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ABSTRACT Cuckoo search algorithm (CS) is a powerful biological-inspired search algorithm, which is
widely used in continuous space optimization problems. However, a single search strategy in CS makes all
cuckoos have similar search behavior, and it is liable to plunges into local optimal. In addition, whether
CS can successfully solve a problem largely depends on the value of control parameters. Using the trial
and error method to determine the value of parameters will cost a lot of computational expense frequently.
In order to solve these problems, a multi-strategy adaptive cuckoo algorithm (MSACS) is proposed in this
paper. Firstly, five search strategies are adapted to cooperate with each other, and the use of various previous
strategies and control parameters are studied. The probability of each strategy being used and the value of
control parameters are changed adaptively. Then, the performance of MSACS is tested and evaluated on
24 common benchmark functions. Finally, several advanced CS algorithms, particle swarm algorithm (PSO)
and differential evolution algorithm (DE) variants will be compared with MSACS. The results show that the
MSACS is better than the algorithms above.

INDEX TERMS Cuckoo search algorithm, multi-strategy, self-adaptive.

I. INTRODUCTION
In recent decades, people have proposed a series of new
heuristic algorithms by observing the behavior of biolog-
ical populations: swarm intelligence algorithm. Under the
premise of no centralized control and no global model, swarm
intelligence algorithm searches solutions by using the prin-
ciple of ’trial-and-error’, give full play to the advantages
of the population, shows advanced and complex functions
by using cooperation, competition, interaction, learning and
other mechanisms, provides ideas for finding solutions to
complex problems. Swarm intelligence algorithms do not
rely on gradient information and have no requirements on
continuity, derivable and other aspects for solving problems.
It is suitable for both continuous numerical optimization and
discrete combinatorial optimization.

Swarm intelligence optimization algorithm has great
advantages in processing problems with large data volume
due to its potential parallelism and distributed characteris-
tics. At present, many swarm intelligence algorithms and
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their improved algorithm have been proposed, such as clas-
sical particle swarm optimization algorithm (PSO) [1], [2],
ant colony optimization algorithm (ACO) [3], [4], artificial
immune systems algorithm(AIS) [5], firefly algorithm(FA)
[6], [7], Genetic algorithm(GA) [8], [9], differential evolution
algorithm(DE) [10], [11]. These algorithms have been widely
used in various practical problems.

Recently, Yang Xinshe and Deb Suash from Cambridge
university proposed a novel meta-heuristic population opti-
mization algorithm: cuckoo search algorithm [12], [13],
inspired by the cuckoo’s behavior in finding nests and laying
eggs in nature. CS algorithm adopts Levy flight as its search
strategy. By simulating the flight of fruit flies, and using a
series of random walks characterized by mutant sequences,
Levy’s flight strategy is bound to find the optimal solution
given enough time. There are only two control parameters in
the Cuckoo search algorithm, whichmeans that as long as one
parameter is fixed, the change of the other parameter’s value
can be easily observed.

Cuckoo algorithm has been applied in various fields.
Fateen and Bonilla-Petriciolett applied cuckoo search algo-
rithm to the field of chemistry. Bonilla used gradient
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based cuckoo search algorithm to solve phase equilib-
rium calculations in nonreactive systems [14]. Fateen used
Cuckoo search algorithm to solve phase stability and
phase equilibrium problems in applied thermodynamics [15].
Vazquez [16] used Cuckoo search algorithm to train spiking
neural model. Galvez [17] used Cuckoo search to optimize
weighted bayesian energy function. Deb and Mohamad et al.
made a review of the progress of Cuckoo search algorithm,
covering engineering, pattern recognition, software testing
and other fields [18], [19].

However, scholars have found that Cuckoo search algo-
rithm is not ideal in solving complex problems with multiple
peaks. CS algorithm uses Levy flight strategy to conduct
random search solely, which completely relies on random
walk. Therefore, the search efficiency is low, it is difficult to
find the optimal value, and it wastes computing efficiency.
For some multimodal functions with many local minima,
it takesmany iterations to converge successfully. Levy’s flight
step size selection is also extremely important. Using a large
step size causes it to hover around the real minimum, and
making it difficult to achieve the desired accuracy. Using a
smaller step size results in not finding all possible solutions,
it is difficult to ensure the richness of the population. There-
fore, many improved cuckoo algorithms have been proposed.
In this paper, these improved cuckoo algorithms are divided
into two categories:

