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ABSTRACT The industrial agitator tank is a widely used equipment in the chemical industry for the
production of the chemical reagents. The high-performance agitator tank controller is critical to increase
its productivity. In this paper, we propose an agitator tank controller based on a neural dynamics method
with a shorter error-converging time in comparison with the existing methods. In addition, the controller
also has a strong capability to reject perturbations. Furthermore, the superiority of the proposed agitator tank
controller is theoretically analyzed. Ultimately, computer simulations synthesized by the proposed agitator
tank controller are conducted. The numerical results validate the superior performance of the proposed
controller.

INDEX TERMS Chemical industry, automatic control, control design, neural dynamics method, rapid
convergence, perturbations rejection.

I. INTRODUCTION
Chemical industry is indispensable to heavy industry, to a
large extent [1], [2]. The chemical industry mainly produces
chemical products [3], [4], such as chemical reagents, bio-
logical reagents and farm chemicals [5], [6]. Industrial agi-
tator tanks are frequently used to the production of these
reagents. Therefore, the agitator tank performs a crucial role
in the chemical industry [7], [8]. As the step of science and
technology development accelerates, the variety and function
of chemical reagents are increasing abundantly [9], [10].
As a typical nonlinear system, the agitator tank has received
extensive attention from researchers in order to develop a
high-performance agitator tank controller [11]–[17].

The rapid development of artificial intelligence has
attracted the wide attention of researchers in recent years.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaoyong Li.

As a significant subtopic of machine learning, neural net-
works are widely used in various spheres [18]–[32]. In the
field of control systems for agitator tanks, many control meth-
ods have been presented [33], [34]. For example, Cai et al.
designed a dry mortar mixing storage control system on the
basis of the backward propagation (BP) neural proportional-
integral-derivative (PID) controller [33]. The system can
solve the control problem of complex dynamic systems by
correcting the weight coefficient of the neural network in the
control process according to the gradient descent method.
Moreover, Zhang et al. first presented a controller of agitator
tank based on Taylor finite difference [34]. The controller
is an error-based dynamic method, which can make the
error function converge to zero. The agitator tank equipped
with the controller is able to prepare the reagent of desired
concentration quickly. Nevertheless, the controller does not
consider that the agitator tank may be disturbed during the
actual operation. Note that the agitator tank may be disturbed
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FIGURE 1. The schematic of traditional industrial agitator tank
equipment.

in a practical manufacturing scenario during operation. The
interference could lead to inaccuracy of the reagent con-
centration, and lead to a waste of materials. Consequently,
the existing agitator tank control methods have the above
mentioned defects [33]–[44].

To compensate for these defects of the existing agita-
tor tank controllers, a new controller based on the neural
dynamics method is proposed in this paper [45]–[47]. The
proposed controller enables the concentration of the out-
put solution of the agitator tank to quickly converge to the
desired one. Therefore, the controller has perturbations rejec-
tion performance. As an evolution beyond existing meth-
ods, the proposed controller ensures that the system of the
agitator tank can effectively eliminate perturbations. This
advantage of perturbations rejection is of great significance
for improving the performance of the existing agitator tank.
As a result, the agitator tank equipped with the proposed
controller continuously outputs the solution of the target
concentration.

The remainder of this paper is organized as follows.
Section II describes the dynamic equation of the agitator tank
system and gives the system parameters. The design steps
of the agitator tank controller are presented in Section III.
In addition, Section IV demonstrates the rapid convergence
performance and perturbations rejection performance of the
agitator tank from the theoretical perspective. Simulation
results are presented in Section V to show the superior perfor-
mance of the proposed controller. Section VI concludes this
paper. At the end of this section, the main contributions of
this paper are summarized as follows.
• In this paper, a new controller of agitator tank is pro-
posed based on the neural dynamics method. Com-
pared with the existing ones, the proposed controller has
remarkable advantages.

• The fast convergence rate and the perturbations rejection
performance of the proposed controller are analyzed
theoretically.

• Computer simulations based on the agitator tanks
equipped with different controllers are conducted and
comparison results verify the superiority of the proposed
controller.

II. DYNAMIC SYSTEM OF THE AGITATOR TANK
In this section, the dynamic system equations of agitator tank
are described, which lay the foundation for devising the new
controller.

The schematic of traditional industrial agitator tank equip-
ment commonly used in the industrial field is depicted
in Fig. 1 with illustrative parameters. As far as the parameters
are concerned, ϒb1, ϒb2 and ϒb denote the concentrations
of the influent liquids and effluent liquid, respectively; v1,
v2 and v0 stand for the flow rates of the influent liquids
and effluent liquid, respectively; 0 denotes the liquid volume
of the agitator tank. The concentrations of the two influent
liquids are unequal for the most part without special claims.
Research targets of the agitator tank in this paper are that the
concentration of actual solution in the tank can quickly reach
the desired value, and that the error of the concentration of
solutions can converge to zero with external perturbations.

The system equations of the agitator tank are presented as
follows [34]:

0̇(t) = v1(t)+ v2(t)− 0.2
√
0(t), (1)

ϒ̇b(t) =
(
ϒb1 − ϒb(t)

)v1(t)
0(t)
+
(
ϒb2 − ϒb(t)

)v2(t)
0(t)

−
n1ϒb(t)

(1+ n2ϒb(t))2
, (2)

where t denotes time; ϒ̇b(t) is the time derivative of ϒb(t);
0̇(t) is the time derivative of 0(t); the outflow rate constants
in the dynamic process of the system are denoted by n1
and n2.

