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ABSTRACT This paper proposes a fusion model based on the autoregressive moving average (ARMA)
model and Elman neural network (NN) to achieve accurate prediction for the state of health (SOH) of lithium-
ion batteries. First, the voltage and capacity degradation variation of the battery are acquired through the
battery lifecycle data, and the health factor related to the battery aging is selected according to the variation
of the voltage profile. Second, the empirical mode decomposition (EMD) is employed to process the capacity
degradation data and eliminate the phenomenon of tiny capacity recovery, and multiple data sequences, as
well as the related residue, are extracted, then the grey relational analysis (GRA) between sub-sequences and
health factor are discussed. Furthermore, the ARMA model and Elman NN model are respectively built by
training the subsequent time series data and residue data. Finally, all the individual predictions are combined
to generate the estimated SOH sequences. The experimental validation is performed to manifest that the
addressed fusion method performs the SOH prediction with satisfactory accuracy, compared with the single
ARMA method and Elman NN model.

INDEX TERMS Autoregressive moving average (ARMA), Elman neural network (NN), grey relational
analysis (GRA), empirical mode decomposition (EMD), state of health (SOH).

NOMENCLATURE
A. ABBREVIATIONS
ARMA autoregressive moving average
NN neural network
SOH state of health
EMD empirical mode decomposition
GRA grey relational analysis
EVs electric vehicles
HEVs hybrid electric vehicles
BMS battery management system
SOC state of charge
ECM equivalent circuit models
SEI solid electrolyte interphase
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SVM support vector machine
GPR Gaussian process regression
PF particle filter
RFR random forest regression
IC incremental capacity
CVCAF constant voltage charging aging factor
OCV open circuit voltage
PCA principal component analysis
RVM relation vector machine
RUL remaining useful life
EIS electrochemical impedance spectroscopy
IMF intrinsic mode function
CC constant current
Ah Ampere-hour
CV constant voltage
AR autoregressive model
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MA moving average model
AIC Akaike information criterion
MSE mean-square error
MARE mean-absolute-relative error

B. SYMBOLS
Cu the present capacity of the battery
Cr the rated capacity of the battery
x(t) time series
U (t) upper envelope of x(t)
L(t) lower envelope of x(t)
m(t) the average envelope of the upper and lower

envelopes
h(t) the pending IMF
rn(t) residue of the x(t)
T the number of original data points

the number of iterations in the decomposi-
tion process

SD the termination parameter
F1 CC mode duration
y(k) reference series

correlation grade
the autoregressive model parameter

p the order of the AR model
the moving average model parameter

q the order of the MA model
B backward shift operator
L the highest order of the ARMA model
εt the residual of the ARMA model
τ the condition for validating the residual

independence of the model
the m-dimensional output vector

x the n-dimensional mid-layer element vector
u the r-dimensional input vector
xc n-dimensional feedback state vector
ω3 the weight matrix between the middle layer

and output layer
ω2 the weight matrix between the input layer

and middle layer
ω1 the weight matrix between the context layer

and middle layer
g the transfer function of the output neuron
f the transfer function of neurons in the mid-

dle layer.
η1 the learning rates of ω1

η2 the learning rates of ω2

η3 the learning rates of ω3

I. INTRODUCTION
With the development of the world economy and increase
of population, the energy demand keeps increasing. Due to
continuous consumption of non-renewable energy such as
fossil energy and gradual deterioration of environmental pol-
lution, the development of environmentally friendly renew-
able energy has attracted much attention [1], [2]. Nowadays,
lithium-ion batteries have been widely applied in electric

vehicles (EVs) and hybrid electric vehicles (HEVs) because
of their advantages of high energy density, no memory effect,
low self-discharge rate and environmental protection [3].
Nowadays, lithium-ion battery packs occupy a high propor-
tion in the whole vehicle cost. For the sake of economic
benefits and safety, it is imperative to manage the battery
pack operating properly, so as to provide decision-making
reference for the maintenance and life prediction of the bat-
tery pack. In actual operation, the electrode material of the
lithium-ion battery gradually becomes inactive with accumu-
lated operation. Meanwhile, the inner structure of physics
and the associated chemical reaction would change, resulting
in the capacity attenuation [4]. Consequently, the state of
health (SOH) is introduced which characterizes the healthy
status of lithium-ion batteries. In the battery management
system (BMS) of EVs and HEVs, the SOH is a nonrep-
resentational definition with no specific quantitative index.
Generally, the capacity attenuation of the battery is taken as
the main measurement index of the battery SOH. Accurate
estimation of the SOH can make an essential contribution to
battery health management, including avoiding catastrophic
hazards and extending the battery lifespan [5]. However, due
to complexity and strong coupling of the internal electro-
chemical reactions of the battery, to the authors’ best knowl-
edge, there is still not comprehensive and clear explanation of
the mechanism of battery degradation. In addition, different
types of lithium-ion batteries lead to different aging mech-
anisms due to various inner structure design and electrode
materials [6]. As such, accurate prediction of the health status
of the battery still poses considerable challenges.

The battery degradation is an irreversible process, and the
improper operating temperature, overcharge, over-discharge
and other unhealthy usage habits will accelerate the aging of
the battery. Due to the obscure internal dynamic chemical
system and sensitivity to external environmental factors of
lithium-ion batteries, it is difficult to identify their degra-
dation mechanism [7]. When the capacity drops to 80% of
the initial value, it is deemed unfit for vehicular applica-
tions and the battery should be replaced, since when the
available capacity drops less than 80% of the rated capac-
ity, the capacity degradation will then show an exponential
decline trend with even faster dropping speed [8]. In view
of these problems, how to accurately estimate the healthy
status of batteries shows significance on the BMS of EVs.
Meanwhile, accurately predicting the SOH is also critical for
estimating other status of the battery. If the SOH of the battery
can be accurately estimated, the SOC estimation accuracy can
be potentially improved. In addition, if the battery SOH can
be estimated timely and accurately, the present battery avail-
able capacity can be provided to the BMS for the balance
control. Previous studies have shown that elements related to
the aging rate of the battery, such as charging and discharg-
ing rate, depth of discharge and ambient storage conditions,
can influence the operating state of the battery [9]. If more
information with respect to aging of battery can be acquired,
the service lifespan can be extended and safety accidents can
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be avoided to some extent [10], [11]. Nowadays, a variety
of methods have been proposed to predict the battery SOH,
which can be roughly divided into three categories [12]:
empirical based methods, model-based methods and data-
driven methods.

