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ABSTRACT The autonomous vehicle (AV) is an emerging product of intelligent transportation system. This
paper proposes a new parking cost optimization scheme for long-range autonomous valet parking (L-AVP),
namely AVPark. The L-AVP selects a drop-off point (as the temporary reference point for people to fetch
the AV for traveling purpose) for AV. The user leaves AV at drop-off spot and the AV finds out the most
optimal car parks (CPs) itself. The AVPark provides an AV with the most optimal car park considering
the parking price, fuel consumption, and distance to a vacant parking space. AVPark aims to minimize the
walking distance for drivers, and also the round-trip duration for AV from the drop-off point to car park
through a combination of weighted values and heuristic approach. By facilitating the drop-off point that is
newly brought into the emerging scenario, an optimization scheme is proposed to minimize the total cost
for fuel consumption and traveling time using the weighted value analysis. The results show that AVPark
optimized the total trip duration, walking distance, and cost.

INDEX TERMS Autonomous parking, optimization, autonomous driving, reservation.

I. INTRODUCTION
Transportation system has always remained an important
aspect of human life. Human mobility is largely dependent
on the transportation and infrastructure. According to trans-
portation statistics of Great Britain 2017 [1], 78% of distance
is covered by own transport while remaining 22% is covered
by other means of public transport. The other means of public
transport includes bus, train and cabs. Similarly, in the USA,
Europe and China, distance travelled by private and public
transportation mean is illustrated in Fig. 1. Recent statistics
show that there is an increase in travelling through private
mode of transportation.

Usually in urban areas, there is only a limited number of
parking spaces available. On average, vehicles searching for
parking space contributes to 30% of traffic on roads. In the
UK, it takes over 6 minutes to find a parking lot, in a report
by JustPark [2]. In a global parking survey by IBM [3],
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20 minutes are spent in searching for an appropriate
CPs [4]–[6]. Parking a car in a pre-defined and limited space
itself is a difficult task for most of the early stage drivers.
As per the recent report of Insurance Institute for Highway
Safety (IIHS), 20% of all car accident occurs in commercial
parking lots. The rate of auto-mobiles has been doubled over
the past few decades and it is quite challenging to accommo-
date increasing number of vehicles in existing infrastructure.
Besides limited space for parking, skills required to manoeu-
vre vehicle in tight spaces, high cost and circular driving are
various reasons that need to be addressed using the state of
the art technologies.

On one hand, a personal vehicle provides much comfort.
On the other hand, one may face multiple challenges while
driving their own vehicle. One of themost challenging tasks is
to find a cheap and suitable parking space in a timely manner.
Smart Parking (SP) benefits to user, by providing suggestion
for CPs. Apart from finding parking slot, parking vehicle
into exact dimensions specified for parking is considered as
the most difficult part of all driving operations. These days,
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FIGURE 1. Statistics of 2017-2018 [1], [2].

finding CPs in urban areas, congested zones, business areas,
and tourist spots is a major concern due to the increase in
number of vehicles.

Recent inventions in autonomous control systems, sens-
ing and vision systems have addressed many of the major
challenges with respect to safety on wheels, efficiency,
fuel consumption, traffic congestion and environmental
pollution [7]. The AV provides the capacity of perform-
ing multiple operations at the same time autonomously [8].
It includes several operations such as parking vehicle in the
garage without a driver, searching for a vacant parking slot
in CPs and getting parked.

In Autonomous Valet Parking (AVP), the driver leaves an
AV at designated locations. The AV is capable of driving
in fully autonomous mode, moves towards selected CPs and
gets parked. The AVP is delivering astonishing services with
the help of modern automation technologies. It improves the
overall user experience and provides safety as well [9].

One type of AVP called Short range Autonomous
Valet Parking (S-AVP) has been made possible through
the advancement of vision system and autonomous car-
maneuvering techniques [9]. The S-AVP has addressed vari-
ous problems that happen in parking lots, like finding empty
parking lot inside CPs and parking AV in specified dimen-
sions. The S-AVP has performed efficiently in training sce-
narios, where AV training is performed by the driver at
least once. The most advanced system in S-AVP can search
for vacant parking lots in multi-story buildings. Through
advanced machine learning techniques, S-AVP can park an
AV in full autonomous mode [10], [11].