III. DESIGN STEPS OF THE AGITATOR TANK CONTROLLER
The agitator tank controller is designed and given in this
section. First of all, a neural dynamics method is introduced
here. Specifically, the residual error function is defined to
start the derivation from the viewpoint of control as follows:

ε(t) = q(t)− qd(t), (3)

where q(t) represents the actual value and qd(t) denotes the
expected value. When ε(t) converges to zero, the actual value
q(t) is approximately equal to the expected one qd(t). Inspired
by the neural dynamics design equation ε̇(t) = −cε(t)
introduced in [34], where ε̇(t) represents the first derivative of
ε(t), and c > 0 is the scaling factor related to the convergence
rate of the residual error, it is modified in [48]–[53] that

ε̇(t) = −cP1
(
ε(t)

)
− dP2

{
ε(t)+ c

∫ t

0
P1ε(τ )dτ

}
, (4)

where the convergence rate parameters of the residual error
are denoted by c and d > 0; P1(·) and P2(·) stand for the
monotonically-increasing odd function. Combining (3) and
(4) obtains

ε̇(t) = −cP1
(
q(t)− qd(t)

)
−dP2

{(
q(t)− qd(t)

)
+ c

∫ t

0
P1
(
q(τ )− qd(τ )

)
dτ
}
.
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The time derivatives of q(t) and qd(t) are denoted by q̇(t)
and q̇d(t), respectively. Then, according to the parameters of
the agitator tank system, the residual error function (3) is
expanded as follows:

ε0(t) = 0(t)− 0d(t), (5)

εϒb (t) = ϒb(t)− ϒbd(t), (6)

where ε0(t) and εϒb (t) stand for the residual error of 0(t) and
ϒb(t), separately; 0d(t) represents the desired liquid volume
of the agitator tank; ϒbd(t) denotes the desired concentration
of the effluent liquid. Calculating the time derivative of ε0(t)
and εϒb (t) obtains

ε̇0(t)

= 0̇(t)− 0̇d(t)

= −cP1
(
0(t)−0d(t)

)
−dP2

{(
0(t)−0d(t)

)
+c
∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}
, (7)

ε̇ϒb (t)

= ϒ̇b(t)− ϒ̇bd(t)

= −cP1
(
ϒb(t)− ϒbd(t)

)
−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}
,

(8)

where 0̇d(t) and ϒ̇bd(t) denote the time derivatives of 0d and
ϒbd(t), respectively. Combining (7)-(8) and (1)-(2) gets

v1(t)+v2(t)− 0.2
√
0(t)−0̇d(t)

=−cP1
(
0(t)−0d(t)

)
−dP2

{(
0(t)−0d(t)

)
+c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}
, (9)

and(
ϒb1 − ϒb(t)

)v1(t)
0(t)
+
(
ϒb2 − ϒb(t)

)v2(t)
0(t)

−
n1ϒb(t)(

1+ n2ϒb(t)
)2 − ϒ̇bd(t)

= −cP1
(
ϒb(t)− ϒbd(t)

)
−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}
.

(10)

Finally, after solving (9) and (10), we can get

v1(t)

=
1(

ϒb1−ϒb(t)
){ n1ϒb(t)0(t)(

1+ n2ϒb(t)
)2+ϒ̇bd(t)0(t)

−cP1
(
0(t)− 0d(t)

)
−
(
ϒb2−ϒb(t)

)
v2(t)

−dP2

{(
0(t)−0d(t)

)
+c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}}
,

(11)

v2(t)

=
1(

ϒb2−ϒb(t)
){ n1ϒb(t)0(t)(

1+ n2ϒb(t)
)2+ϒ̇bd(t)0(t)

−cP1
(
ϒb(t)−ϒbd(t)

)
−
(
ϒb1 − ϒb(t)

)
v1(t)

−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}}
.

(12)

Simplifying the above two equations obtains the proposed
controller:

v1(t)

=

{{
0.2
√
0(t)+0̇d(t)− cP1

(
0(t)−0d(t)

)
−dP2

{(
0(t)−0d(t)

)
+c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}}

×
(
ϒb1−ϒb(t)

)
−

n1ϒb(t)0(t)(
1+ n2ϒb(t)

)2−ϒ̇bd(t)0(t)

+dP2

{(
ϒb(t)−ϒbd(t)

)
+c
∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}}

×
1

(ϒb1−ϒb2 )
+ cP1

(
ϒb(t)−ϒbd(t)

)
, (13)

v2(t)

=

{{
0.2
√
0(t)+ 0̇d(t)− cP1

(
0(t)− 0d(t)

)
−dP2

{(
0(t)−0d(t)

)
+ c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}}

×
(
ϒb2 − ϒb(t)

)
−

n1ϒb(t)0(t)(
1+ n2ϒb(t)

)2 − ϒ̇bd(t)0(t)

+dP2

{(
ϒb(t)−ϒbd(t)

)
+c
∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}}

×
1

(ϒb2−ϒb1 )
+cP1

(
ϒb(t)−ϒbd(t)

)
. (14)

Further, given that in the actual operation, the agitator tank
may be disturbed by external perturbations. We add the inter-
ference amount in equation (1) and equation (2) of the agitator
tank system. Thus, it has

v1(t)+M1(t)+v2(t)+M2(t)− 0.2
√
0(t)−0̇d(t)

−cP1
(
0(t)−0d(t)

)
−dP2

{(
0(t)−0d(t)

)
+c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}
, (15)(

ϒb1−ϒb(t)
)v1(t)+M1(t)

0(t)
+
(
ϒb2 − ϒb(t)

)v2(t)+M2(t)
0(t)

−
n1ϒb(t)(

1+ n2ϒb(t)
)2 − ϒ̇bd(t) = −cP1

(
ϒb(t)− ϒbd(t)

)
−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}
,

(16)
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where M1 and M2 stand for perturbations. Furthermore,
we have

v1(t)+ v2(t)− 0.2
√
0(t)− 0̇d(t)

=−cP1
(
0(t)− 0d(t)

)
−dP2

{(
0(t)− 0d(t)

)
+c

∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}

−M1(t)−M2(t), (17)(
ϒb1−ϒb(t)

)v1(t)
0(t)
+
(
ϒb2−ϒb(t)

)v2(t)
0(t)

−
n1ϒb(t)(

1+ n2ϒb(t)
)2−ϒ̇bd(t)

=−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}

−
(
ϒb1−ϒb(t)

)M1(t)
0(t)
−
(
ϒb2−ϒb(t)

)M2(t)
0(t)

−cP1
(
ϒb(t)−ϒbd(t)

)
. (18)

Combining formulas (1), (2), (5), (6), (7), and (8), we get

ε̇0(t)

= −cP1
(
0(t)− 0d(t)

)
+90(t)

−dP2

{(
0(t)−0d(t)

)
+c
∫ t

0
P1
(
0(τ )−0d(τ )

)
dτ
}
, (19)

ε̇ϒb (t)