Empirical based methods are applied to estimate the SOH
by fitting the empirical data. This kind of methods can
meet a certain prediction accuracy for a specific battery,
however it needs to be implemented under certain condi-
tions. When the battery is faced with complex and vari-
able operating conditions, it is difficult to achieve accurate
estimation by this manner [13]. In practice, it can only be
used as rough estimation of the SOH. Model-based methods,
representing a key direction of investigating battery
degradation, conduct the SOH estimation by means of estab-
lishing a battery model and identifying variation of the
interrelated parameters. Electro-chemical models, equivalent
circuit models (ECM) and empirical degradation models
are mostly widely adopted [14]–[16]. The electro-chemical
model analyzes operation law of the battery during degra-
dation from the electrochemical perspective, and it needs
to fully consider influence of the battery voltage, current,
diffusion coefficient, temperature, and electrolyte concen-
tration. In [16], an integrated chemical and physical decay
mechanism is proposed to predict the battery SOH, in which
the variation of chemical and physical structures of positive
and negative electrodes are analyzed in detail. Experimental
results show that the internal structure of the battery is
cracked and expanded, and a solid electrolyte interphase
(SEI) layer is generated on the new cracked surface, leading to
decline of the battery capacity. For this method, even it shows
a high prediction accuracy, however, it requires a variety
of derivation and calculation. The model-based method can
well reflect the physical and chemical characteristics of the
battery; nonetheless, the accuracy and stability of the model
can greatly depend on selection of the parameters [17]. The
data-driven method does not take complex physical and
chemical reactions inside the battery into account, but instead
directly tracks the battery health variation based on the
collected operation data, by which the SOH can be estimated
[18], [19] An important advantage of the data-driven method
is that investigators do not need to model the mechanism
characteristics of the degradation. In contrast, it only needs
to apply the machine learning algorithm or an oriented data
analysis method to build a black-box model with input of
electrical measurements and output of SOH. Typical data-
driven methods include the support vector machine (SVM)
algorithm [20], [21], neural networks (NNs) [22], Gaussian
process regression (GPR) [23], particle filter (PF) [24], and
random forest regression (RFR) [25]. In [20], based on the
characteristics of charging voltage curve, the SVM model
with different voltage range is established, and then the
grid search algorithm based on cross-validation is adopted
to optimize the model parameters, so as to find the opti-
mal voltage range for SOH prediction. In [11], [13], rele-
vant feature vectors are extracted according to the variation

characteristics of incremental capacity (IC) curve, and then
the GPR is employed to estimate the SOH of the battery.
In [26], the constant voltage charging aging factor (CVCAF)
is regarded as the measurement index to achieve precise
estimation of the battery SOH without full cycle experiment.
In [27], a total of 14 features are extracted and analyzed by
the grey relational analysis (GRA) and principal component
analysis (PCA), and then the relation vector machine (RVM)
is leveraged for further prediction. In [28], a data-driven
method is combined with large amount of data to predict
the cycle life for batteries before degradation occurs. In [29],
a fusion of IC analysis and GPR algorithm is leveraged to
integrate the SOH estimation and RUL prediction. While the
data-driven method does not need to consider the degrada-
tion mechanism of the battery in depth, sufficient effective
offline data should be collected to train the estimation model.
The estimation accuracy is also fragile when facing with
uncertainty and limited range of the original data [30]. More-
over, these data-driven methods are limited by computational
intensity of the BMS and not easy to implement in real
application [31].

To address the above elaborated problems and achieve
accurate SOH prediction, some characteristic changes dur-
ing the aging process need to be carefully considered. For
instance, the capacity recovery phenomenon possibly occurs
in the process of battery degradation, especially when some
intervals exist under the condition that the battery is cycled
with full charge and discharge operation. This local tiny
capacity recovery indicates that the battery capacity degra-
dation does not monotonously decline with the increase of
cycle number. It may change the local variation trend of the
SOH and thus affect the prediction accuracy [32]. In terms of
the model-based and data-driven methods discussed above,
one or more health indicators such as capacity and impedance
are extracted as the model inputs to increase the prediction
accuracy of SOH [33]. For example, the capacity decaymodel
and electrochemical impedance spectroscopy (EIS) are often
employed to predict the SOH [34], [35]. The battery capac-
ity is usually measured and calculated in a complete cycle
operation under specific conditions. In actual operation, it is
difficult to encounter a full cycle operation [33]. Meanwhile,
the battery impedance cannot be directly and accurately mea-
sured online by conventional sensors of the electrical system,
hindering its online application [36]. Considering difficulties
in application of capacity and impedance measurement in
practical operation, indirect health indicators are considered
for the SOHprediction. Although they do not directly relate to
the SOH, they show great correlation with the capacity varia-
tion during the whole life cycle. Typical candidates include
IC [11] and differential voltage analysis [37]. No doubt,
they are more intelligible and direct to capture the capacity
variation, compared with the capacity and impedance mea-
surement methods. As such, if some indirect health indicators
that have a certain degree of correlation with SOH can be
extracted without complex experiment andmodeling process,
it would become easier to conduct the estimation.