This paper will address key challenges related to Long-
rangeAutonomousValet Parking (L-AVP), which is an exten-
sion of the existing S-AVP. In L-AVP, the user drives the AV
at a certain point in city center called Drop-off/Pick-up (D/P)
point and walks towards the desired location, which could
be a Leisure Point (LP), or a Work Place (WP). In the next
step, the AV moves autonomously towards CPs. Similarly,
for the inbound trip from CPs, the AV is picked-up by the

driver at pick-up point. The L-AVP provides driver with more
convenience, by allowing them to drop their AVs near LP.
The proposed scheme also saves significant amount of time
because, L-AVP allows drivers to be dropped off at near-
est point to their desired location. L-AVP also facilitates
smart operations executed throughAVs by providing themost
suitable path planning, cost effective selection of CPs and
suggestions for pick-up/drop-off spots selection.

In literature, pricing schemes for smart parking has been
proposed and analyzed [12]. The L-AVP delivers by provid-
ing the nearest drop-off point near to their work place/leisure
point. The AV is facilitated at the nearest drop-off point, and
provides users the convenience in terms of time and monetary
value. Our contribution focuses on providing efficient pricing
and reservation scheme for L-AVP. The main contributions of
this paper are as follows;
• Optimal Parking Cost The work in [12] is more
towards resource1 allocation. To provide user with more
convenience and economic solution for parking, this
work aims to minimize parking cost2 by comparing
suggested cost with already set minimum value.

• Drop-off Spot & Car Park Recommendation The
work in [13] used only distance parameter to analyze
the best CPs. This work recommends the best D/P by
calculating minimum distance from D/P to WP. Also,
the distance between current position of AV and sug-
gested D/P is minimized. A cost function is used to
recommend most appropriate CPs.

II. BACKGROUND
A. TRADITIONAL PARKING
A couple of years ago, pre-parking information about parking
places, their prices, and location were used to be almost
null [14]. There was no prior information about where to
park, how much it will cost and, how far it is. In traditional
parking, a driver has to check each parking lot in search of
a free CP slot. On one hand, it costs them in terms of time,
fuel consumption and the hassle of moving the vehicle in CPs
multiple times. While on the other hand, it tends to produce
greater environmental pollution [15], [16].

B. SMART PARKING (SP)
A general Smart Parking (SP) model consists of following
five elements [17]–[19]. User interface module connects the
user with parking servers and manager module. The user
can perform multiple operations through this interface. The
communication module ensures availability and reliability
of overall communication of the system. The communica-
tion module performs multiple operations like encryption,
controlling errors, exchanging data and information reliably.
The parking module looks after all operations inside the
parking area. It analyses the vehicles and parking slots. Space
controller unit consists of a combination of sensors and a

1Resource refers to vacant car park slot
2Parking cost includes the fuel consumed and price paid for car park

114142 VOLUME 7, 2019



M. Khalid et al.: AVPark: Reservation and Cost Optimization-Based Cyber-Physical System

controller. These sensors detect a vehicle in the parking lot
and inform the controller about parking slot status. The man-
ager module is responsible to take care of parking servers and
information about registered users.

The i-Parker parking scheme is mainly based on
intelligently allocating resources, defining prices and reserve
parking lots when necessary [12]. The main contribution of
i-Parker is the confirmed reservations with the lowest parking
price and searching time. The i-parker combines the concept
of real time reservation and share time reservation. Real time
reservation and share time reservation allow users to select
parking spot any time earlier or on the spot. Real time reser-
vation continuously allocates vehicle with the best parking
slot. While in share time reservation, user selects a specific
parking and time slot as per their convenience. This scheme
allows users to select multiple parking slots at the same time
and the system will recommend the best parking space as per
the current circumstances. The architecture of this system has
been categorized into central request center, parking manager
and smart allocation systems. The purpose of central request
center is to receive parking request and then put it forward to
appropriate smart allocation systems for allocation of parking
space. The parking manager acts as an interface between
smart allocation systems and parking authorities. smart allo-
cation system consists of pricing engine, sensors, data center,
smart allocation center and virtual message sign. The queu-
ing model is divided into dynamic and static parking. The
i-Parker uses mixed integer linear programming to minimize
the monetary cost for the users. The mixed integer linear
programming also focuses on minimum resource utilization
with higher revenue generation.