= −cP1
(
ϒb(t)−ϒbd(t)

)
+9ϒb (t)

−dP2

{(
ϒb(t)−ϒbd(t)

)
+c

∫ t

0
P1
(
ϒb(τ )−ϒbd(τ )

)
dτ
}
,

(20)

with 90(t) = −M1(t) − M2(t), and 9ϒb (t) = −
(
ϒb1 −

ϒb(t)
)
M1(t)/0(t) −

(
ϒb2 − ϒb(t)

)
M2(t)/0(t). At the end

of this section, the existing controller in [34] as follows is
employed to provide a benchmark for comparison.

v1(t)=
{{

0.2
√
0(t)+ 0̇d(t)− cP

(
0(t)− 0d(t)

)}
×
(
ϒb1 − ϒb(t)

)
−

n1ϒb(t)0(t)(
1+ n2ϒb(t)

)2−ϒ̇bd(t)0(t)

+cP
(
ϒb(t)−ϒbd(t)

)
0(t)

}
×

1
(ϒb1 − ϒb2 )

, (21)

v2(t)=
{{

0.2
√
0(t)+ 0̇d(t)− cP

(
0(t)− 0d(t)

)}
×
(
ϒb2−ϒb(t)

)
−

n1ϒb(t)0(t)(
1+ n2ϒb(t)

)2−ϒ̇bd(t)0(t)

+cP
(
ϒb(t)+ϒbd(t)

)
0(t)

}
×

1
(ϒb2 − ϒb1 )

. (22)

In this paper, (21)-(22) is called the original controller, and
the proposed controller (13)-(14) is called the new controller.

IV. THEORETICAL ANALYSES ON SUPERIOR
PERFORMANCE OF THE NEW CONTROLLER
The theoretical analyses of the superiority of the new con-
troller (13)-(14) are presented in this section. Specifically,

the global stability of the new controller is demonstrated.
In addition, considering that there exist perturbations in the
actual production of the agitator tank, theoretical analyses
prove the perturbations rejection performance of the new
controller.

A. CONVERGENCE ANALYSIS
In this section, the global convergence of the new controller
is proved theoretically. Therefore, the following theorem is
given.
Theorem 1: When P1(·) and P2(·) are monotonically

increasing odd functions, the new controller (13)-(14) is glob-
ally stable according to the Lyapunov stability theory.

Proof: The ith subsystem of the nonlinear exci-
tation design equation (4) can be written as follows
(∀i ∈ 1, 2, . . .m):

ε̇i(t)=−cP1
(
εi(t)

)
−dP2

{
εi(t)+c

∫ t

0
P1εi(τ )dτ

}
, (23)

where εi(t) represents the ith element of the error func-
tion ε(t). For the ith subsystem (23), define an auxiliary
variable zi(t) as

zi(t) = εi(t)+ c
∫ t

0
P1
(
εi(τ )

)
dτ. (24)

Taking the time derivative of both sides of (24) obtains

żi(t) = ε̇i(t)+ cP1
(
εi(t)

)
. (25)

Furthermore, combining (23), (24) and (25) gets

żi(t) = −dP2
(
zi(t)

)
. (26)

Further, we design a Lyapunov function candidate νi(t) for
the ith subsystem (23) as follows:

νi(t) =
1
2
σε2i (t)+

1
2
z2i (t), (27)

where σ > 0 and ν0 = νi(0) = σε2i (0)/2 + z2i (0)/2.
Obviously, νi(t) is positive definite. Note that νi(t) > 0
for any εi(t) 6= 0 or zi(t) 6= 0, and νi(t) = 0 only for
εi(t) = zi(t) = 0. Then the time derivative of νi(t) is derived
as follows:

dνi
dt
= σεi(t)ε̇i(t)+ zi(t)żi(t)

= σεi(t)
[
żi(t)− cP1

(
εi(t)

)]
− dzi(t)P2

(
zi(t)

)
= −σdεi(t)P2

(
zi(t)

)
− σcεi(t)P1

(
εi(t)

)
−dzi(t)P2

(
zi(t)

)
. (28)

Then, we are supposed to prove ν̇i(t) ≤ 0 in what follows.
Obviously, in this situation, νi(t) ≤ νi(0). Based on this,
the following conclusions can be gained:

1
2
σε2i (t) ≤ ν0,

1
2
z2i (t) ≤ ν0. (29)

We can further derive

|εi(t)| ≤
√
2ν0/σ , |zi(t)| ≤

√
2ν0. (30)
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FIGURE 2. Simulation results on the production of reagents in the agitator tank equipped with the original controller (21) and (22) without
perturbations. (a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank.
(c) The volume of the reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of
the agitator tank.

FIGURE 3. Simulation results on the production of reagents in the agitator tank equipped with the new controller (13) and (14) without
perturbations. (a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank. (c) The
volume of the reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of the agitator tank.

In addition, we set X1 and X2 to represent εi(t) and zi(t),
respectively, and obtain

X1 =
{
εi(t) ∈ R, |εi(t)| ≤

√
2ν0/σ

}
,

X2 =
{
zi(t) ∈ R, |zi(t)| ≤

√
2ν0

}
. (31)

Applying the median theorem in the bounded region X2,
we have

P2
(
zi(t)

)
−P2(0)=

(
zi(t)− 0

)∂P2(zi(ζ ))
∂zi

|zi(ζ )∈X2 , (32)

where P2(0) = 0 and ∂P2
(
zi(ζ )

)
/∂zi > 0. Thus, from (32),

the following result can be gained:∣∣P2(zi(t))∣∣ ≤ B0 |zi(t)| ,
where B0 = max

{
∂P2

(
zi(t)

)
/∂zi

}
|zi(t)∈X2 > 0 is bounded.

