,λ > r

(16)

Based on Equation (5), the centroid of this function is
calculated as:

Cr =
0.5+ 0.5

ln(2) +
√

π
4 ln(2)

1+
√

π
4 ln(2)

r . (17)

7) EXPONENTIAL MEMBERSHIP FUNCTION
The exponential MF, as the generalized case of Gaussian MF,
is defined as follows [23]:

θ (13,λ, r, ne) = exp

(
−
1
ne
3,λ

r

)
, (18)

where ne denotes the fuzzy power of the exponential MF.
When ne = 2, the exponential is equal to the Gaussian MF.
Therefore, we set ne = 3 and 4 in the simulations below.

The relationship between the centroid Cr and threshold r
for the exponential MF is calculated as:

Cr = r
1
n
0( 2

ne
)

0( 1
ne
)
, (19)

where 0 denotes the gamma function.

IV. SIGNALS FOR COMPARISON OF FUZZY
ENTROPY METRICS
In this Section, we introduce the synthetic and real signals
used to investigate the behavior of entropy approaches.

A. SYNTHETIC SIGNALS
1) FUZZY ENTROPY METHODS VS. NOISE SIGNALS
White, pink, and brown noises are three well-known
noise [68], [69]. White noise is a random signal which has
an equal energy across all frequencies. The power spectral
density of white noise is as S(f ) = Cw, where Cw is a
constant [69]. Pink and brown noise are random processes
appropriate for modeling evolutionary or developmental sys-
tems [70]. The power spectral density S(f ) of pink and brown
noise are as Cp

f and Cb
f 2
, respectively, where Cp and Cb are

constants [69], [70].
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2) FUZZY ENTROPY METHODS VS. CHANGES
FROM PERIODICITY TO RANDOMNESS
A wide range of real signals, especially those created by
biological systems, most likely include deterministic and
stochastic components [54]. Hence, to inspect how entropy
methods change when a stochastic sequence turns into a
periodic deterministic signal, we generated a MIX pro-
cess [71], [72]. It is defined as follows:

MIXj = (1− zj)xj + zjyj, 1 ≤ j ≤ N , (20)

where N is the length of the signal vectors z = {zj}, MIX =
{MIXj}, and y = {yj}. z denotes a random variable which
equals 1 with probability p and equals 0 with probability
1 − p. x shows a periodic time series created by xj =√
2 sin (2π j/12), and y is a uniformly distributed series on[
−
√
3,
√
3
]
[72].

B. REAL DATASETS
Entropy-based approaches are widely employed to character-
ize physiological signals, such as EEG, ECG, and blood pres-
sure recordings [4], [71], [73]. To this end, two non-invasive
EEG [74] and ECG datasets [75] are used in this article to
distinguish different kinds of dynamics of signals.

1) DATASET OF FOCAL AND NON-FOCAL BRAIN ACTIVITY
The ability of FuzEn techniques to discriminate focal from
non-focal signals is evaluated by the use of an EEG
dataset (publicly-available at http://ntsa.upf.edu/) [74]. The
dataset includes 5 patients and, for each patient, there are
750 focal and 750 non-focal bivariate time series. The
length of each signal was 20 s with sampling frequency
of 512 Hz (10240 samples). For more information, please
refer to [74]. All subjects gave written informed consent that
their signals from long-term EEG might be used for research
purposes [74]. Before computing the entropies, the time
series were digitally filtered using a Hamming window FIR
band-pass filter of order 200 and cut-off frequencies 0.5 Hz
and 40 Hz, a band typically used in the analysis of brain
activity.

2) RR INTERVAL DATA: HEALTHY YOUNG
VS. HEALTHY ELDERLY SUBJECTS
We used data from Fantasia database which is publicly-
available on PhysioNet website (www.physionet.
org) [75]. The database consists of 20 young (21-34 years
old) and 20 old (68-85 years old) healthy subjects with
their health status having been confirmed rigorously. ECG
recordings were continuously collected for 120 min in supine
position at a sampling frequency of 250 Hz while the sub-
jects were watching the movie Fantasia to help maintain
wakefulness [76]. R-peaks in ECGs were extracted from the
beat annotation files that are incorporated in the database.
Consecutive normal sinus R-R intervals formed RR interval
time series.