102664 VOLUME 7, 2019



Z. Chen et al.: SOH Estimation for Lithium-ion Batteries Based on Fusion of ARMA Model and Elman NN

Based on the above analysis, the priority of this paper
is to attain estimating the battery SOH with high accuracy,
acceptable calculation intensity and strong stability by select-
ing proper health indicators. Considering phenomenon of
tiny capacity recovery during the battery lifecycle experi-
ment, the empirical mode decomposition (EMD) technology
is employed to process the raw SOH data sequence. Then,
taking into account changes in the voltage curve during the
attenuation of battery capacity, an indirect healthy factor that
shows a certain degree of correlation with SOH is extracted,
so as to enhance the prediction reliability and improve the
accuracy. In this study, the grey relational analysis (GRA) is
applied to determine the correlation grade among the EMD
decomposition results, cycle number and health factor. Fur-
thermore, different correlation grade shown in the analysis
results is harnessed for subsequent prediction by the autore-
gressive moving average (ARMA) model and Elman NN
model. Experimental results prove feasibility of the proposed
method. The main contribution of the study can be attributed
to the following three aspects:

1) The EMD is employed to process local variation of the
rawSOHdata, and thus the local capacity recovery phe-
nomenon can be fully considered. After decomposition,
three intrinsic mode functions (IMFs) along with the
residue can be attained.

2) The duration of the constant current charging process
is considered as the health indicator by analyzing the
battery charging data, and the health indicator is cor-
related with the IMFs and its residue with help of the
GRA.

3) The ARMA model and Elman NN are respectively
employed to predict the IMFs and residue, and the SOH
prediction is conducted by incorporating both estima-
tion results. The proposed ARMA-Elman NN model
can fully consider the local tiny capacity recovery and
the complex information variation during the charging
process, thereby achieving the reliable and precise SOH
estimation.

The remainder of this paper is structured as follows.
In Section II, the battery attenuation experiment is intro-
duced, and related data analysis is conducted. In Section III,
the EMD and GRA are employed to deal with the exper-
imental data and extract the health factor. In Section IV,
the ARMA model and Elman NN model are introduced in
detail. In Section V, a series of predicted results are discussed,
and the final SOH estimation is performed by incorporating
two algorithms’ result, followed by main conclusions drawn
in Section VI.

II. BATTERY CYCLE LIFE ATTENUATION EXPERIMENT
AND AGING FEATURES EXTRACTION
A. DEFINITION OF STATE OF HEALTH
In this study, the current health status of an aged battery is
determined according to the specific performance compared
with its initial value [38]. In this paper, we define the SOH
according to the percentage of available capacity over the

rated value, as:

SOH =
Cu
Cr
× 100% (1)

whereCu andCr denote the present capacity and rated capac-
ity of the battery, respectively.

B. EXPERIMENT AND DATA ANALYSIS
In this paper, five lithium-ion batteries (referred to as
Cells 1 to 5 hereinafter) were experimented on. They belong
to two types of batteries, of which one type (Cells 1, 3 and 4) is
21700-size with anode materials of Li(NiCoMn)O2, and the
other type (Cells 2 and 5) is the 18650-size with anodemateri-
als of LiCoO2. They arewith different electrodematerials and
cell structures, and show different performances in energy
density, power capability and self-discharge rate. Certainly,
their degradation performances are different. During exper-
iment, three operation states exist including the charging
process, discharging process and rest. Related parameters of
two batteries are shown in TABLE 1.

TABLE 1. Related parameters of Cell 1 and Cell 2.

According to the test process, the experimental scheme for
the battery cycle life attenuation is designed as follows:

1) The battery is subjected to constant current (CC) charge
of 0.5C (Cell 1) and 1C (Cell 2) at 25ř until the ter-
minal voltage reaches its upper limit. Here, C denotes
the value of the battery nominal capacity with unit
Ampere-hour (Ah).

2) Then, the battery is charged under the constant volt-
age (CV) mode until the current drops to the cut-off
threshold.

3) Consequently, the battery is kept still for 1 hour.
4) Next, the battery is discharged with the current of 3C

(Cell 1) and 2C (Cell 2) until the battery voltage drops
to the allowable cut-off values.

5) Repeat steps 1) to 4) to conduct cycling experiment.
The current and voltage profiles during one cycle are

shown in Fig. 1. As can be seen, the charging process is
divided into the CC and CV modes, and the discharging
process only includes the CCmode. The full charging voltage
of two cells is 4.2V and the discharging cut-off voltage is
different, one is 2.75V and the other one is 2.5V.

The relationship between the capacity attenuation and the
cycle number is depicted in Fig. 2. As can be found, there
exists a local tiny capacity restoration that occurs in the
cycling process. This is due to a certain experiment interval
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FIGURE 1. Charge and discharge cycle experiment of battery cells.

that leads to partial recovery of the battery capacity. However,
this local tiny capacity regeneration phenomenon takes a
certain impact on the SOH estimation. In order to reflect
the local information change of SOH caused by the tiny
recovery of the battery capacity, and accurately predict the
battery SOH, the EMD algorithm is applied to decompose
the SOH variation signal into several intrinsic mode func-
tions (IMFs). It contains local characteristic values of the
original signal with different time scales, which enables that
local small change can be properly dealt with for the SOH
estimation.