Thus, one can have∣∣εi(t)P2(zi(t))∣∣ ≤ |εi(t)| · ∣∣P2(zi(t))∣∣ ≤ B0 |εi(t)| · |zi(t)| .
(33)

Substituting (33) into (28), we have

dνi
dt
=−σdεi(t)P2

(
zi(t)

)
−σcεi(t)P1

(
εi(t)

)
−dzi(t)P2

(
zi(t)

)
≤ σd

∣∣εi(t)P2(zi(t))∣∣− σcεi(t)P1(εi(t))− dzi(t)P2(zi(t))
≤ σdB0 |εi(t)| · |zi(t)| − σcB1ε2i (t)− dB2z

2
i (t)

= −σ
(√

cB1 |εi(t)| −
dB0

2
√
cB1
|zi(t)|

)2
−σ

(dB2
σ
−
d2B20
4cB1

)
z2i (t),

where B1 > 0 and B2 > 0. In addition, in a simi-
lar way, B1 = min

{
∂P1

(
εi(t)

)
/∂εi

}
|zi(t)∈X1 and B2 =

min
{
∂P2

(
zi(t)

)
/∂zi

}
|zi(t)∈X2 are obtained by applying the

median theorem. From the above discussions, we can get
ν̇i(t) ≤ 0 provided that

0 < σ ≤
4cB1B2
dB20

. (34)

The above results can guarantee the negative definite of νi(t).
Therefore, according to Lyapunov stability theory, it can be
concluded that the ith subsystem (23) is globally stable. In this
sense, the error function ε(t) generated by the model (4)
globally converges to zero. This proof is completed. �

B. ROBUSTNESS ANALYSIS
Conventional agitator tank controllers do not take the effects
of disturbances into account, which may have a significant
impact on the accuracy of preparing reagents. In this section,
we add the unknown constant perturbation to the agitator sys-
tem and prove that the perturbation injected model (19)-(20)
is anti-disturbing.
Theorem 2: When polluted by the unknown constant per-

turbation, the state output of the perturbation injected model
(19)-(20) globally converges to the optimal solution to equa-
tion (1)-(2) of the agitator tank system from any randomly-
generated initial value.

Proof: Substitute (5)-(6) into (19)-(20), and simplify to
get

ε̇(t)=−cP1
(
ε(t)

)
−dP2

{
ε(t)+ c

∫ t

0
P1
(
ε(τ )

)
dτ
}
+9(t).

(35)
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FIGURE 4. Simulation results on the production of reagents in the agitator tank equipped with the original controller with constant perturbation.
(a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank. (c) The volume of the
reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of the agitator tank.

FIGURE 5. Simulation results on the production of reagents in the agitator tank equipped with the original controller with constant perturbation.
(a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank. (c) The volume of the
reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of the agitator tank.

Further, the ith subsystem of the above equation can be
written as

ε̇i(t) = −cP1
(
εi(t)

)
−dP2

{
εi(t)+ c

∫ t

0
P1
(
εi(τ )

)
dτ
}
+9(t). (36)

We introduce the same auxiliary variable zi(t) as (24). Thus,
the time derivative of zi(t) is żi(t) = ε̇i(t)+ cP1

(
εi(t)

)
. Then

substituting zi(t) and żi(t) into (36), we have

żi(t) = −dP2
(
zi(t)

)
+9(t), (37)

According to the above equation, the ith perturbation inter-
ference subsystem (36) selects the Lyapunov function candi-
date as

κi(t) =
(
dP2

(
zi(t)

)
−9(t)

)2
/2,

which ensures the positive definiteness of κi. Then, the solu-
tion of κ̇i can be written as

dκi
dt
=
(
dP2

(
zi(t)

)
−9(t)

)
d
∂P2

(
zi(t)

)
∂zi(t)

żi(t)

= −d
∂P2

(
zi(t)

)
∂zi(t)

(
dP2

(
zi(t)

)
−9(t)

)2
. (38)

Since P2(·) is a monotonically increasing odd activation func-
tion, it makes ∂P2

(
zi(t)

)
/∂zi > 0. Therefore, we conclude

that κ̇i ≤ 0 and κ̇i is negative definite, i.e., κ̇i < 0 for any
dP2

(
zi(t)

)
−9(t) 6= 0 and κ̇i = 0 only for dP2

(
zi(t)

)
−9(t) =

0. Therefore, the Lyapunov function candidate κi(t) con-
verges to zerowith time. Thus, limt→∞dP2

(
zi(t)

)
−9(t) = 0,

i.e., limt→∞zi(t) = P−12 (9(t)/d). Namely, zi(t) converges to
P−12 (9(t)/d) and limt→∞żi(t) = −dP2

(
zi(t)

)
+ 9(t) = 0.

Considering that żi(t) = ε̇i(t)+cP1
(
εi(t)

)
and limt→∞żi(t) =

0, we can derive that ε̇i(t) = żi(t)−cP1
(
εi(t)

)
. When t →∞,

ε̇i(t) = żi(t) − cP1
(
εi(t)

)
reduces to ε̇i(t) = −cP1

(
εi(t)

)
.

For this dynamic system, based on the results of the previous
discussion, it is easy to prove that limt→∞ε̇i(t) = 0.
Based on the above analyses, whenP1 andP2 aremonoton-

ically increasing odd activation functions, the error function
ε(t) generated by the constant perturbation injected model
(19)-(20) converges globally to zero. That is to say, starting
from arbitrary initial value, the system state output of the
perturbation injected model can globally converge to the
optimal solution to (1)-(2), in the presence of unknown con-
stant perturbations. The verification of the anti-perturbation
ability of the proposed agitator tank controller (13)-(14) is
completed. �
In summary, the above two theorems about global conver-

gence and robustness to constant perturbations are demon-
strated in detail. The superiority of the model is theoretically
explained.

V. ILLUSTRATIVE EXAMPLE
In this section, we perform computer simulations on the
process of preparing reagents in an agitator tank and present
simulation results. Specifically, the parameters of the agitator
tank are set as follows: At the initial time, the concentrations
of the two input liquids are set as 24.9 mg/L and 0.1 mg/L,
respectively; the inflow rates v1 and v2 of both liquids are set
as 5 L/s; the coefficient associated with the outflow rate n1
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FIGURE 6. Simulation results on the production of reagents in the agitator tank equipped with the original controller with time-varying perturbation.
(a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank. (c) The volume of the
reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of the agitator tank.

FIGURE 7. Simulation results on the production of reagents in the agitator tank equipped with the new controller with time-varying perturbation.
(a) Flow rates of the two input liquids in the agitator tank. (b) The concentration of the output reagent of the agitator tank. (c) The volume of the
reagent in the agitator tank. (d) The output reagent concentration error (mg/L) and the liquid volume error (L) of the agitator tank.