The SP system assigns and reserves an optimal parking lot
depending on user’s cost function [20]. The components of
this system include parking geographic information system,
driver requests processing center, parking resource manage-
ment center and smart parking allocation center. The parking
resource management center updates real-time parking infor-
mation and delivers it to end users via the internet or virtual
message sign. Similarly, driver request processing center is
responsible for collecting users request for parking, and keeps
an eye on the recent allocation of resources to users. This
system takes the current road condition and parking space
information into account, and suggests an optimal parking
solution. It reserves an optimal parking space for the user.
In earlier parking mechanisms, the suggested space was been
occupied by some other vehicle when the actual vehicle
reaches. An objective function is used to compute an optimal
parking space as per user needs. The user’s objective function,
depending on the distance to CPs and parking cost. The
proposed algorithm solves mixed integer linear programming
problem at every decision point. The mixed integer linear
programming proposes an optimal parking slot on the basis
of data being provided by the user.

Campus parking system focuses on the efficient use of the
existing parking slots on sharing basis by dividing users into
day and night shifts [21]. This scheme is provide a general

framework which could be deployed for various scenarios.
The number of supposed parking slots on campus are k while
l are parking slots on private parking are in surrounding area.
The proposed scheme has supposed that k parking slots can
be utilized by university staff and students once l parking
slots are filled. It is considered the k parking slots are utilized
at night time and these people go to offices in day time.
In this system, it has been considered that a certain contract
exists between university administration and private parking
owners.

C. AUTONOMOUS VALET PARKING (AVP)
The Fig. 2 gives a bird-eye view of the properties of both SP
and AVP. There are a few features that makes AVP a novel
and efficient technique for parking than SP. In early days,
AVP was used to provide a limited parking assistance. Auto-
matic parking can be used if the driver remains inside the AV.
This process is not fully autonomous as driver can intervene
during the process. In this process, the whole parking activity
is fully supervised by the driver, referred to as Level 1b
in Fig. 3. The driver drives AV to a vacant parking slot
and set AV position at a certain distance from the obstacle
and other AVs. Once AV is in heading position towards
the parking slot, it automatically detects the slot and get
parked. This mechanism is mostly useful for less experienced
drivers and it has minimum chances of hitting an obstacle or
another AV.

In the following years, AVP developed wireless opera-
tions. It enables the driver to stay out of the car, perform
and monitor parking process through their specified hand-
set or smart phone, which is referred as ‘‘level 2’’. In the later
stage which is shown as ‘‘level 3’’, 3D mapping and sensing
technologies are used. This is a more advanced level of AVP,
where AV travels to parking lot from a specific spot. Usually,
in this technique, an AV is trained at least once with driver
inside AV [22].

In the state-of-the-art AV systems, path generation [23] and
precise detection [24] techniques have extended the applica-
tions of AVP. In this scenario referred as ‘‘Level 4a’’, a driver
leaves AV at CPs entrance and navigates AV towards a vacant
slot [25]. The disadvantage of this system is that driver must
approach CPs and drop AV there, however it saves time
to find parking slot. User leaves AV at CPs, while the AV
autonomously searches for an available parking slot.

Short-range Autonomous Valet Parking The recent
development in machine vision system and autonomous car-
manoeuvring techniques has made it possible for S-AVP to
become a mature technique. The S-AVP has addressed many
parking issues where space for parking operations is found
to be limited. For S-AVP, AV must be trained at least once to
adopt the new routes and analyze the obstacles [26]. Recent
advancement in machine learning techniques can make it
capable of achieving optimal output for S-AVP in complex
parking areas [27], [28].

In initial steps, AV is parked by the driver to train AV
and familiarizes it with the new area and surroundings.
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FIGURE 2. From smart parking to autonomous valet parking.

FIGURE 3. AVP at low autonomous level.

This operation is performed at least once by the driver to
supervise AV properly. In the following step, AV is parked
in complete autonomous mode. The recent advancement
enables an AV to scan for objects coming its way and perform
accordingly. Nowadays, AV is equippedwithmultiple sensors
performing different kinds of functionalities. Due to these
advancements, S-AVP is as mature. S-AVP can search for
a vacant parking slot, avoid objects coming its way and
the most important is to take care of living objects while
performing autonomous driving. In the next step, AV learns
to park itself without a driver. Advancement in AVP system
has made it capable of scanning for available CPs, slot by slot
and floor by floor in case of multi-story CPs. AVP has made
AV capable of parking in fully autonomous mode [29]. The
work in [8] provides valuable recommendation on parking
slots status, that results in saving time. In [30], studies about
coordination of AV to available parking facilities in Vehicle-
to-Grid (V2G) environment for electric vehicles.