3) GAIT MATURATION DATABASE
We also applied the FuzEn methods to the gait maturation
database to distinguish the effect of age on the intrinsic stride-
to-stride dynamics [77]. The dataset is available at www.
physionet.org. A subset including 31 healthy boys and
girls is considered in this study in which there were similar
numbers of boys and girls in each age group. The children
were classified into two age groups: 3 and 4 years old (11 sub-
jects) and 6 and 7 years old children (20 subjects). Height and
weight of the young and elderly groups were 105± 2 cm and
125 ± 1 cm, and 17.3 ± 0.7 kg, and 25.3 ± 0.9 kg, respec-
tively. The time series recorded from the subjects walking at
their normal pace have the lengths of about 400–500 sample
points. For more information, please see [77].

V. RESULTS AND DISCUSSION
A. SYNTHETIC SIGNALS
1) FUZZY ENTROPY METHODS VS. NOISE SIGNALS
To assess the sensitivity of FuzEn with different MFs to the
time series length, we use 40 realizations of white, pink,
and brown noises. The signal length changes from 10 to
1,000 sample points. The profiles, depicted in Fig. 3, suggest
that the greater the number of sample points, the more robust
the entropy estimates, as seen from the errorbars, which
represent the SD.

In the FuzEn method with triangular, trapezoidal, and
Z-shaped MFs, those differences that are smaller than or
equal to r (for triangular MF) or 2r (for trapezoidal and
Z-shaped MFs) are considered. When the time series length
is too small, no differences may be considered, leading to
undefined values. This fact is shown in Fig. 3. Thus, we use
the other four fuzzyMFs in all the simulations below. Among
these for FuzEn metrics, as can be seen in Fig. 3, FuzEn with
exponential MF better distinguishes short white, pink, and
black noise.

2) FUZZY ENTROPY METHODS VS. CHANGES FROM
PERIODICITY TO RANDOMNESS
The FuzEn approaches are applied to 40 realizations of the
MIX process with lengths 100 and 1,000 sample points and
p = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The
mean and SD values of the results are depicted in Fig. 4. The
profiles show an increase in the irregularity of signals with
an increase in the value of p for the MIX process. It is in
agreement with the fact that the higher the value of p for a
MIX process, the more irregular the time series [71], [72].

To compare the results obtained by FuzEn with different
fuzzy MFs, we utilized the coefficient of variation (CV)
defined as the SD divided by the mean. We use such a
metric as the SDs of time series may increase or decrease
proportionally to the mean. The sum of CV values for the
MIX process with length 100 and 1,000 sample points are
illustrated in Table 2. It is found that the larger the length
of signals, the more stable the results. The smallest CVs for
short (100 samples) and long signals (1,000 samples) are
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FIGURE 3. Mean and SD of results obtained by FuzEn with different MFs for 40 realizations of white, pink, and brown noises. The
entropy values obtained by FuzEn with triangular, trapezoidal, and Z-shaped MFs are undefined for short noise signals. Logarithm
scale for both the axis is used.

FIGURE 4. Mean and SD of results obtained by FuzEn with different types of fuzzy MFs for MIX(p) (0 ≤ p ≤ 1).

obtained by FuzEn with generalized bell-shaped (nb=2) and
exponential (ne = 4) MF, respectively. Nevertheless, there is
not a big difference between the techniques.

B. REAL DATASETS
1) DATASET OF FOCAL AND NON-FOCAL BRAIN ACTIVITY
For the focal and non-focal EEG recordings, the mean and
median of results obtained by FuzEn with different MFs are
shown in Fig. 5. The results illustrated that the non-focal
signals are more irregular than the focal ones. This fact is
consistent with previous studies [4], [74], [78]. It should

be noted that the average entropy values over 2 channels
for these bivariate EEG signals are reported for the entropy
methods.

For each approach, the non-parametric Mann-Whitney
U-test was employed to assess the differences between results
for the focal and non-focal signals, because the entropy values
for all the FuzEn metrics did not follow a normal distribution.
The results are presented in Fig. 5. The p-values show that all
the methods are similar in terms of discrimination of the focal
EEGs from non-focal signals. The Hedges’ g effect size [79]
was also employed to assess the differences between results
for focal vs. non-focal signals. The differences, illustrated
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TABLE 2. Sum of the CV values obtained by FuzEn with different fuzzy MFs for forty realizations of MIX process with length 100 and 1,000 sample points.

FIGURE 5. Mean and median of results obtained by FuzEn with different fuzzy MFs computed from the focal and
non-focal EEG signals. p value shown in each panel was from the Mann-Whitney U-test for the focal and non-focal EEG
signals.