(I)Improving the Control Parameters and Levy Flight Strat-
egy: Walton et al proposed an improved Cuckoo search algo-
rithm [20], which reduced the value of control parameters
in a nonlinear way, and put the best part of the solution
into a top-level set, randomly selected two cuckoos in each
top-level sets. Then, connect them and create new individ-
uals at the golden point of the line. Yongwei Zhang pro-
posed an improved adaptive Cuckoo search algorithm [21],
which changed the control parameters in a linear way adap-
tatively and grouped the cuckoo population for evaluation.
This improves the survival rate of solution which is not the
best one. Wang [22] changed the step size of Levy flight
in a non-linear way adaptively, and changed the possibility
of the nest being discovered linearly. Lijin Wang proposed
a cuckoo algorithm using the strategy of Levy flight based
on the nearest neighboring individuals [23]. The step size
of Levy flight was changed from optimal-individual-based
to the nearest-individual-based. Huang et al. [24] used chaos
initialization strategy to enhance the ergodic type of search.
Cheung et al. [25] adds quantum computing(QC) to the
Cuckoo search algorithm, each individual can improve its
search ability according to the expected potential. Consider-
ing the average position of individuals and the current optimal
value, two new iterative schemes were generated. The origi-
nal Levy flight scheme and the two new schemes were com-
bined to optimize the cuckoo algorithm. Saida [26] applied
Cuckoo search algorithm with quantum computing strategy
to data clustering. Bilal [27] proposed 7 alternative schemes
to replace Levy flight in iteration process and achieved good
results.

(II)Hybridization of CS and Other Algorithms:
Bhandari et al. [28] proposed a satellite image segmentation
method combining CS algorithm and wind-driven optimiza-
tion [29]. Li et al. [30] hybridized CS and PSO, realized
the sharing of learning mechanism of the two methods.
Liu et al. [31] proposed a hybridized CS based on leapfrog
strategy, combined step-size strategy of individual grouping
and Levy strategy. Xiangtao Li hybridized CS algorithm
and DE algorithm [32], which used mutation strategy in
DE algorithm to optimize the step size of CS algorithm,
an self-adaptive way of adding markers was used to optimize
the probability of being found. Uros Mlakar proposed a
hybridized adaptive cuckoo algorithm [33], which had a more
balanced exploration strategy and could automatically change
the control variables of CS algorithm and reduced the size of
population.

As can be seen from the literature review above, some
scholars have proposed the improvement of CS algorithm,
but it still needed to be improved. This paper proposes a
multi-strategy adaptive cuckoo algorithm to improve the CS
algorithm from the following two aspects: (i)Using multiple
strategies to search with different step size. Make MSACS
applicable to more problems. (ii) An adaptive strategy is
added to CS to select the strategy adaptively and changes
the value of parameters according to the algorithm. Let the
problems themselves determine the strategy for solving them.

The structure of the paper is as follows: chapter II intro-
duces the standard CS algorithm, chapter III elaborates the
MSACS algorithm, chapter IV presents the numerical simu-
lation results and analysis obtained after a large number of
experiments, and chapter V is the summary.

II. CUCKOO SEARCH ALGORITHM
Actually, cuckoos find a nest which is suitable for them to lay
eggs in a random way. To simulate this process, the following
three idealized rules are introduced:

(a)Each cuckoo lays only one egg at a time, representing a
solution to the problem and placing it in a randomly selected
nest.

(b)Some of these nests have high-quality eggs, represent-
ing good solutions, and the nests will be preserved for the next
generation.

(c)The number of available host nests is fixed, and the host
finds the cuckoo’s eggs with probability pa ∈(0,1). In this
case, the host can destroy the egg or abandon the old nest
and build a new one.

In Cuckoo Search algorithm, the egg in each nest rep-
resents a solution, and the cuckoo egg represents a new
solution. The goal is to use the new solution or potential
superior solution to replace the inferior solution in the nest.
Algorithms can be extended to be more complex, such as a
nest with multiple eggs representing a group of solutions.
In this article, the simplest approach is used. There is only
one solution in a nest. In this case, eggs, nests, and cuckoos
are essentially identical concepts which represent the solution
in the algorithm.