C. HEALTH FACTOR EXTRACTION AND ANALYSIS
With the increase of the cycle number, some significant
changes would occur in the charge and discharge duration of
the battery. These changes are related with degradation of the
battery and can imply the battery health variation to some
extent. Taking Cell 1 as an example, the charging voltage
curves at partial cycles are shown in Fig. 3(a), where we
can find that the duration of CC charge mode decreases with
the cycling operation. The duration directly affects that how
much capacity can be charged in the CC mode, which repre-
sents the battery polarization characteristics to some extent.
With aging of the battery, the polarization phenomenon will
gradually exacerbate, leading to decrease of the CC mode
duration. In actual operation process, it is difficult to directly
know the residual capacity and the use condition of the
battery. If the past charging data can be analyzed to find

FIGURE 2. Capacity degradation curve of Cell 1 (a) and Cell 2 (b).

the CC charging duration as well as the hidden relation-
ship with respect to the battery SOH, then knowing the CC
duration can be beneficial to estimation of the battery SOH.
On this account, the CC mode duration shown in Fig. 3(b) is
extracted as a health factor which is denoted as F1. In order to
facilitate further analysis and comparison, F1 is normalized.
Fig. 4 shows the variation trend of F1 and SOH of Cell 1 with
the increase of cycle numbers.

In the next step, data processing and analysis are conducted
according to the health indicator and the proposed method.

III. DATA PROCESSING AND ANALYSIS
As introduced before, the EMD technique is applied to
decompose the experimental data.

A. EMPIRICAL MODE DECOMPOSITION
EMD is a time series data or signal processing technology
proposed in [39], [40], which can extract the oscillation
modes of different frequency features embedded in the sig-
nal or time series without knowing the data stationary and
nonlinear characteristics. During the decomposition process,
EMD should satisfy the following criteria: 1) in the whole
data set, the quantity of local extremum points should be

102666 VOLUME 7, 2019



Z. Chen et al.: SOH Estimation for Lithium-ion Batteries Based on Fusion of ARMA Model and Elman NN

FIGURE 3. (a) Charging voltage curves of Cell 1 at different cycles. (b) The
health factor selection based on charging curve.

FIGURE 4. Changes of F 1 and SOH with cycle numbers.

equal to or at most be only one difference from the number of
zero points; and 2) at any time, the mean value of the upper
envelope defined by the local maximum value and the lower
envelope defined by the local minimum value should be zero.
The EMD algorithm mainly extracts IMFs by filtering the
inputs [39], which can be illustrated as follows:

1) Discern partial extremum values of the time series x(t).
2) Fit the upper envelopeU (t) and the lower envelope L(t)

of x(t) by the cubic spline interpolation method based
on all of local extreme values.

3) Calculate the average envelope m(t) of the upper and
lower envelopes,

m(t) = [U (t)+ L(t)]/2 (2)

4) Subtract the mean envelope m(t) from to extract the
pending IMF,

h(t) = x(t)− m(t) (3)

5) Determine whether h(t) meets the criteria of the IMF
mentioned above or not. If not, replace x(t) with h(t)
and repeat screening from step 1); otherwise, h(t) is
regarded as the IMF, as shown in (4). Then turn to step
1) to continue screening by replacing with the residue
r(t).

ci(t) = h(t) (4)

r(t) = x(t)− h(t) (5)

6) Repeat steps 1) to 5) until the termination crite-
ria is reached. The decomposition results can be
described as:rn(t) = x(t)−

n∑
i=1

ci(t)

ri(t) = ri−1 − ci(t)

(6)

where rn(t) denotes the residue and is a monotonous
function representing the trend of data series.

It can be indicated that the stopping criteria employed in
step 6) can be expressed as:

SD =
T∑
t=0

|h(k−1)(t)− hk (t)|2

h2(k−1)(t)
(7)

where T represents the quantity of original data points, k
means the iterations of the decomposition, and SD denotes the
termination parameter. SD is determined specifically accord-
ing to actual complexity of the signal contained in the time
series data [41]. In this study, based on repeated iterations of
the experimental data of Cell 1, the decomposition is stopped
when SD ≤ 0.05, and for Cell 2, it is that SD ≤ 0.08.
The results of EMD decomposition of the two cells’ data are
shown in Figs. 5 and 6, respectively. The SOH sequences of
Cell 1 and Cell 2 are both decomposed into 3 IMFs together
with a residue. It can be seen that the decomposition results
with three IMFs show high fluctuation frequency, and the
final residue is a smooth monotone curve that represents
the SOH variation trend, validating feasibility of the EMD
algorithm.

B. CORRELATION DEGREE ANALYSIS BASED ON GRA
The SOH sequences of Cell 1 and Cell 2 are both decom-
posed by the EMD to obtain three IMFs and a residue. IMFs
represents the oscillation mode of SOH series in different
time scales, whereas the residue explains the variation trend
of SOH in the whole cycle life. In addition, they are also
correlated with F1 to a certain extent. To better understand
the implicit mapping, the GRA algorithm is applied to ana-
lyze the relationship among F1, IMFs and the residue. The
GRA method is a data analysis method stemmed from grey
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FIGURE 5. The original SOH sequence of Cell 1 was decomposed by EMD
to obtain three IMFs and a residue. (a) Three IMFs; (b) The residue.

FIGURE 6. The original SOH sequence of Cell 2 was decomposed by EMD
to obtain 3 IMFs (a) and a residue (b).

system theory and measures the relational grade among fac-
tors according to similarity or dissimilarity of the develop-
ment trends among factors. It provides quantitative analysis

to highlight the similarity and difference between reference
sequences and comparison sequence [42]. The implementa-
tion of the GRA is detailed as follows:

1) Determine the reference y(k) and actual values
x(k) for the given data. In this paper, the refer-
ence series are IMFs and residue, i.e., y(k) =

[IMF1 IMF2 IMF3 residue] and x(k) = F1(k).
2) Nondimensionalize the data series.
3) Calculate the absolute difference sequence and find

the maximum and minimum values, where the abso-
lute difference is the absolute value of the difference
between the reference and comparison series, as

1ij(k) =
∣∣yi(k)− xj(k)∣∣

A = min1ij(k)
B = max1ij(k)

(8)

4) Calculate the correlation coefficient ξij(k), as:

ξij(k) =
A+ ρB

1ij(k)+ ρB
(9)

where ρ ∈ (0, 1) means the resolution coefficient.
In this paper, ρ = 0.5.