III. SYSTEM FRAMEWORK
In L-AVP, multiple D/P are deployed around the city, while
CPs are deployed in remote area or border line of the city.

When an AV (in drivingmode) is serving users, it searches for
the nearest D/P. For example, in the out bound trip, the user
leaves AV at a drop-off spot, and walks towards WP. Then
the AV travels towards CPs and finds a suitable parking slot.
Similarly, for inbound trip, the drop-off spot would act as
a pick-up spot. The AV is able to pick-up user and delivers
towards inbound trip destination [31].

A. AUTONOMOUS VALET PARKING MODEL
The AVP design serves as core model for the autonomous
parking process. All the notations used in Section III are
defined in Table 1. The model includes various modules
related to parking process as following and as presented
in Fig. 4;

1) AUTONOMOUS VEHICLE
AV is supposed to be the end user of AVP model. An AV
can directly communicate with Resource Request Centre
(RRC) and the Vehicle-to-Everything (V2X) infrastructure.
The V2X acts as primary source real-time information for AV.
The RRC is liable to receive any parking request from AV
and process them. The AV is able to receive city wide CPs
information through V2X and similarly, AV can request for
parking resources to RRC. The AV uses RRC to request
for any available resources. It receives real-time informa-
tion about surrounding region from V2X. This information
includes congestion rate, routes and CPs information in the
region being covered by that specific V2X.

2) RESOURCE REQUEST CENTRE
The responsibility of the Resource Request Centre (RRC)
is to receive request from AV and forward it to the Reser-
vation Centre: 1) Pre-arrival Reservation; 2) Real-time
Reservation.
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TABLE 1. Main notations.

3) RESERVATION CENTRE
• Pre-Arrival: In pre-arrival, a fixed slot is assigned to AV
at a specified CPs, if available.

• Real-time: A real time reservation is made when an
AV is about to reach a parking space. It is updated
continuously by the server to provide AV with efficient
cost and better experience.

4) COST CONTROL CENTRE
The cost control center deals with parking prices for different
CPs. The cost control center change prices as per traffic
situation and to make CPs for profitable.

• Cost Centre: This module sets the prices of parking slots
in a region covered by an V2X. The parking price is
set depending on the demand of parking slots. Usually,
a smart approach is followed to benefit the operators of
CPs as well as AV.

• Cost Optimizer: The cost optimizer tends to provide
users with minimum possible parking fee. It calculates

FIGURE 4. AVP model.

the average parking fee and aims to provide users with
below average parking prices.

5) CAR PARK INFORMATION MODULE
This module is responsible to keep track of all the CPs.
It includes CPs current vacant and occupied slots, reserved
slots and their predicted status in the near future. The car park
information module directly communicates with Cost center
and V2X.

6) V2X
It acts as an intermediate unit between CPs module and data
center. It also communicates and provides CPs information
to AV directly. The V2X is required to cover a specific
geographic area and report it to the data center. Similarly,
the V2X system is connected to data center at the same time.
Usually, all the computation is carried out on this end and
results are forwarded to data center.

7) DATA CENTRE
This is themainmodule where all the relevant data about CPs,
parking fee, routes, vehicles and traffic condition is held.
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It can directly communicate with V2X and receive data fre-
quently, in order to update other V2X accordingly.

8) CONTROL MANAGER
The control manager module is responsible to monitor overall
system. It observes the parking fee and makes changes to
provide CPs owner’s with maximum output. The control
manager offers lower parking fee to users, in order to enhance
their parking experience.

B. LONG-RANGE AUTONOMOUS VALET PARKING
1) L-AVP COMMUNICATION
In this framework, all AVs can communicate with network
entities introduced in section III-A through V2X infrastruc-
ture, as depicted in Fig. 5.

2) DROP-OFF SPOT SELECTION & RESERVATION
Initially, AV is in travellingmode. In the Algorithm 1, the pro-
cess of searching and selecting a drop-off spot has been
explained. All the availableM spots are extracted in the initial
stage. As explained between lines 4 to 10, the minimum
distance as a summation ofDv,d (from location of AV to D/P)
and Dd,w (from D/P to WP) is ranked, in case M > 0. Once
reserved, the reserved spot is deducted throughM = M − 1.