VOLUME 7, 2019 137643



S. Gao et al.: MSACS

According to the assumptions about cuckoo spawning
behavior above, the path and position update formula of
cuckoo algorithm is given as follows:

x t+1i = x ti + α ⊕ Levy (β) (1)

where α > 0 is the step size scaling factor of Levy’s flight,
and its value is related to the selected problem, usually 0.01,
0.1 or 1. the product ⊕ denotes entry-wise multiplications.

Levy (β) =
ϕ · u

|v|1/β
(2)

where Levy flight follows the following formula:

ϕ =

 0 (1+ β) · sin (π · β/2)

0
((

1+β
2

)
× β × 2(β−1)/2

)
1/β

(3)

where v ∼ N(0,1), u ∼ N(0,1). β is a constant on an
interval [1,2], which is 1.5 in this paper.0 (•) denotes gamma
function.

III. MULTI-STRATEGY ADAPTIVE CUCKOO ALGORITHM
A. MULTI-STRATEGY SEARCH
The original cuckoo algorithm only uses Levy flight strategy,
which results in all cuckoos having similar actions. When a
cuckoo falls into a local minimum and cannot jump out of it
on its own, it may not be able to jump out of the minimum
by the cuckoo which is in the neighbor domain, because
the cuckoo in the neighbor domain maybe under the same
circumstance.

In MSACS, cuckoos search with five different strategies,
instead of single Levy flight. In each iteration, each cuckoo
randomly selects a strategy in an adaptive way to generate
new cuckoos. We choose five strategies to make MSACS
suitable for different problems. They have different charac-
teristics, which are given below:

Strategy 1: Levy flight simulates the flight behavior of fruit
flies in the original CS algorithm, and it is adopted to conduct
the random search of small steps with a large probability and
the long distance search with a large probability. Combined
with other algorithms with different search lengths, Levy
flight can give full play to its advantages. In this paper, Levy
flight step size alpha is 1.

Strategy 2: Each cuckoo’s search is related to the location
of two other cuckoos which are randomly selected. As shown
in equation (4), Cuckoo r1 which chooses this strategy will
randomly select two cuckoos r2 and r3(r1, r2 and r3 are
different individuals), and the nest of the next generation will
be selected according to the location between them.

Vi,G+1 = Xr i1,G
+ F ·

(
X
ri2,G
− X

ri3,G

)
(4)

where X
ri1,G

, X
ri2,G

, X
ri3,G

are three random and different indi-

vidual vectors in generation G on [1,Np], which are also
different from the i-th vector. F is the factor that determines
how much to learn from other cuckoos.

Strategy 3: Similar to strategy 2, the search of each cuckoo
is related to the locations of the other four cuckoos randomly.
As shown in equation (5), Cuckoo r1 which chooses this
strategy will randomly select two groups of cuckoos, with
two cuckoos in each group, r2, r3, r4 and r5(r1, r2, r3,
r4 and r5 are different individuals), will be randomly selected
from the cuckoo r1 of this strategy, and the nest of the next
generation will be selected according to the location among
them. Compared with strategy 2, this strategy has smaller step
size and is more suitable for small distance optimization.

Vi,G+1 = Xbest,G + F ·
(
X
ri1,G
− X

ri2,G
+X

ri3,G
− X

ri4,G

)
(5)

where Xbest,G is the individual vector with the best fitness
value in generationG.X

ri1,G
,X

ri2,G
,X

ri3,G
,X

ri4,G
are four random

and different individual vectors in generation G on [1,Np],
which are also different from the i-th vector.

Strategy 4: Levy flight strategy has good search perfor-
mance. MSACS adopts a strategy with memory to retain
potential solutions which will be found through Levy flight
strategy. For each cuckoo, a strategy is used to find the
position with the best fitness value so far, and records it with a
one-row, Np-column learning matrix LM. Where Np denotes
the size of the population. In each generation, a random
individual is selected from LM to generate a new individual
according to equation (6) :

Vi,G+1 = ξ ·
(
XL1,G − Xri1,G

)
+ ξ ·

(
XL1,G − Xbest,G

)
(6)

where ξ is a random number subject to Gaussian distribu-
tion with a variance of 0.3 and a mean of 0.5, XL1,G is a
randomly selected individual in LM. This strategy makes
MSACS memorable and prevents most cuckoos from getting
stuck in a few local minima that are difficult to jump out.