TABLE 1. Parameters used in article.

and n2 are set as 1; parameters c and d are both set as 1.5;
the desired solution volume 0d in the agitator tank is 15 L;
the desired solution concentration ϒbd in the agitator tank is
10mg/L; themonotonically increasing odd functionsP1(·) =
P2(·) = (·)3; the computer simulation time is designed as
50 s. Simulation experiments synthesized by the original
controller (21)-(22) and the new controller (13)-(14) for the
agitator tank preparing reagents are conducted to demonstrate
the high performance of the new controller. For convenient
reading, the parameters used in simulations are arranged
in Table 1.

A. SIMULATIONS WITHOUT PERTURBATION
In the absence of disturbances, simulation results of the
agitator tank preparing reagents with the aid of the original
controller (21)-(22) are given in Fig. 2. For comparison,
the simulation results on the agitator tank preparing reagents

with the aid of the new controller (13)-(14) are depicted
in Fig. 3. Observing Fig. 2(a) with Fig. 3(a), it can be seen that
the original controller and the new controller can effectively
control the flow rates v1 and v2 of the input liquid of the
agitating tank. As Fig. 2(b) demonstrates, the concentration
of the output reagent of the agitator tank reaches the desired
one at approximate 4 s. For comparison, in Fig. 3(b), the con-
centration of the output reagent from the agitator tank reaches
the desired one at approximate 1 s. Comparing Fig. 2(c) and
Fig. 3(c), the volume of the solution in the agitator tank
reaches the desired value at 15 s for the two controllers.
In addition, the output reagent concentration error and the
volume error of the agitator tank converge to zero at about
4 s as shown in Fig. 2(d). However, Fig. 3(d) shows that the
output reagent concentration error and volume error of the
agitator tank converge to zero at approximate 1 s. Particu-
larly, in the absence of perturbations, the error of the reagent
produced by the agitator tank equipped with the new con-
troller converges to zero for 3 s less than that of the original
controller, which is a threefold increase in productivity. The
above analyses verify that the new controller proposed in this
paper has better convergence performance compared with the
original controller.

B. SIMULATIONS UNDER CONSTANT PERTURBATION
In this subsection, we add a constant perturbation to the agita-
tor tank system to verify the robustness of the new controller
(13)-(14). For further explanation, the constant perturbation
in the numerical simulations is set as 0.5. The correspond-
ing simulations are conducted with simulation results pre-
sented in Fig. 4 and Fig. 5. Simulation results of the agitator
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TABLE 2. Comparisons among different controllers for the industrial agitator tank.

tank preparing reagents equipped with the original controller
(21)-(22) are shown in Fig. 4. As a contrast, simulation results
on the agitator tank preparing reagents equipped with the new
controller proposed in this paper are provided in Fig. 5. As is
vividly depicted in Fig. 4(a), the simulation result shows that
the original controller cannot effectively control the flow rates
v1 and v2 of the input agitator tank. In addition, Fig. 4(b)
shows that there exists a large error between the actual out-
put reagent concentration and the desired output. It is note-
worthy that the volume of the solution in Fig. 4(c) in the
agitator tank also deviates from the desired value. Fig. 4(d)
demonstrates that the error between the concentration of the
output reagent and the desired concentration, and the error
between the volume of the solution in the agitator tank and
the desired volume, which are not convergent to zero. In brief,
the original controller has poor performance when polluted
by perturbations. Moreover, it is readily discovered that the
new controller can effectively control the flow rate of the
input liquid to the agitator tank in Fig. 5(a). Additionally,
Fig. 5(b) and (c) indicate that both the output reagent concen-
tration of the agitator tank equipped with the new controller
and the volume of the solution in the tank can reach the
desired values. As can be observed in Fig. 5(d), when the
agitator tank system is disturbed by constant perturbations,
the output reagent concentration error and the volume error
of the agitator tank can converge to zero within about 5 s.
Through all the above simulation experiments, we come to
the conclusion that the new controller has the perturbation
rejection performance compared with the original controller
under the constant perturbation.

C. SIMULATIONS UNDER NON-CONSTANT
PERTURBATION
The agitator tank may be subjected to non-constant per-
turbations in actual operation. In response to this situa-
tion, the numerical simulations of the agitator tank with
the non-constant perturbation are conducted. Specifically,
the simulation results of the agitator tank equipped with the
original controller (21)-(22) and the new controller (13)-(14)
are shown in Fig. 6 and Fig. 7, respectively. It is worth
noting that time-varying perturbations are common in indus-
trial production and can increase over time. Therefore, in the
simulations, the time-varying perturbation 0.1t+10 is added
to the agitator tank system. It can be seen from Fig. 6(a)
that the original agitator tank cannot stably control the flow
rate of the input liquid. Furthermore, Fig. 6(b) illustrates that

the concentration of the solution produced by the agitator
tank equipped with the original controller deviates from the
desired value, and the deviation increases as time evolves.
Moreover, it is observed in Fig. 6(c) that the actual solution
volume in the agitator tank exceeds the desired value. Finally,
Fig. 6(d) illustrates that the concentration error and volume
error of the solution prepared in the agitator tank cannot
converge to zero. Thereafter, it can be viewed from Fig. 7(a)
that the agitator tank equipped with the new controller can
normally control the flow rate of the input liquid. In addition,
by observing Fig. 7(b) and (c), it is found that the concen-
tration and volume of the reagent prepared in the agitator
tank are almost the same as the desired values after 2.5 s.
Lastly, Fig. 7(d) describes the error convergence effect of the
prepared reagent parameters. Concretely, the concentration
error and volume error of the solution both converge to near
zero. In summary, the simulation experiments verify that the
proposed controller has perturbations rejection performance
under the non-constant perturbation compared to the original
controller.

VI. CONCLUSION
In this paper, a new neural dynamic agitator tank controller
has been presented. Compared with the original controller
theoretical analysis shows that the new controller has fast
convergence performance and strong robustness. In addition,
in order to further verify these performances of the new
controller, we have executed the computer simulations on the
agitator tank formulation reagents. Simulation results have
indicated that the agitator tank synthesized by the proposed
controller has an excellent performance compared with the
original controller. Specifically, the reagent concentration
and solution volume of the agitator tank equipped with the
proposed controller are able to quickly converge to the desired
values. In addition, when polluted by noises, the agitator
tank equipped with the new controller can still prepare the
target reagents with high performance. These superior prop-
erties can reduce the waste of industrial materials and greatly
increase production efficiency.