Algorithm 1 Reservation of D/P Spot
1: Define MIN,ℵ
2: if (M > 0) then
3: for (i = 1; i ≤ M; i++) do
4: Calculate

(
Dv,d(i) + Dd(i),w

)
5: if

((
Dv,d(i) + Dd(i),w

)
< MIN

)
then

6: MIN =
(
Dv,d(i) + Dd(i),w

)
7: ℵ = i
8: end if
9: end for

10: Select D/Pℵ
11: M = M − 1
12: end if

3) CAR PARK SELECTION & SLOT RESERVATION
The Algorithm 2 aims to address the challenge of CPs selec-
tion. It extracts the CP.LIST from the nearest V2X. Each AV
is treated on First Come First Serve (FCFS) basis for CPs
selection. Each CPs in the CP.LIST is checked for three con-
ditions for available slots, whereN is upper bound for number
of slots in each CPs. Here, (cpscurrN = N ) is considered as the
best option, (N > cpscurrN ≥ 1) as average and (cpscurrN = 1)
means that only one slot is left in selected CPs. They are
compared on average cost of P as fuel consumption and
C as the parking cost in the CPs. The cost is calculated
through ϒ in line 12.

Algorithm 3 helps AV in reserving a slot in selected
CPs defined by Algorithm 2. It checks for the available
slot in the CPs, considering the total cost and distance.

FIGURE 5. L-AVP communication framework.

Algorithm 2 Car Park Selection
1: for Extract CP.LIST do
2: for Serve every AV’s on FCFS do
3: Get data about available slot on each CPs
4: for (j = 1; j ≤ N ; j++) do
5: if (cpscurrN = N ) then
6: Select CPs with C(j) < 0.5 & lowest P(j) value
7: else if (N > cpscurrN ≥ 1) then
8: Select CPs with C(j)&P(j) ≤ average
9: else
10: Select last available CPs
11: end if
12: Calculate ϒ = P(j) + Cξ (j)
13: end for
14: end for
15: end for

The Algorithm 3 computes the minimum value of park-
ing ϒop. Once reserved, it is removed from available slot list
sln = sln−1. Here, sln is number of total slots in certain CPs.
The status of CPs is updated through cpscurrN .

C. PARKING COST OPTIMIZATION
Initially, vehicle is in driving mode. The moment driver
intends to park a vehicle, a parking request is initiated and
nearest drop-off spot is selected, if available. After selection
of available drop-off spot, CPs is checked for vacant slots.
A list of CPs having vacant slots is obtained and selection of
CPs is made by the user.

The fuel consumed from drop-off zone to CPs can be
calculated by P [32],

P = mv[α(1+ ζ )+ gG+ gCR]+ 0.5ρCDAFv3 (1)

Let total cost of parking be denoted by ϒ . It can be
achieved by calculating fuel consumption P and parking fee
per hour. Here, C be the parking fee per hour while ξ as the
number of hours vehicle is being parked. So the total parking
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Algorithm 3 Slot Reservation in CPs
1: for Get All Available CPs do
2: Get CP.LIST
3: for Each CPs in CP.LIST do
4: if (0 < cpscurrN ≤ N ) then
5: Reserve slot having the minimum cost ϒop
6: else if (1 ≤ cpscurrN ≤ 1) then
7: Calculate cost
8: Reserve slot
9: else
10: Select last available slot
11: end if
12: sln = sln − 1
13: slot reserved
14: Update cpscurrN
15: end for
16: end for

FIGURE 6. Cost optimization flow chart.

cost along the time is,
∑%

ξ=1 Cξ ,

ϒmax = P+
%∑
ξ=1

Cξ (2)

Considering the total cost of parking, following elements
are considerable;

P,C, Sv, Sh (3)

This model uses a weighed value for fuel consumption and
parking fee, keeping in view fuel and parking prices. For fuel
consumption P, a weighted value of y is assigned while a
weighted value of z is assigned to parking fee C and ξ is
number of hours a slot is need, where ξ = {1, 2, 3...., 12}.
Here, we denotes the maximum number by %. The Sv is speed

of AV and Sh is speed of human.

ϒmax = y(P)+ z
%∑
ξ=1

Cξ (4)

%∑
ξ=1

ϒmax = y(P)+ z
%∑
ξ=1

Cξ (5)

The slot can only be reserved for up to 12 hours. If a user
wants a slot for more than 12 hours, a re-reservation process
must be performed to reserve the same slot again.