Strategy 5: In recent decades, quantum computing (QC)
has been applied in various optimization algorithms, shows
good ability. MSACS learns from QC to improve their search
ability. In search process, it is often the case that one cuckoo
falls into a local minimum, and sometimes the cuckoo cannot
jump out of thisminimumonly through its neighbors, because
they follow the same search rules. Equation (7) adopts the
strategy of QC method. Cuckoos jump out of the local min-
imum value by moving towards the average position of the
whole population.

Vi,G+1 = XG + η ·
(
XG − Xi,G

)
· lg (1/γ ) (7)

where η is a variable step size, its value is 1.6 in this paper, γ
is a random number subject to uniform distribution on (0,1),
XG is the average position of all cuckoos in generation G,
as shown in equation (8) :

XG =
1
Np

Np∑
i=1

Xi,G (8)

In MSACS, these five strategies work well together and
thus produce better results. All cuckoos will search for
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a strategy at random according to the probability of each
strategy being used in each generation.

At the beginning of iteration, strategy 1 relies on Levy
flight and strategy 2 are used for medium-distance and long-
distance searches, respectively. After finding a potential solu-
tion, Strategy 3 will be used for a small search. In order to
maintain the diversity of the population, strategy 4, which is
based on individual memory search and will be used to visit
the optimal value once found. Strategy 5 can help jumping out
of the local minimum region which cuckoos fall into. Each
cuckoo selects only one strategy to search in each iteration,
and adopts multiple strategies will not lead to slow operation
of the algorithm.

B. ADAPTIVE STRATEGY
In the past, the adaptive algorithm made parameters change
according to the pre-given rules. This adaptive algorithm
is static and can not make parameters change completely
according to the requirements of the algorithm. According to
the theory of Smith J. and Fogarty T. (1997) [34], the adaption
is divided into three categories: The first is a global adap-
tation. The adaptive operators are static, and the forms and
parameters are fixed, and they act uniformly on the hole.
The second is local adaption, each individual in the popula-
tion are under consideration. The third is real-time adaption.
Fitness parameters will change automatically in the process
of iteration.

In MSACS each searching strategy will be used with a
probability. Each cuckoo randomly selects a search strategy
based on these probabilities to generate a new generation in
each generation. These probabilities will generate depending
on how they have played in previous generations before
searching in each generation. It means that the more likely
these search strategies are to find a better solution, the more
likely they will be used in the future. However, no matter how
the probability of each strategy being used changes, their sum
is 1. That is, each cuckoo must choose one strategy to use in
each iteration.

The probability of five search strategies being used is ini-
tialized to 0.2, that is, all strategies have the same probability
of being selected at the beginning. A strategy will be selected
for each cuckoo in the population in each generation. The ith
strategy will be used with a probability of Spi,G in generation
G. In generation G, after calculating the fitness value of all
generated cuckoos, the number of cuckoos generated by the
ith strategy that can successfully enter the next generation
was recorded as ni,G. We introduced five memory libraries
with length LM to store the memory data of each strategy
separately, as shown in table 1. Where LM is the length of
memory library, and ni,G is the number of success of the
ith strategy in the G generation. Once the memories over-
flow after LM generations, the earliest records stored in the
memories, ni,G−LM+1, will be removed so that those numbers
calculated in the current generation can be stored in memory
libraries. That is, after calculating the fitness value in each
generation, the last data in each memory store ni,G−LM+1 will

TABLE 1. Memory bank of strageties.

be deleted, and then each data in the memory library shift
back one place. Finally, the newly generated success times
ni,G are put into the memory library to become the first data.

After the initial LM generation, the probability that each
policy which will be selected is generated based on their
memory library. For example, the probability of the ith strat-
egy used in the G generation is shown in equation (10) :

Spi,G =
Si,G
5∑
i=1

Si,G

(9)

Si,G =



0.01,
G−1∑

j=G−LM

ni,j = 0

G−1∑
j=G−LM

ni,j

G−1∑
j=G−LM

mi,j

, else

(10)

where Si,G is the probability of the success of the ith strategy
from generation G-LM to generation G, mi,j is the total
number of times the ith strategy is used in generation j.
Each strategy will calculate their probability of being used
according to equation(9).Where Spi,G is themean probability
of the ith strategy being used in generation G. It should be
noted that, the usage probability of each strategy cannot be 0.
Otherwise, it may lead to mi,j being 0 and Si,G not existing.
So, when Si,G = 0, we set its value equal to 0.01.
According to equations (9) and (10), it can be seen that the

higher the ratio of all the success times in memory and the
total number of times this strategy was used in these genera-

tions, namely, the higher the ratio of

G−1∑
j=G−LM

ni,j

G−1∑
j=G−LM

mi,j

, the higher the

success rate of strategy i, and the more likely it will be used
in the future.