REFERENCES

[1] A. S. McKim, ‘‘Overcoming sustainability barriers within the chemi-
cal industry,’’ Current Opinion Green Sustain. Chem., vol. 14, no. 5,
pp. 10–13, 2018.

[2] S. F. Banda and K. Sichilongo, ‘‘Analysis of the level of comprehension of
chemical hazard labels: A case for Zambia,’’ Sci. Total Environ., vol. 363,
nos. 1–3, pp. 22–27, 2006.

102948 VOLUME 7, 2019



W. Duan et al.: Neural Dynamics for Control of Industrial Agitator Tank With Rapid Convergence and Perturbations Rejection

[3] S. M. Zala and D. J. Penn, ‘‘Abnormal behaviours induced by chemical
pollution: A review of the evidence and new challenges,’’ Animal Behav.,
vol. 68, no. 5, pp. 649–664, 2004.

[4] F. W. Lichtenthaler and S. Peters, ‘‘Carbohydrates as green raw materials
for the chemical industry,’’Pattern Recognit., vol. 7, no. 4, pp. 65–90, 2004.

[5] E. Andersson, M. Karlsson, S. Paramonova, and P. Thollander, ‘‘Energy
end-use and efficiency potentials among Swedish industrial small and
medium-sized enterprises—A dataset analysis from the national energy
audit program,’’ Renew. Sustain. Energy Rev., vol. 93, no. 2, pp. 165–177,
2018.

[6] A. M. Bessarabov, A. V. Avseev, V. V. Avseev, and A. M. Kutepov, ‘‘Infor-
mation technologies in the industry of chemical reagents and special-purity
substances,’’ Theor. Found. Chem. Eng., vol. 38, no. 1, pp. 214–218, 2004.

[7] T. Edwiges, L. Frare, B. Mayer, L. Lins, J. M. Triolo, X. Flotats, and
M. S. S. M. Costa, ‘‘Influence of chemical composition on biochemical
methane potential of fruit and vegetable waste,’’ Waste Manage., vol. 71,
no. 4, pp. 618–625, 2018.

[8] T. Jackson, ‘‘Clean production strategies: Developing preventive environ-
mental management in the industrial economy,’’ Ecol. Econ., vol. 12,
no. 4, pp. 84–85, 1993.

[9] S. G. Newman and K. F. Jensen, ‘‘The role of flow in green chemistry and
engineering,’’ Green Chem., vol. 15, no. 4, pp. 1456–1472, 2013.

[10] M. J. Pearse, ‘‘An overview of the use of chemical reagents in mineral
processing,’’ Minerals Eng., vol. 18, no. 10, pp. 139–149, 2005.

[11] R. Shamsoddini and N. Aminizadeh, ‘‘Incompressible smoothed particle
hydrodynamics modeling and investigation of fluid mixing in a rectangular
stirred tank with free surface,’’ in Chem. Eng. Commun., vol. 204, no. 5,
pp. 563–572, 2017.

[12] R. D. Biggs, ‘‘Mixing rates in stirred tanks,’’ AIChE J., vol. 9, no. 5,
pp. 636–640, 1963.

[13] K R. Rao and J. B. Joshi, ‘‘Liquid phase mixing in mechanically agitated
vessels,’’ Chem. Eng. Commun., vol. 74, no. 2, pp. 1–25, 1988.

[14] J. Min and Z. Gao, ‘‘Large eddy simulations of mixing time in a stirred
tank,’’ Chin. J. Chem. Eng., vol. 14, no. 99, pp. 1–7, 2006.

[15] R. Zadghaffari, J. S. Moghaddas, and J. Revstedt, ‘‘A mixing study in
a double-Rushton stirred tank,’’ Comput. Chem. Eng., vol. 33, no. 3,
pp. 1240–1246, 2009.

[16] M. Martín, F. J. Montes, and M. A. Galán, ‘‘Bubbling process in stirred
tank reactors I: Agitator effect on bubble size, formation and rising,’’Chem.
Eng. Sci., vol. 63, no. 1, pp. 3212–3222, 2008.

[17] M. H. Xie, G. Z. Zhou, S. Meng, B. Wang, and S. L. Du, ‘‘Numerical
simulation of flow property in polymer dissolution tank with inner-outer
agitators,’’ Chem. Eng. J., vol. 40, no. 3, pp. 10–11, 2012.

[18] Y. Arima and A. Hirose, ‘‘Performance dependence on system parameters
in millimeter-wave active imaging based on complex-valued neural net-
works to classify complex texture,’’ IEEE Access, vol. 5, pp. 22927–22939,
2017.

[19] J.-P. Cai, L. Xing, M. Zhang, and L. Shen, ‘‘Adaptive neural network
control for missile systems with unknown hysteresis input,’’ IEEE Access,
vol. 5, pp. 15839–15847, 2017.

[20] Y. Shen and J. Wang, ‘‘Robustness analysis of global exponential stability
of recurrent neural networks in the presence of time delays and random
disturbances,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 1,
pp. 87–96, Jan. 2012.

[21] Y. Zhang, S. Li, and L. Liao, ‘‘Consensus of high-order discrete-time
multiagent systems with switching topology,’’ IEEE Trans. Syst., Man,
Cybern., Syst., to be published. doi: 10.1109/TSMC.2018.2882558.

[22] Y. Zhang, S. Li, J. Zou, and A. H. Khan, ‘‘A passivity-based approach
for kinematic control of redundant manipulators with constraints,’’ IEEE
Trans. Ind. Informat., to be published. doi: 10.1109/TII.2019.2908442.

[23] Y. Zhang, S. Li, S. Kadry, and B. Liao, ‘‘Recurrent neural network for
kinematic control of redundant manipulators with periodic input distur-
bance and physical constraints,’’ IEEE Trans. Cybern., to be published.
doi: 10.1109/TCYB.2018.2859751.