5) Calculate the correlation grade, as:

rij =
n∑

k=1

ξij(k) (10)

The calculation results of the correlation grade are shown
in Tables 2 and 3, respectively.

TABLE 2. Grey relational grades between F1 and SOH.

TABLE 3. Grey relational grades between cycles and SOH.

We can find the correlation grade between F1 and IMFs
is only 0.4, and the degree of correlation is small. The cor-
relation grade between F1 and the residue of Cell 1 and
Cell 2 are 0.7550 and 0.6887, respectively. We can conclude
that F1 shows a greater correlation grade with the residue;
therefore, when the prediction of the residue is performed,
the feature factor F1 can be added as the model input.
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IV. ALGORITHM AND PREDICTION MODEL
A. SELECTION OF MODEL AND PREDICTION PROCESS
According to the above analysis, IMFs and the residue show
different correlation degrees with F1. The IMFs has little
correlation grade with F1 and shows a certain grade of cor-
relation with the number of cycles. From this point of view,
IMFs may have a greater correlation grade with the observed
values in the past. The IMFs are regarded as a time series, and
the ARMAmodel is herein applied for prediction. In contrast,
there is a large correlation grade between the residue and F1,
and the residue exhibits a certain degree of correlation with
the number of cycles. In order to reflect the implied com-
plexity of the association without knowing the complicated
relationship in much detail, the Elman NN is employed to
predict the residue and the whole prediction process is shown
in Fig. 7.

FIGURE 7. The SOH prediction procedure.

As can be seen in Fig. 7, the SOH data sequence can be
decomposed into a few IMFs along with the residue. Then
two different algorithms are applied to estimate the SOH
based on the IMFs and residue, respectively. Among them,
the ARMA algorithm is in charge of the IMF data and the
ElmanNN is to deal with the residue. Since the ARMAmodel
requires high demand of the data stability, it is necessary
to judge the data’s variation rate in advance. As the IMFs
exhibits obvious oscillation with large frequency, here a dif-
ferential calculation is employed to stabilize the signal before
building the ARMA model. With respect to the residue’s
estimation, depicted in Fig. 7, xall = [F1 cycle] represents the
model input and yall = [SOH ] is the model output. The main
purpose of the model optimization is to better select learning
rules of the Elman NN. To avoid the error backpropagation,

the gradient descent method is employed to regulate each
layer’s weights and thresholds, thereby approximating the
anticipated value with high precision.

B. AUTOREGRESSIVE MOVING AVERAGE MODEL
1) OVERVIEW OF THE ARMA MODEL
The ARMA model can be used for regression analysis of
large amounts of data and short-term prediction [43], [44].
The ARMA model is composed of an autoregressive model
(AR) and a moving average model (MA). For a stochas-
tic process or time series observation (Xt , t = 0,±1),
which is related to or dependent on previous observations
(Xt−1,Xt−2, · · · ), a random differential equation can be uti-
lized to describe the relationship under certain assumption,

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · · + ϕpXt−p + at (11)

where ϕj (1 ≤ j ≤ p) is the autoregressive parameter, p is the
order of the model, and at means the white noise.
The MA predicts the future value based on the linear

combination of the past interference and present interference
values. Its mathematical expression can be presented as:

Xt = at − θ1at−1 − θ2at−2 − · · · − θqat−q (12)

where θj(1 ≤ j ≤ q) are the coefficients to be determined,
and q means the order of the model. Now, the ARMA model
integrating AR(p) and MA(q) can be merged as:

Xt−ϕ1Xt−1−· · · − ϕpXt−p = at−θ1at−1 − · · ·−θqat−q
(13)

Applying the backward shift operator B, equation (13) can
be written as:

ϕ(B)Xt = θ (B)at
ϕ(B) = 1− ϕ1B− ϕ2B2 − · · · − ϕpBp

θ (B) = 1− θ1B− θ2B2 − · · · − θqBq
(14)

In this study, an assumption is made that ϕ(B) and θ (B) do
not have common factors.

2) IDENTIFICATION OF THE ARMA MODEL
In this study, the Akaike information criterion (AIC) [45] is
employed to solve p and q, and the order of the ARMAmodel
is determined based on the AIC criterion, as expressed in
(15). The calculating process of the AIC criterion is detailed
as follows. First, the residual variance σ 2

k of the model is
calculated based on X , and the highest order L of the fitting
model is imposed. In general, L can be

√
N ,N/10 or lnN [46]

and in this study, L is selected asN/10. Second, the AIC value
is computed with the range of 0 ≤ p ≤ L and 0 ≤ q ≤ L.
Finally, different p and q are respectively evaluated, followed
by the model parameter estimation. The AIC values of each
model are compared, and the model with the minimum AIC
value is selected as the optimal model. During the calculation
process, p and q are determined as the order of the model.

AIC(p, q) = log σ 2
k +

2(p+ q+ 1)
N

(15)
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Equation (15) indicates that the AIC value is composed of
two terms. The first one represents the quality of model fit-
ting, which decreases with increment of the order. The second
item characterizes the number of parameters of the model.
When applying the AIC criterion, it should be noted that
if the minimum point of the AIC cannot be determined by
approaching the upper limit of the order, the preset upper limit
should be enlarged to continue screening the parameters.

TABLE 4. Parameters (p, q) for each ARMA model.