C. DETERMINATION OF OTHER CONTROL PARAMETERS
The value of the control parameters depends largely on the
problem that the algorithm deals with. In the traditional
CS algorithm, the step size of Levy’s flight and the proba-
bility of finding cuckoos are the controlled parameters of the
algorithm. In MSACS, some of the parameters are given in
sections 3.1 and 3.2. The scaling factor F in strategy 2 and
strategy 3 is normally distributed with amean value of 0.5 and
a variance of 0.3, denoted by N(0.5,0.3).

An adaptive strategy similar to strategy selection is used to
determine the probability of finding a cuckoo, pa. In the first
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FIGURE 1. A schematic of how to select a strategy.

LM generation, pa is subject to a gaussian distribution with
a mean of 0.5 and variance of 0.1. After the LM generation,
record the pa value of the superior cuckoo in the previous
LM generation in a memory matrix (pa_Memory). A superior
cuckoo is one with better fitness than before. At this point,
pa is subject to a gaussian distribution with mean value
of pa_mean and variance of 0.1, denoted by N(pa_mean,0.1).
Where pa_mean is the average value of all pa in this memory
bank. The value of pa should be between 0 and 1. If it is
beyond this range, a random pa needs to be generated to
participate in the iteration.

For the probability of finding a cuckoo in CS, an adap-
tive method is also used to automatically change its value.
A number of experiments are used in chapter 4 to demonstrate
the performance of MSACS in dealing with different types
of problems. The pseudo-code for the MSACS algorithm is
shown below.

MSACS uses adaptive strategies andmultiple search strate-
gies to optimize traditional CS algorithm, adaptively partic-
ipates in the iteration with each cuckoo search result, so as
to adaptively select more suitable strategies. It not only can
be well applied to different adaptive functions, but also can
automatically change the use probability of each strategy in
different periods of iteration.

IV. SIMULATION AND COMPARISON
A. TEST FUNCTIONS
In order to examine the effectiveness of the proposed algo-
rithm. In the following, we shift twenty-four benchmark
functions which are commonly used in literatures. These
benchmark functions are classified into three groups. Group1:
Global optima of the benchmark function lies at the center
of the search domain: f1-f3, f10, f12, f18, f23. Group2: The
extremum of the function distributes on the coordinate axis:
f4-f6, f9, f13, f14, f16, f21, f22, f24. Group3: The local

Algorithm 1 Pseudo-Code for MSACS
Begin
Initialize G,the mean value of Pa (Pa_mean).
Generate initial host nests xi (i = 1,2,. . . ,N).
Evaluate the fifitness f of each nest xi.
Determine the global best nest, gbest.
While the terminal condition is not reached, Do
if G > LM

for i = 1 to 5
Update Spi,G and Si,G by equation (9) and(10).
Update the Memory Bank of Strageties.

end
Generate Pa_mean by Pa_Memory.

end
Generate F, ξ, γ,Pa.
Choose stragety by Spi,G.
Do Cuckoo Search by five strageties,generate new
nests xi_new (i= 1, 2, . . ., N).abandon Cuckoos by Pa
randomly.
if f (xi) ≤ f (xi_new)
xi = xi_new, ni,G−1 = ni,G−1 + 1

end
G = G + 1

End while
End

optima of benchmark functions are independent of variables
and dimensions: f7, f8, f11, f15, f17, f19, f20.

In these benchmark functions, f1, f4, f5, f8-f12 are shifted
functions. f16 is plate-shaped. f1-f3, f6, f9, f21, f22 are
bowl-shaped. f4, f15, f23, f24 are Valley-Shaped. f6-f8,
f11, f12, f15, f17, f19, f20 are multimodal functions. f12,
f23, f24 have a very sharp global optima in their searching
range.
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Function 1:Shifted Sphere function

f1 =
n∑
i=1

z2i , z = X − o

o = [o1, o2, . . . , oD] : the shifted global optimum
Function 2:Generalized Penalized function 1

f2 =
π

n

{
10sin2(πy1)+

n−1∑
i=1

(yi − 1)2

[1+ 10sin2(πyi+1)]