ϒavg = Pavg + Cξ (6)

Here, the term avg can be defined as (0.01 ≤ avg ≤ 0.5)
Similarly, for up to 12 hours parking slot the equation can be
given as follows;

%∑
ξ=1

ϒavg = {Pavg +
%∑
ξ=1

Cξ } (7)

ϒmax is compared with the average parking cost
for AV ϒavg. Here, v is considered as number of AV’s and
v = {1, 2, 3 . . . . . . .n} Similarly, for n number of AV’s,
the equation can be given as;

n∑
v=1

ϒop =

n∑
v=1

{
ϒavg

ϒmax

}
where (0 < ϒop ≤ 1) (8)

The value ofϒop will lie between 0.01 & 1.0. The value of
ϒop vary depending on traffic condition and usage of parking
spaces. It also depends on how busy the city is. The more
a city center is busy, the higher parking price would be.
Although the cost of fuel will have a rare effect of overall
cost. This model aims to serve user with the minimum value
of ϒop. The lower the value of ϒop is, the minimum will be
the parking price. The goal of algorithm 4 is to optimize the
existing parking price.3 This algorithm first extractsCP.LIST
and analyze the average cost for parking in specific area by
ϒavg = Pavg+Cξ . The Pavg is then compared with maximum
and minimum possible cost. The parking slot detail each CPs
is obtained through sl.LIST . For the optimal parking cost

ϒop =

{
ϒavg
ϒmax

}
, a normalized value is calculated. After calcu-

lating ϒop the lowest value among all the obtained values is
selected. Theϒop can only be obtained when slots in selected
CPs qualifies are greater than n

2 and less than or equal to sln,
which are total available slots in each CPs. The average value
of parking costϒavg can only be obtained when n

2 or less slots
in selected CPs are available.

D. AVPARK & BENCHMARK
A detailed study and analysis is provided to analyze the
advantages of L-AVP. As inbound and outbound trips are con-
sidered as same, so outbound trips are considered for analysis.
For benchmark, D/P spots are not considered. As user would

3Here, the price includes parking price for using a parking slot in CPs and
the fuel cost for the distance covered by AV to reach that specific CPs.
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Algorithm 4 Cost Optimization for Parking Slot
1: for Extract CP.LIST do
2: while Get parking slot details form sl.LIST do
3: Calculate ϒmax = {y(P)+ z(C)}
4: Calculate ϒavg = y(Pavg)+ z(C)
5: end while
6: Compare ϒavg, ϒmax
7: Scanning each CPs
8: for Each CPs in CP.LIST do
9: if (1 ≤ slcurrn ≤ sln then

10: ϒop =

{
ϒavg
ϒmax

}
11: Select Lowest value of ϒop, where (0 <

ϒop ≤ 1)
12: else if (1 ≤ slcurrn ≤

n
2 then

13: ϒavg = y(Pavg)+ z(C)

14: Compare ϒavg for LIST .sl
n
2
1

15: Select Lowest value of ϒavg
16: else
17: Select available sl with ϒmax
18: end if
19: end for
20: end for

straight away drive their vehicles to CPs and walk down
to WP, if L-AVP is not involved.

E. TOTAL TRAVEL TIME
For L-AVP the outbound trip time for a single vehicle can be
taken as T outlavp, which is computed by adding the time required
for the vehicle to arrive at the drop-off spot and the time
required by the driver to cover the distance between drop-
off spot and desired destination. The relationship for T outlavp is
defined as follows;

T outlavp =
Dv,d
Sv
+
Dd,w
Sh

(9)

For the comparison purposes we use the benchmark
case T outbck , where the total time is calculated as vehicle to
arrive at the car park and the time required by the driver
to cover the distance between car desired destination. The
relationship for T outbck is defined as follows;

T outbck =
Dv,cps
Sv
+
Dcps,w
Sh

(10)

As the value of Sv larger in comparison to Sh (e.g., 13.9-
14.9 m/s vs 1.5-2.0 m/s). These are the values of Dd,w and
Dcps,w, which illustrates how optimal L-AVP is. The sugges-
tions for D/P shows the efficacy of the L-AVP. The capacity
of CPs is dependent on size& population of the city. Busy and
congested areas need CPs with a larger capacity as compared
to small cities, a detailed demonstration is given in Fig. 7.
When higher number of D/P spots are deployed, there is a
higher possibility to locate d ∈ D to hold Dd,w < Dcps,w.