3) ADAPTIVE VERIFICATION OF THE MODEL
In this paper, the IMFs and the associated residues acquired
from the data decomposition are analyzed, and the corre-
sponding ARMA models are established by training 60% of
the data. The detailed values of p and q of the ARMA model
are listed in Table 4. After establishing the ARMA model, its
adaptability in terms of each IMF discussed above needs to
be verified. Generally, the independence of the residual εt in
the fitting model is applied to validate whether the model is
qualified for the actual situation. According to the Barlett’s
formula [47], τ = ±(2/

√
N ) is considered as the condition

for validating the residual independence of the model, where
N is the number of the training data. The autocorrelation
function of the residual for IMFs are shown in Fig. 8. For
Cell 1, N equals 180 and τ1 = ±0.149. It can be seen that
most of the values of three IMFs are less than τ1 and they all
gradually converge to zero. In terms of Cell 2, τ2 = ±0.183,
and it can be observed fromFig. 8 (b), thatmost of the time the
other autocorrelation function values are less than τ2 and also
gradually converge to zero. Therefore, it can be inferred that
εt of each fitting model is independent with the confidence
of 5%, and thus the effectiveness of the ARMA model is
validated.

C. ELMAN NN AND ITS APPLICATION
Elman NN is essentially a kind of dynamic feedback net-
works, which uses a context layer as a one-step delay operator
to realize the function of memory, for the sake of facilitat-
ing the ability to adapt to the time-varying characteristics
[48], [49]. The inner structure of the Elman NN is shown
in Fig. 9. A main characteristic is that the context layer
receives and stores feedback signals from the hidden layer,
and each node of the hidden layer is connected with a cor-
responding node of the context layer, making it accessible
to the data of historical state. The addition of the internal
feedback network enhances the ability to process dynamic
information, thereby making easier adaptation to dynamic
modeling. In addition, Elman NNs can approximate arbitrary
nonlinear relationship with ideal precision with more compu-
tational power, compared with feedforward NNs.

FIGURE 8. Autocorrelation diagram of residual of IMFs for Cell 1 (a) and
Cell 2 (b).

FIGURE 9. Structure of Elman neural network.

From Fig.9, the nonlinear state space function of the Elman
NN can be expressed as

y(k) = g(ω3x(k))
x(k) = f (ω1xc(k)+ ω2(u(k − 1)))
xc(k) = x(k − 1)

(16)

where is the m-dimensional vector of output layer, x is the
n-dimensional mid-layer node vector, u is the r-dimensional
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vector of input layer, xc is an n-dimensional feedback state
vector. ω3, ω2 and ω1 are the corresponding weight matrixes
among the output layer, middle layer, input layer, and context
layer, respectively. g is the transfer function of the output
neuron, and f is the transfer function of neurons in the middle
layer.

The sum of error squares is adopted as the learning indica-
tor, then the total error criterion function for training samples
can be calculated,

E =
1
2

n∑
k=1

(y(k)− ỹ(k))2 (17)

where y(k) is the expected output and ỹ(k) is the predicted out-
put. According to the error gradient descent method, we can
attain:

1ω = −η
∂E
∂ω

(18)

Then, the modified connection weight can be calculated,

1ω3
ij = −η3

∂E

∂ω3
ij

i = 1, 2, · · · ,m; j = 1, 2, · · · , n

1ω2
jh = −η2

∂E

∂ω2
jh

h = 1, 2, · · · , r

1ω1
jq = −η1

∂E

∂ω1
jq

q = 1, 2, · · · , n

(19)

where η1, η2 and η3 are the learning rates of ω1, ω2 and ω3,
respectively. In addition, we can further get:

∂E

∂ω3
ij

=
∂E
∂ ỹi(k)

∂ ỹi(k)
∂gi(∗)

∂gi(∗)

∂ω3
ij

(20)

From (16) and (17), we can attain:

∂E

∂ω3
ij

=
∂E
∂ ỹi(k)

g′i(∗)xj(k) (21)

∂E
∂ ỹi(k)

= −

n∑
k=1

(yi(k)− ỹi(k)) (22)

∂E

∂ω3
ij

= −

n∑
k=1

(yi(k)− ỹi(k))g′i(∗)xj(k) (23)

Meanwhile, partial derivative of ω2
jh can be described as:

∂E

∂ω2
jh

=
∂E
∂xj(k)

∂xj(k)

∂ω2
jh

=
∂E
∂xj(k)

f ′j (∗)uh(k − 1) (24)

Since
∂E
∂xj(k)

=
∂E
∂ ỹi(k)

∂ ỹi(k)
∂xj(k)

=
∂E
∂ ỹi(k)

g′(∗)ω3
j (25)

we can get
∂E

∂ω2
jh

= −

n∑
k=1

(yi(k)− ỹi(k))g′(∗)ω3
j f
′
j (∗)uh(k − 1)

∂E

∂ω1
ij

= −

n∑
k=1

(yi(k)− ỹi(k))g′(∗)ω3
j f
′
j (∗)xc,q(k)

(26)

Assuming that
n∑

k=1

(yi(k)− ỹi(k)) = ζ
j
i (27)

we can obtain:

1ω3
ij = η3ζ

j
i g
′
i(∗)xj(k)

i = 1, 2, · · · ,m; j = 1, 2, · · · , n

1ω2
jh = η2ζ

j
i g
′(∗)ω3

j f
′
j (∗)uh(k − 1)

h = 1, 2, · · · , r

1ω1
jq = η1ζ

j
i g
′(∗)ω3

j f
′
j (∗)xc,q(k)

q = 1, 2, · · · , n

(28)

Next step, the results analysis and prediction precision are
discussed with the proposed algorithm.

V. PREDICTED RESULTS AND ANALYSIS
As can be seen from Figs. 5 and 6, the SOH curves of two bat-
teries are obviously different. The local capacity recovery of
Cell 2 is more obvious and the available capacity drops fasters
than that of Cell 1. From Figs. 5 and 6 (a), we can find that the
oscillation amplitude and frequency of IMFs are obviously
different, and different prediction effects would be obtained
after the ARMAmodel prediction. For the residue, due to the
large difference in cycle numbers of life attenuation exper-
iments, the amount of data used for training differs greatly
when the Elman NN is employed, and thus different pre-
diction results are generated. In this study, the mean-square
error (MSE) and mean-absolute-relative error (MARE) are
employed to quantitatively evaluate the prediction results, as:

MSE =
1
N

N∑
i=1

(f (xi)− yi)2 (29)

MARE =
1
N

N∑
i=1

| f (xi)− yi|
yi

× 100% (30)

where N is the number of samples, f (xi) is the predicted value
of the samples, and yi is the referred value of the samples. The
MSE is mainly to describe the influences of the sample with
large errors, and the MARE is used to quantify the average
error of the model. In this study, the prediction effect of IMFs
and residue for two batteries are compared and discussed.
Finally, the SOH prediction results of the two batteries are
compared with that only based on a single ARMAmodel and
the Elman NN.