+(yn − 1)2
}

+

n∑
i=1

u(xi, 10, 100, 4), |xi| ≤ 50

yi = 1+ (xi + 1)/4

u(xi, a, k,m) =


k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

Function 3:Generalized Penalized function 2

f3 = 0.1

{
sin2(3πx1)+

n−1∑
i=1

(xi − 1)2

[1+ sin2(3πxi+1)]

+(xn − 1)2
}
+

n∑
i=1

u(xi, 5, 100, 4)

u(xi, a, k,m) =


k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

Function 4:Shifted Schwefel’s problem 1.2

f4 =
n∑
i=1

(
i∑

j=1

zj)

2

o = [o1, o2, . . . , oD] : the shifted global optimum
Function 5:Shifted Schwefel’s Problem 1.2 with noise in

fitness

f5 =

 n∑
i=1

(
i∑

j=1

zj)

2 (1+ 0.4|N (0, 1)|)

o = [o1, o2, . . . , oD] : the shifted global optimum
Function 6:Schwefel’s Problem 2.22

f6 =
n∑
i=1

|xi| +
n∏
i=1

|xi|

Function 7:Schwefel’s Problem 2.26

f7 = 418.9829 ∗ n−
n∑
i=1

(xi sin(
√
|xi|))

TABLE 2. Settings of 24 banchmark functions.

Function 8:Shifted Rastrigin’s function

f8 =
n∑
i=1

[
z2i − 10 cos(2πzi)+ 10

]
o = [o1, o2, . . . , oD] : the shifted global optimum
Function 9:Shifted Griewank’s Function

f9 =
1

4000

n∑
i=1

z2i −
n∏
i=1

cos
(
zi
√
i

)
+ 1

o = [o1, o2, . . . , oD] : the shifted global optimum
Function 10:Shifted Sum of different power function

f10 =
n∑
i=1

|zi|i+1

o = [o1, o2, . . . , oD] : the shifted global optimum
Function 11:Shifted noncontinuous Rastrigin’s function

f11 =
n∑
i=1

[u2i − 10 cos(2πui)+ 10]

ui =

{
zi, zi < 0.5
round(2zi)/2, |zi| >= 0.5

o = [o1, o2, . . . , oD] : the shifted global optimum

VOLUME 7, 2019 137647



S. Gao et al.: MSACS

FIGURE 2. Comparison diagram of simulation results of CS-based algorithm on 24 benchmark functions(f1-f12).

FIGURE 3. Comparison diagram of simulation results of CS-based algorithm on 24 benchmark functions(f13-f24).

Function 12:Shifted Ackley’s function

f12 = −20 exp(−0.2

√√√√ n∑
i=1

z2i /D)

− exp(
n∑
i=1

cos(2πzi)/n)+ 20+ e

o = [o1, o2, . . . , oD] : the shifted global optimum

Function 13:Weierstrass function

f13 =
n∑
i=1

(
k max∑
k=0

[ak cos(2πbk (xi + 0.5))])

− n
k max∑
k=0

[ak cos(2πbk · 0.5)]+ 20

a = 0.5, b = 3, kmax = 20

Function 14:Alpine function

f14 =
n∑
i=1

|xi sin(xi)+ 0.1xi|
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FIGURE 4. the probability of each strategy being used in an iteration.

Function 15:Beale’s function

f15 = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x22)2

+ (2.625− x1 + x1x23)2

Function 16:Booth’s function

f16 = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

Function 17:Shaffer function

f17 =
(
x21 + x

2
2

) 1
4
[sin2(50(x21 + x

2
2 )

1
10 )+ 1]

Function 18:Bent Cigar function

f18 = x21 + 106
n∑
i=2

x2i

Function 19:Goldstein-Price function

f19 = [1+ (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2
+ 6x1x2 + 3x22)]× [30+ (2x1 − 3x2)2(18− 32x1
+ 12x21 + 48x2 − 36x1x2 + 27x22 )]−3

Function 20:J.D.Schaffer function

f20 =
sin2

√
x21 + x

2
2 − 0.5

[1+ 0.001(x21 + x
2
2 )]

2 + 0.5

Function 21:Bohachevsky function 1

f21 = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2)+ 0.7

Function 22:Bohachevsky function 2

f22 = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2)+ 0.3

Function 23:Easom’s 2D function

f23 = 1− cos(x1) cos(x2) exp[−(x1 − π )2 − (x2 − π )2]

Function 24:Rosenbrock’s Function

f24 =
n−1∑
i=1

[100(x2 − x21 )
2
+ (1− x1)2]

The dimension, global optimal value, search range and initial
range of these test functions are given in table 2. The bench-
mark function f1-f10 is simulated in both 10 and 30 dimen-
sions. For the 30-dimensional simulation of f6-f9, the number
of iterations are set to 2000, and the rest are set to 1000.