TABLE 3. Differences between results for 1) focal vs. non-focal EEGs; 2) RR interval data for healthy young vs. healthy elderly subjects; and 3) stride
interval fluctuations for 3-4 vs. 6-7 years old children (gait maturation) obtained by FuzEn with different fuzzy membership functions based on the
Hedges’ g effect size.

in Table 3, show that the best algorithm is FuzEn with
Gaussian. Thus, based on these results and those for the MIX
process with length 1,000 sample points and the fact that
Gaussian function leads to the fastest FuzEn (please see VI),
we propose to use FuzEn with Gaussian MF for long signals.

2) RR INTERVAL DATA: HEALTHY YOUNG
VS. HEALTHY ELDERLY SUBJECTS
In order to compare the performance of FuzEn with differ-
ent MFs in analyzing short data, only the first 50 sampling
points (i.e., 50 normal sinus R-R intervals) of each RR time
series were used in this study. Six FuzEn metrics (i.e., FuzEn
with bell-shaped MF of order 2, bell-shaped MF of order 3,
Gaussian MF, constant-Gaussian MF, exponential MF of
order 3, and exponential MF of order 4) were employed.
m = 2 and Cr = 0.1 were set for this application. Results are
depicted in Fig. 6. The results illustrate that young subjects’
RR interval data are more irregular than those for the elderly
people. This finding is in agreement with the fact that aging is
associated with loss of irregularity in heart rate control [80].

Results of all the six FuzEn metrics were first tested
by the Shapiro-Wilk test to evaluate the normality of the
results. The test confirmed the hypothesis of normality with
the significance level of 0.05. Student’s t-test was therefore
used to examine their differences between young and old
groups. The p-values illustrate that FuzEn metrics with all the
six MFs show statistically significant between-group differ-
ences. FuzEnwith constant-Gaussian and exponentialMFs of
order 4 is able to discriminate the young from elderly subjects
slightly better than the other FuzEn metrics.

The differences for the 20 elderly vs. 20 young subjects
based on Hedges’ g effect size are illustrated in Table 3.
Although there is no big difference among the results for these
six MFs, FuzEn with exponential MF of order 4 led to the
highest effect size.

3) GAIT MATURATION DATABASE
The results, depicted in Fig. 7, show that the average entropy
values obtained by mean and median values for FuzEn with
different membership functions for the elderly children are
smaller than those for the young children, in agreement
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FIGURE 6. Mean and median of results for FuzEn metrics calculated using (A) bell-shaped MF of order 2,
(B) bell-shaped MF of order 3, (C) Gaussian MF, (D) constant-Gaussian MF, (E) exponential MF of order 3,
and (F) exponential MF of order 4 for the RR interval data in 20 healthy young and 20 healthy elderly
subjects. Student’s t-test p value are shown in upper right corner of each panel.

with [77], [81] and the fact that in very young children,
immature control of posture and gait leads to unsteady loco-
motion [77].

The parameters values for the entropy methods are equal
to those used for the above-mentioned real datasets. The
differences for the elderly vs. young children based on
Mann-Whitney U-test, shown in Fig. 7, demonstrate that
FuzEn with exponential MF of orders 3 and 4 are only
methods that were able to significantly distinguish the elderly
vs. young children. The differences for the elderly vs. young
children based on Hedges’ g effect size are illustrated
in Table 3. The results show that FuzEn with exponential MF
of order 4 outperforms the other methods to discriminate the
stride interval time series for 3-4 years old healthy children
from those for 6-7 years old subjects.

Overall, FuzEnwith exponentialMF of order 4was the best
FuzEn-based algorithm for characterization of short white,
pink, and brown noises, RR interval time series, and gait
maturation data.

VI. COMPUTATIONAL TIME
In order to assess the computational time of FuzEn with
different fuzzy MFs, we used white Gaussian noise (WGN)
times series with different lengths, logarithmically changing
from 300 to 30,000 sample points. The results are illustrated
in Table 4. The simulations have been carried out using
a PC with Intel (R) Xeon (R) CPU, E5420, 2.5 GHz and
8-GB RAM by MATLAB R2015a. The embedding dimen-
sion m and Cr for all the simulations were set as 2 and 0.1,
respectively.

The FuzEn methods based on triangular and trapezoidal
MFs have one and two conditionally defined expressions,
respectively. Therefore, the triangular-based FuzEn is faster.

TABLE 4. computational time of FuzEn with different fuzzy MFs for WGN
with different lengths (300, 1,000, 3,000, 10,000, and 30,000 sample
points).

The definitions of FuzEn with Z-shaped and trapezoidal MFs
include two conditional expressions. Nevertheless, as the
trapezoidal MF is a piecewise linear function, its computa-
tional time is lower.