A. ESTIMATION RESULTS OF IMFS AND RESIDUE
The results predicted of IMFs and residue for two cells
by the proposed model are shown in Figs. 10 to 13, and
the comprehensive prediction errors of IMF1, IMF2 and
IMF3 are depicted in TABLE 5. The MSE and MARE of
IMFs for Cell 1 predicted by the ARMA algorithm are
0.17×10-5− and 2.16%, respectively. The error performance
of residue for Cell 1 predicted by the Elman NN are
0.69×10-5− and 0.18%. For Cell 2, the indexes describing
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TABLE 5. Error comparison of IMFs and residue.

the prediction performance are 3.79×10-5−, 6.83% of IMFs
and 6.50×10-5−, 0.51% of residue, respectively. As can be
seen in TABLE 5, the MSE of IMFs predicted by ARMA
is smaller than the residue predicted by Elman NN, while
the MARE of IMFs predicted by ARMA is higher than the
MARE predicted by Elman NN. This is due to the different
performance of the two models. However, both models can
achieve desirable prediction accuracy. To sum up, we can
conclude that the ARMA model and Elman NN are capable
of tracking the signal variation with high accuracy.

B. SOH ESTIMATION RESULTS OF TWO BATTERIES
As shown in Part A, the prediction performance of both
methods is validated effective. In this paper, the prediction
results of IMFs and residue are added together to predict the
SOH. The results predicted are shown in Figs. 14 and 15,
including the prediction results and errors. For Cell 1, most
of the absolute error can be guaranteed within 1%, and the
distribution is relatively concentrated. The large prediction
error of Cell 1 is caused by the presence of individual outliers
in the extracted health factor F1. For Cell 2, the overall
absolute error is restricted within 2%, however, when com-
paring with that of Cell 1, the error distribution is relatively
dispersed, which is raised by the large local oscillation of the
SOH. As can be seen from Figs. 14 and 15, in the whole
cycle life experiment of Cell 1, its SOH is always greater
than 80%. However, for Cell 2, when the SOH is below
80% after 120 cycles, its capacity dropped more rapidly. The
maximum prediction error for Cell 1 is kept within 0.5%,
and when the SOH of Cell 2 locates within 80% to 100%,
most of the estimation error is less than 1.5%. Even there
exists a large oscillation in the end of the prediction error
distribution profile, however, the maximum prediction error
is still less than 3%. Therefore, we can conclude that the
proposed method is capable of estimating the battery SOH
with satisfactory precision. To sum up, the fusion algorithm
can ensure high estimation precision and results manifest
that the algorithm can effectively predict the SOH by dealing
with the local information variation and extracting the healthy
indicator after consideration of the battery polarization.

C. COMPARISON OF THE SOH ESTIMATION RESULTS
To verify the prediction performance and conformability of
the fusion model, the single ARMAmodel and the Elman NN
prediction are also employed for performance comparison.

FIGURE 10. Results of IMFs estimation by the ARMA for Cell 1.
(a) IMF1 estimation results. (b) IMF2 estimation results.
(c) IMF3 estimation results.

Figs. 16 to 21 and TABLE 6 show the prediction results and
errors of the ARMA model and Elman NN, respectively.

For Cell 1, the MSE and MARE based on these three
methods, i.e., the fusion algorithm, ARMAmodel and Elman
NN method are 0.94 × 10−− and 0.21%, 0.13 × 10 − 5−

and 0.08%, and 2.95 × 10 − 5− and 0.41%, respectively.
Among them, the prediction error of the Elman NN algorithm
is larger than that of the ARMA-ElmanNN algorithm, and the
prediction error of the ARMA model is smaller than that of
the fusion model. The SOH variation of Cell 1 is relatively
smooth without much fluctuation in the middle part and
the ARMA model requires a higher level of stability for the
predicted data. The IMFs obtained by the EMD represent the
local frequency amplitude, the fluctuation of the IMF result
is larger than that of the SOH sequence. Therefore, the error
of SOH directly predicted by the ARMAmodel will be small.
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FIGURE 11. Results of IMFs estimation by the ARMA for Cell 2.
(a) IMF1 estimation results. (b) IMF2 estimation results.
(c) IMF3 estimation results.

FIGURE 12. Results of residue estimation by the Elman NN for Cell 1.

However, the disadvantage of the ARMA model is that it
cannot specifically consider the correlation among battery
aging features, such as F1 and SOH, therefore, the prediction
results may not be comprehensive.

For Cell 2, the corresponding results are 7.20 × 10 − 5−

and 0.72%, 9.20× 10− 5− and 0.64%, and 8.70× 10− 5−

FIGURE 13. Results of residue estimation by the Elman NN for Cell 2.

FIGURE 14. The results and error of SOH estimation for Cell 1.

and 0.60%, respectively. As can be observed, the prediction
errors of these three methods are relatively close, the MSE of
the fusion model is smaller than that of the ARMA and Elman
NN, whereas the MARE is slightly larger. When the Elman
NN predicts the data sequence that has a large correlation
with past observation, the prediction performance is not as
ideal as the ARMA model; in contrast, the Elman NN can
consider the mapping between the aging factor and the SOH.
To conclude, the fusion method can not only consider more
comprehensive information change during the prediction, but
also ensure high estimation accuracy by incorporating the
advantages of the ARMA and Elman NN. As such, we can
say that the proposed fusion method demonstrates higher
application potential in the actual process.