[24] Y. Zhang, S. Li, and X. Zhou, ‘‘Recurrent-neural-network-based velocity-
level redundancy resolution for manipulators subject to a joint acceler-
ation limit,’’ IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3573–3582,
May 2019.

[25] Y. Zhang, S. Li, and L. Liao, ‘‘Near-optimal control of nonlinear dynamical
systems: A brief survey,’’ Annu. Rev. Control, vol. 47, pp. 71–80, 2019.
doi: 10.1016/j.arcontrol.2019.01.003.

[26] M. Tan, ‘‘Asymptotic stability of nonlinear systems with unbounded
delays,’’ J. Math. Anal. Appl., vol. 37, no. 2, pp. 1010–1021, 2008.

[27] L. Xiao and R. Lu, ‘‘Finite-time solution to nonlinear equation using recur-
rent neural dynamics with a specially-constructed activation function,’’
Neurocomputing, vol. 151, no. 3, pp. 246–251, Mar. 2015.

[28] W. Duan, L. Jin, B. Hu, H. Lu, M. Liu, K. Li, L. Xiao, and C. Yi,
‘‘Nonlinearity activated noise-tolerant zeroing neural network for real-
time varying matrix inversion,’’ in Proc. 37th Chin. Control Conf., 2018,
pp. 3117–3122.

[29] L. Jin and S. Li, ‘‘Distributed task allocation of multiple robots: A con-
trol perspective,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 5,
pp. 693–701, May 2018.

[30] L. Jin, Y. Zhang, and S. Li, ‘‘Integration-enhanced Zhang neural net-
work for real-time-varying matrix inversion in the presence of various
kinds of noises,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4,
pp. 2615–2627, Dec. 2016.

[31] L. Jin, Y. Zhang, S. Li, and Y. Zhang, ‘‘Noise-tolerant ZNN mod-
els for solving time-varying zero-finding problems: A control-theoretic
approach,’’ IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 992–997,
Feb. 2017.

[32] D. Zhao, W. Chen, J. Wu, and J. Li, ‘‘Globally stable adaptive tracking
control for uncertain strict-feedback systems based on neural network
approximation,’’ Asian J. Control, vol. 18, no. 10, pp. 527–538, 2016.

[33] J. Cai and X. Li, ‘‘Dry mortar mixing storage control system based on the
BP neural PID,’’ Manuf. Automat., vol. 3, no. 5, pp. 31–33, 2012.

[34] Y. Zhang, Y. Ding, B. Qiu, J. Wen, and X. Li, ‘‘ZDmethod based nonlinear
and robust control of agitator tank,’’ Asian J. Control, vol. 20, no. 4,
pp. 1464–1479, 2018.

[35] K. Zhang, M. Staroswiecki, and B. Jiang, ‘‘Static output feedback based
fault accommodation design for continuous-time dynamic systems,’’ Int.
J. Control, vol. 84, no. 3, pp. 412–423, 2011.

[36] Y. Zhang, B. Mu, and H. Zheng, ‘‘Link between and comparison and
combination of Zhang neural network and quasi-Newton BFGS method
for time-varying quadratic minimization,’’ IEEE Trans. Cybern., vol. 43,
no. 2, pp. 490–503, Apr. 2013.

[37] A. Bessarabov andA.Afanas’ev, ‘‘CALS technologies in design of promis-
ing chemical production units,’’ Khim. Tekhnol., vol. 3, no. 1, p. 26, 2002.

[38] L. Jin, Y. Zhang, T. Qiao, M. Tan, and Y. Zhang, ‘‘Tracking control of
modified Lorenz nonlinear system using ZG neural dynamics with additive
input or mixed inputs,’’ Neurocomputing, vol. 196, no. 4, pp. 82–94, 2016.

[39] X. Zhang and G. Ahmadi, ‘‘Eulerian–Lagrangian simulations of liquid–
gas–solid flows in three-phase slurry reactors,’’ Chem. Eng. Sci., vol. 60,
no. 6, pp. 5089–5104, 2005.

[40] L. Li and B. Xu, ‘‘Accurate tracking control of linear synchronous motor
machine tool axes,’’Chin. J. Mech. Eng., vol. 30, no. 4, pp. 118–126, 2017.

[41] G. Li and Y. Lin, ‘‘Adaptive output feedback control for a class of nonlinear
systems with quantised input and output,’’ Int. J. Control, vol. 90, no. 12,
pp. 239–248, 2017.

[42] Z. Xie, L. Jin, X. Du, X. Xiao, H. Li, and S. Li, ‘‘On generalized RMP
scheme for redundant robot manipulators aided with dynamic neural net-
works and nonconvex bound constraints,’’ IEEE Trans. Ind. Informat., to be
published. doi: 10.1109/TII.2019.2899909.

[43] A.W. Nienow, ‘‘Stirring and stirred-tank reactors,’’ Chem. Ingenieur Tech-
nik, vol. 8, no. 4, pp. 2063–2074, 2014.

[44] H. Lu, L. Jin, X. Luo, B. Liao, D. Guo, and L. Xiao, ‘‘RNN for solving
perturbed time-varying underdetermined linear system with double bound
limits on residual errors and state variables,’’ IEEE Trans. Ind. Informat.,
to be published. doi: 10.1109/TII.2019.2909142.

[45] Y. Zhang, W. Ma, and B. Cai, ‘‘From Zhang neural network to Newton
iteration for matrix inversion,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 56, no. 7, pp. 1405–1415, Jul. 2009.

[46] Y. Zhang and S. S. Ge, ‘‘Design and analysis of a general recurrent neural
network model for time-varying matrix inversion,’’ IEEE Trans. Neural
Netw., vol. 16, no. 6, pp. 1477–1490, Nov. 2005.

[47] L. Wei, L. Jin, C. Yang, K. Chen, and W. Li, ‘‘New noise-tolerant neural
algorithms for future dynamic nonlinear optimization with estimation on
hessian matrix inversion,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be
published. doi: 10.1109/TSMC.2019.2916892.

[48] L. Xiao, S. Li, J. Yang, and Z. Zhang, ‘‘A new recurrent neural network
with noise-tolerance and finite-time convergence for dynamic quadratic
minimization,’’ Neurocomputing, vol. 285, pp. 125–132, Apr. 2018.