The results show that the fuzzy power for the bell-shaped
and exponential MFs does not change the computational
time considerably. FuzEn with Gaussian MF is the fastest
technique since it does not have any conditionally defined
expression or function. It is worth noting that the Gaussian
MF is faster than the exponential MF (ne=3, and 4) because
the former has a smaller exponent.

VII. ADVANTAGES AND LIMITATIONS
FuzEn has the advantage, compared to SampEn (and approx-
imate entropy), of not relying on a two-state classifier for
judging the similarity or dissimilarity of two vectors (as
does the Heaviside function). Therefore, FuzEn, compared
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FIGURE 7. Mean and median of results obtained by FuzEn with different fuzzy MFs computed from the stride interval
fluctuations for 3-4 vs. 6-7 years old healthy children. p value shown in each panel was from the Mann-Whitney
U-test.

with SampEn and approximate entropy, is less affected
by the length of data and similarity degree or thresh-
old r , and shows a better relative consistency [23], [82].
FuzEn also improves the poor statistical stability of approx-
imate entropy and SampEn [23], [82]. Finally, FuzEn with
exponential, Gaussian, constant-Gaussian, or generalized
bell-shaped MFS, unlike SampEn and approximate entropy,
does not lead to undefined values.

One of the limitations that FuzEn possesses is that it
does not examine the signal over multiple temporal scales
which is however inherent in physiological signals. The mul-
tiscale counterpart, namely, the multiscale FuzEn (MFE) [83]
may serve as one of the promising solutions. Besides,
the refined composite MFE (RCMFE) [22] and inherent
FuzEn (InFE) [84] were proposed as well to alleviate the
problem of unreliable performance of MFE at larger time
scales. The differences between these complexity methods
are detailed in [85].

VIII. CONCLUSIONS AND FUTURE DIRECTIONS
In this article, the biomedical applications of the FuzEn met-
rics were surveyed. We then compared three main FuzEn
methods with various fuzzy MFs. Particular attention was
given to the importance of an equal center of gravity for
different fuzzy MFs. This allowed us to compare FuzEn
with different MFs reliably. To evaluate the fuzzy functions,
several synthetic and three publicly-available datasets were
used.

The present study has the following implications for FuzEn
metrics. First, among the three main FuzEn algorithms,
FuzEn(Glb) is the only one able to calculate FuzEn with
embedding dimension 1 and directly follows the algorithm
of very popular SampEn as well. Second, FuzEn with trian-
gular, trapezoidal, and Z-shaped MFs may lead to undefined

entropy values for short time series. Third, FuzEn with
bell-shaped (nb = 2), bell-shaped (nb = 3), Gaussian, and
constant-Gaussian MFs led to approximately equal Hedges’
g effect sizes for long signals (longer than 500 sample points -
focal and non-focal EGGs). Additionally, the ability of this
FuzEn with Gaussian was similar to FuzEn based on the
other MFs for the long synthetic signals (MIX process with
length 1,000 sample points). Thus, since the fastest FuzEn
method was Gaussian MF, we recommend using FuzEn with
Gaussian MF for long signals. Finally, FuzEn based on expo-
nential MF of order 4 was able to distinguish short white,
pink, and brown noises, and resulted in more significant
differences and higher Hedges’ g effect sizes for the short real
signals (i.e., RR interval data and stride interval fluctuations).
Therefore, FuzEn with exponential MF of order 4 is sug-
gested for short time series (around 50-400 sample points).

There are still two main challenges open to future investi-
gation, namely:
• Although we proposed to use an equal value of the
centroid Cr for different fuzzy MFs to reliably compare
various FuzEn metrics, we suggest investigating how to
choose an optimal Cr (or equivalently, the threshold r)
for these approaches.

• The computational time of FuzEn methods is consid-
erably higher than that of dispersion entropy [3] and
permutation entropy [86]. Thus, the implementation of
FuzEn is needed to be optimized in the future.

Cross-approximate [87] and cross-sample entropy [2],
which measure the synchrony (or similarity) of patterns
between two times series, have been used in many real-world
applications [88]–[93]. Although cross-FuzEn has been
developed as a modified form of these approaches [94], there
is a need to compare different cross-FuzEn methods based on
the local and global characteristics of the embedded vectors of
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time series. We also recommend investigating different fuzzy
MFs for theses methods. In addition, sample and distribu-
tion entropy methods have recently been extended to their
two-dimensional cases to quantify the irregularity of textures
or images [95], [96]. Due to the advantages of FuzEn over
SampEn [23], there is a potential to develop two-dimensional
FuzEn with different fuzzy MFs.
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