D. STATE OF HEALTH ESTIMATION FOR DIFFERENT CELLS
To further validate feasibility of the proposedmethod, another
three cells, i.e., Cells 3, 4, and 5, are experimented on.
Cells 3 and 4 belong to the same type as Cell 1, and Cell 5 is
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FIGURE 15. The results and error of SOH estimation for Cell 2.

TABLE 6. Comparison of SOH prediction error for Cell 1 and Cell 2.

FIGURE 16. Estimation Results by ARMA and Elman NN for Cell 1.

the same with Cell 2. Their predictions and errors are shown
in Figs. 22 to 24 and TABLE 7. We need to point out that
since the rest occurs intermittently during the experiment of
Cell 4, its capacity decline is not obvious. It can be seen
that the proposed method can attain a small prediction error,
of which the MSE and MARE for these three Cells are

FIGURE 17. Estimation error of the SOH by ARMA for Cell 1.

FIGURE 18. Estimation error of the SOH by Elman NN for Cell 1.

FIGURE 19. SOH estimation results by ARMA and Elman NN for Cell 2.

FIGURE 20. Estimation error of the SOH by ARMA for Cell 2.

1.2× 10− 5−, 1.90× 10− 5−, 9.20× 10− 5−, and 0.27%,
0.37%, 0.57%, respectively. As the SOH of Cell 5 drops far
less than 80% at the end of cycle life, the estimation error
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FIGURE 21. Estimation error of the SOH by Elman NN for Cell 2.

TABLE 7. Comparison of SOH prediction error for Cells 3 to 5.

FIGURE 22. The results and error of SOH estimation for Cell 3.

of Cell 5 gradually increases. By comparing with the results
of Cell 2, we can find that the algorithm leads to the similar
performance as Cell 2, proving that our method can conduct
the consistent prediction for one type of cells. We can find
that the absolute prediction error of all batteries is almost
the same, and the error distribution is relatively concentrated,
manifesting the effectiveness of the algorithm when applied
to different batteries.

FIGURE 23. The results and error of SOH estimation for Cell 4.

FIGURE 24. The results and error of SOH estimation for Cell 5.

E. VERIFICATION OF METHOD ROBUSTNESS
All the above discussed results are obtained under a deter-
ministic way of charging/discharging the battery. To prove
robustness of the proposed method, an open source battery
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FIGURE 25. Current and Voltage change during a cycle for Cell 6.

experimental data is selected for extended verification. The
open data set was collected by cyclic life tests of a variety of
commercial LFP/graphite batteries (rated capacity of 1.1Ah
and rated voltage of 3.3V). Some experiments adopt one-
step or two-step policy to charge the battery, and the upper
and lower cut-off voltages are 3.6 V and 2.0 V, respectively.
The charging policy that we select specifies a format of
C1(Q1)-C2 mode, in which C1 and C2 denote the first
and second constant current step, respectively, and Q1 is
the SOC at which the current changes. The second current
step ends at 80% SOC, after that the cell is charged with
1C CC-CV mode. More details can be found in [28].
To extend the validation, the experimental data of one bat-
tery, referred to Cell 6, is selected to verify the proposed
method.

Fig. 25 shows the current and voltage variation in a charg-
ing and discharging cycle. It can be seen that the current
varies dramatically in the charging process, and the charging
mode is not a determined manner. We extend the feature
selection range for Cell 6 and extract the whole charging time
as a health factor. Then, the proposed algorithm is applied to
predict the SOH. The estimation result and error are shown
in Fig. 26. As can be observed, the estimation result shows
similar trend with the real SOH, and only some fluctuation
exists when the SOH is close to 80%. As a result, a conclusion
can bemade that the overall prediction error is less than 1.5%,
and all the test results are within a reasonable error range.

FIGURE 26. The results and error of SOH estimation for Cell 6.

In this manner, the robustness and adaptivity of the proposed
algorithm is proved.

VI. CONCLUSION
In this paper, a fusion state of health estimation algorithm is
proposed based on the autoregressive moving average model
and the Elman neural network algorithm. To achieve state
of health estimation, the charging and discharging voltage
curve and capacity variation of five lithium-ion batteries, are
acquired from the experimental data. The constant current
mode charging duration is extracted as the health factor
according to changing characteristics of the voltage curve
during the charging process. Secondly, the raw state of health
sequence is processed by the empirical mode decomposition
to acquire three intrinsic mode functions together with a
residue. The grey relational analysis of intrinsic mode func-
tions and the residue with the health factor and cycle num-
bers are conducted. Different prediction models are selected
according to the calculated correlation grade. Among them,
intrinsic mode functions, which show high correlation with
historical observations, are predicted by the autoregressive
moving average model, and the residue, which are strongly
correlated with the health factor and cycle numbers, are
predicted by the Elman neural network. Meanwhile, all the
predicted values are added together to determine the state of
health. Comparing with the results calculated only based on
the autoregressive moving average model and the Elman neu-
ral network algorithm, experimental results manifest that the
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proposed fusion algorithm can not only consider the influence
of complex changes on state of health, but also ensure a high
prediction accuracy.

In the next step, the influence of other factors that can take
an effect in the SOH estimation should be studied, such as
temperature variation, different charge and discharge rates,
and variation of external operating environment. In addition,
conduction of the SOH estimation based only on partial
charging duration in the CC mode will be our research direc-
tion. Currently, we do not specifically consider the battery
capacity decline in some extreme conditions, which will also
be our next research content for extending the application of
the algorithm. Furthermore, this paper only studies the SOH
of the single battery cell and the investigation of the pack
SOH could also be our research focus in the future.
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