The inbound time for L-AVP can be defined as;

T inlavp =
Dcps,x
Sv
+
Dw,p
Sh

(11)

where, Dcps,x is the distance from CPs to destination and
being covered by AV. The user needs to walk down to pick-
up spot Dw,p. The L-AVP tends to select the nearest pick-up
spot to WP. As speed of human Sh is much lower than speed
of vehicle Sv. To minimize the waiting time for user and AV at
pick-up spot, their distance and speed must be synchronized.

Similarly, the benchmark for inbound trip can be presented
as;

T inbck =
Dcps,x
Sv
+
Dw,cps
Sh

(12)

For the benchmark, the AV needs to travel from its desig-
nated slot to CPs entranceDcps,x with the speed of Sv. It takes
quite less time due to speed of vehicle. The user travels from
WP to CPs Dw,cps. The CPs being deployed remotely, this
distance is usually long and user needs to use some public
transport or walk a long way to CPs fromWP. It costs the user
an extra amount or time or sometimes both to travel between
WP and CPs.

F. TOTAL JOURNEY COST
The total journey cost of an AV in L-AVP includes, the fuel
consumption for that specific AV from current location
to drop-off spot Pv,d then cost of fuel from drop-off
spot to CPs Pd,cps and optimized parking fee is obtained
by ϒop;

Jlavp−out =
︷ ︸︸ ︷
Pv,d + Pd,cps+ϒop (13)

For benchmark total journey cost can be defined as;

Jbck−out =
︷ ︸︸ ︷
Pv,cps + Ucps,w+ϒmax (14)

Here, Ucps,w is the cost of user travelling from CPs to WP.
Pv,cps is the cost of AV from current location to CPs. While,
ϒmax the cost of parking.
The consumption of fuel is directly proportional to the

distance covered by vehicle. In case of L-AVP,Dv,d+Dd,cps is
traversed. While in benchmark, Dv,cps is covered. If L-AVP
relies on just one CPs and D/P, it will record a higher fuel
consumption. As AV must be dropped at designed D/P and
parked in defined CPs. In case of multiple D/P and CPs, AV
will select the nearest D/P to WP and nearest CPs to D/P.
It will result in less fuel consumption for AV and less walking
distance for users.

IV. PERFORMANCE EVALUATION
A. SIMULATION SET-UP
The presented case study is carried out with Opportunistic
Network Environment (ONE) [33]. The ONE is a Java-based
simulator. The scenario is with an area of 4500×3400 m2,
shown as down town area of Helsinki city in Finland. The case
study present 300 AV running at a speed range of [30 ∼ 50]
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FIGURE 7. Broad-view design for long-range autonomous valet parking.

TABLE 2. Simulation parameters.

km/h are deployed in the network. This case study deploys
a total of 5 CPs (each CPs with 60 slots by default) and
15 D/Ps as depicted in Fig. 8. By default, the time for users
to start requesting for drop-off spot is 3600s while 7200s is
set as working period. The simulation has been carried out
for 12 hours, defined in Table 2. The terminologies used in
simulation are defined as follows;
• Walking Distance (WD) This is the distance covered by
a user from drop-off spot to WP. This distance depends
on the number of drop-off spots deployed inside the city

center. The more the number of spots will lead to pick-
up/drop people closer to WP.

• Parking Cost (PC) This is the actual parking fee C that
a user is charged when parking their AV. The parking fee
also depends on the number of hours an AV is parked for.

• Total Fuel Consumption (TFC)The TFC is the amount
of fuel consumed per trip. A trip can be defined as
leaving the drop-off spot. Then its arrival at designated
CPs and travelling back to pick-up spot. The TFC can
be minimized by selecting the shortest path to CPs or by
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FIGURE 8. Simulation scenario.

selecting nearest CPs. Usually there is a trade-off
between CPs and TFC. When former decreases, the lat-
ter increase and vice versa.

• Average Travel Time (ATT) The ATT involves two
factors; one computed from user’s perspective and the
other from vehicle’s perspective. It involves computation
of time needed by AV to travel from a drop-off spot
to CPs and time needed by driver to travel from drop-
off spot to the desired location. It can be given by{
Dv,d+Dd,cps+Dcps,x

Sv
+

Dd,w+Dw,p
Sh

}
. Here, Dv,d+Dd,cps+Dcps,pSv

is the time taken by AVwhile Dd,w+Dw,p
Sh

is the time taken
by user in each trip.