[49] Z. Zhang, T. Fu, Z. Yan, L. Jin, L. Xiao, Y. Sun, Z. Yu, and
Y. Li, ‘‘A varying-parameter convergent-differential neural network for
solving joint-angular-drift problems of redundant robot manipulators,’’
IEEE/ASME Trans. Mechatronics, vol. 23, no. 2, pp. 679–689, Apr. 2018.

VOLUME 7, 2019 102949

http://dx.doi.org/10.1109/TSMC.2018.2882558
http://dx.doi.org/10.1109/TII.2019.2908442
http://dx.doi.org/10.1109/TCYB.2018.2859751
http://dx.doi.org/10.1016/j.arcontrol.2019.01.003
http://dx.doi.org/10.1109/TII.2019.2899909
http://dx.doi.org/10.1109/TII.2019.2909142
http://dx.doi.org/10.1109/TSMC.2019.2916892


W. Duan et al.: Neural Dynamics for Control of Industrial Agitator Tank With Rapid Convergence and Perturbations Rejection

[50] L. Jin, S. Li, H. M. La, and X. Luo, ‘‘Manipulability optimization of
redundant manipulators using dynamic neural networks,’’ IEEE Trans. Ind.
Electron., vol. 64, no. 6, pp. 4710–4720, Jun. 2017.

[51] L. Ding, L. Xiao, K. Zhou, Y. Lan, and Y. Zhang, ‘‘A new RNNmodel with
a modified nonlinear activation function applied to complex-valued linear
equations,’’ IEEE Access, vol. 6, pp. 62954–62962, 2018.

[52] L. Jin, S. Li, X. Luo, andY. Li, ‘‘Neural dynamics for cooperative control of
redundant robot manipulators,’’ IEEE Trans. Ind. Informat., vol. 14, no. 9,
pp. 3812–3821, Sep. 2018.

[53] L. Jin, S. Li, B. Hu, M. Liu, and J. Yu, ‘‘A noise-suppressing neural algo-
rithm for solving the time-varying system of linear equations: A control-
based approach,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 236–246,
Jan. 2019.

WENHUI DUAN received the B.E. degree from
Jinzhong University, Shanxi, China, in 2017. He is
currently pursuing the M.E. degree in electronics
and communication engineering with the School
of Information Science and Engineering, Lanzhou
University, Lanzhou, China. His research interests
include neural networks and robotics.

XIUCHUN XIAO received the Ph.D. degree in
communication and information system from
Sun Yat-sen University, Guangzhou, China,
in 2013. He is currently an Associate Professor
with Guangdong Ocean University. His current
research interests include artificial neural net-
works and computer vision.

DONGYANG FU received the Ph.D. degree from
the South China Sea Institute of Oceanology,
Chinese Academy of Sciences, and the Ph.D.
degree from the State Key Laboratory of Satellite
Ocean Environment Dynamics, Second Institute
of Oceanography, State Oceanic Administration,
Guangzhou, China. He is currently a Professor
with the School of Electronics and Information
Engineering, Guangdong Ocean University, Zhan-
jiang, China. His current research interests include

ocean color remote sensing and its application, remote sensing in offshore
water quality, response of upper ocean to typhoon, and neural networks.

JINGWEN YAN received the Ph.D. degree in
optics from the State Key Laboratory of Applied
Optics, Changchun Institute of Fine Mechanics
and Optics, Academia Sinica, in 1997. He is cur-
rently a Professor with the Department of Elec-
tronic Engineering, Shantou University, China.
He is also the Associate Director of the Key lab-
oratory of Digital Signal and Image Processing
of Guangdong Province, China. Since Septem-
ber 2006, he has been with the Department of

Electronic Engineering, Shantou University. His current research interests
include SAR image processing, hyper-wavelet transforms, and compressed
sensing.

MEI LIU received the B.E. degree in communi-
cation engineering from Yantai University, Yantai,
China, in 2011, and the M.E. degree in pattern
recognition and intelligent system from Sun Yat-
sen University, Guangzhou, China, in 2014. She
is currently a Teacher with the School of Informa-
tion Science and Engineering, LanzhouUniversity,
Lanzhou, China. Before joining Lanzhou Univer-
sity, in 2017, shewas a Lecturer with the College of
Physics, Mechanical and Electrical Engineering,

Jishou University, Jishou, China. Her main research interests include neural
networks, computation, and optimization.

JILIANG ZHANG (M’15) received the B.S., M.S.,
and Ph.D. degrees from the Harbin Institute of
Technology, in 2007, 2009, and 2014, respectively.
He is currently an Associate Professor with the
School of Information Science and Engineering,
Lanzhou University, China. His research interests
include neural networks, MIMO channel measure-
ment and modeling, single radio frequency MIMO
systems, relay systems, and wireless ranging
systems.

LONG JIN (M’17) received the B.E. degree in
automation and the Ph.D. degree in information
and communication engineering from Sun Yat-sen
University, Guangzhou, China, in 2011 and 2016,
respectively. He is currently a Full Professor with
the School of Information Science and Engineer-
ing, Lanzhou University, Lanzhou, China. Before
joining Lanzhou University, in 2017, he was a
Postdoctoral Fellow with the Department of Com-
puting, The Hong Kong Polytechnic University,

Hong Kong. His main research interests include neural networks, robotics,
and intelligent information processing.

102950 VOLUME 7, 2019


	INTRODUCTION
	DYNAMIC SYSTEM OF THE AGITATOR TANK
	DESIGN STEPS OF THE AGITATOR TANK CONTROLLER
	THEORETICAL ANALYSES ON SUPERIOR PERFORMANCE OF THE NEW CONTROLLER
	CONVERGENCE ANALYSIS
	ROBUSTNESS ANALYSIS

	ILLUSTRATIVE EXAMPLE
	SIMULATIONS WITHOUT PERTURBATION
	SIMULATIONS UNDER CONSTANT PERTURBATION
	SIMULATIONS UNDER NON-CONSTANT PERTURBATION

	CONCLUSION
	REFERENCES
	Biographies
	WENHUI DUAN
	XIUCHUN XIAO
	DONGYANG FU
	JINGWEN YAN
	MEI LIU
	JILIANG ZHANG
	LONG JIN