• Total Distance Covered (TDC) It indicates the distance
covered by AV and user in each trip. Where a trip start
from drop-off spot to CPs for AV and toWP for user and
similarly the inward trip to pick-up spot for both user
and AV. Where distance covered by AV and user can be
represented by Dv,d + Dd,cps + Dcps,x and Dd,w + Dw,p
respectively. Similarly, for benchmark it will be Dv,cps
and Dcps,w for AV and user respectively.

Fig. 9 shows the walking distance travelled by user from
drop-off spot towards WP in L-AVP. The distance is com-
pared against the number of drop-off spots deployed and
results are compared for a total of 15 drop-off spots. The
result shows that there is a significant decrease in walking
distance from drop-off spot to WP with increase in number
of drop-off spots deployed. The walking distance may vary
depending on structure of the city center but overall walking
distance from D/P to WP will be decreased with the increase
of D/P spots. The walking distance can also be minimized
by deploying D/P spots near WP but that can effect the
flow of traffic. Fig. 10 provides the comparison between
the distance covered by user as well as AV. The covered
distance is compared concurrently against the drop-off spots
and CPs. The increase in spots and CPs showed a prominent
change in decrease of distance covered by both AV and user.

FIGURE 9. Walking distance comparison for various D/P.

FIGURE 10. Average distance covered.

The more number of drop-off, pick-up spot and CPs, smaller
the overall travel distance meaning that they are easily acces-
sible. Similarly, it decreases the walking distance in L-AVP
as well. The CPs away from city center are usually less costly
as compare to CPs near the city center. One may pay lower
parking fee but has to travel a larger distance to reach the CPs.
The Fig. 11 represents the cost of parking for both benchmark
andAVPark against the number of CPs deployed. The parking
cost depends on the availability of parking slots. The park-
ing cost of all the CPs are compared through optimization
equation and CPs with the minimized cost is selected. The
CPs are given with different prices, depending on how far
they are from city center. The optimal cost of parking has
been achieved through the selection of nearest D/P and then
scanning for the lowest parking price in combination with
selection shortest path to CPs.

The cost against different values of P as fuel consumed
and C as parking cost has been shown in Fig.13. The results
are being shown for parking hours between 9am-5pm. The
total cost progressively decreases with an increase in D/Ps
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FIGURE 11. Parking cost.

FIGURE 12. Total journey cost.

FIGURE 13. Average cost with respect to P & C Values.

and CPs. The value of P as 0.3 and C as 0.7 offers the
lowest cost in the simulated scenario. A variation in cost
with respect to different values of P and C can also be

FIGURE 14. Average travel time.

observed. The Fig. 12 depicts the total cost of the outward and
inward trip, also called as total journey. TJC in benchmark
includes the parking cost and journey cost from CPs to WP.
The travel between CPs and WP may be by bus, train or by
walk. The TJC of AVPark and benchmark are compared
in Fig. 12. The Fig.13 represents total cost with respect to
different values of P as fuel consumption and C as parking
price. The most optimal value is achieved by P = 0.3 and
C = 0.7. The Fig. 14 has analyzed ATT with respect to
number of drop-off, pick-up spots and CPs. The ATT rep-
resents the journey time starting from the time AV requests
for parking spot. Until the AV is parked in CPs and the
time AV requests for pick-up spot till AV is picked by the
driver. Results show that ATT decreases with increase in D/P
and CPs simultaneously. The higher number of D/Ps means,
AV can easily find a nearby D/P and results in minimizing
ATT. TheATT ofAVPark is comparedwith benchmark. In the
benchmark the CPs entrance is considered as drop spot and
pick up spot simultaneously.

V. CONCLUSION
This paper proposed a novel technique for optimizing reser-
vation process and minimizing cost of using parking areas,
called AVPark. A new model for AVP has been presented in
this article. The L-AVP for outbound trip, uses the nearest D/P
to drop user at a convenient location near WP. Similarly, for
the inbound trip the most convenient D/P is selected and AV
is picked by the user at that spot. The results of the novel tech-
nique were compared with the benchmark and the proposed
technique has achieved improvement in minimizing the time
required for travelling, parking cost, fuel consumption and
distance to be travelled by AV. In future, Integration of AVP
with edge computing and cloud to support IoT services will
be of great interest. The need of IoT applications that require
location awareness, real-time and low-latency responses, core
network bandwidth load management, data security manage-
ment, and IoT power consumption management can be the
motivation. Real-time video analytics for low-latency deci-
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sion making is an IoT application area which is seen to have
real benefits when the processing is done at the edge nodes.
This type of analytics will be needed for making self-driving
cars and augmented reality.
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