B. ALGORITHMS OF COMPARISON
In this paper, by comparing the results of 12 optimization
algorithms including MSACS on 24 objective functions, 5 of
them are CS algorithm and its improved algorithm, and the
remaining 6 are some classical improved algorithms for other
optimization algorithms, including:Auto-enhanced popula-
tion diversity differential evolution: AEPD-DE [35], DE with
an evolution path: DEEP [36], Self-adaptive differential evo-
lution: jDE [37], DEwith strategy adaptation SaDE [38], PSO
with Interswarm Interactive learning strategy:IILPSO [39],
Quantum Behaved PSO:QPSO [40], CS[12], Modified CS:
MCS [20], Particle swarm CS:PSCS [30], Frog leaping and
chaotic CS:FLC-CS [31], A nonhomogeneous cuckoo search
algorithm: NoCuSa [25]. Their parameters are set as follows:

AEPD-DE: τ1 = τ2 = 0.1,F = 0.5 and CR = 0.9
DEEP: τ1 = τ2 = 0.1,F = 0.5,CR = 0.9, λ = 0.5,

s = 20
jDE: τ1 = τ2 = 0.1,F = 0.5 and CR = 0.9
SaDE: LP = 10,CR0 = 0.5
IILPSO: c1′ = c2′ = 1, c3 = 2,N1 = N2 = 50
QPSO: α = 0.54
CS: pa = 0.25, α = 0.01, β = 1.5
MCS: pa = 0.75, α = 100
PSCS: pa = 0.25, α = 0.01
FLC-CS: pa = 0.25, α = 0.01, ω = (2/t)0.3

NoCuSa: pa = 0.3, α = 0.1, β = 1.5, δ = 1.6
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TABLE 3. Simulation results of the CS-based algorithm on 10-dimensional benchmark function f1-f10.

TABLE 4. Simulation results of the cs-based algorithm on 30-dimensional benchmark function f1-f10.

C. COMPARISON WITH CS-BASED ALGORITHMS
In this section, MSACS algorithm is compared with
CS-based algorithms, including: CS, MCS, PSCS,

FLC-CS, NoCuSa. The population size of these algo-
rithms is set to 50. The simulation results of the
CS-based algorithm on 24 benchmark functions are shown
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TABLE 5. Simulation results of the cs-based algorithm on 10-dimensional benchmark function f11-f24.

in figure 2, figure 3, and table 3, table 4, table 5 in
appendix.A.

Figure 2, 3 are the line graph of the change of the mean
value of f(x)-f(x∗) with the number of iterations after these
6 algorithms run 100 times on each benchmark function,
where f1-f10 is 10-D. Table 3 and table 4 show their sim-
ulation results in f1-f10 10-d and 30-d respectively, and
table 5 shows their simulation results in f11-f24, including
mean value, optimal value, worst value, variance and success
rate of successful operation. The success of an algorithm
means that the algorithm has successfully reached the preset
optimal value f(x∗) = 1e-5. The success rate refers to the
proportion of the number of successful times in the 100 runs.
In table 3, 4 and 5, f(x∗)= 1e-30 is the termination condition
of iteration. The best solutions are in bold.

As can be seen from figure 2, figure 3, table 3 and table 5,
NoCuSa is the best performing function except MSACS.
In the first group of benchmark functions and the second
group of benchmark functions except f3 and f9, it is far
superior to CS. It is also significantly stronger than the
CS algorithm in the third group of functions f15 and f17.
In addition, it is slightly stronger than CS algorithm in f3,

f8, f9, f11, f14 and f19. PSCS and FLC-CS slightly worse
than NoCuSa, They are obviously superior to CS algorithms
in f1, f6, f12 and f18. FLC-CS is much better in f13 f14.
However, compared with CS algorithm, PSCS has greater
improvement in f2, f4, f5, f9, f15, f16, f17, f18, f21, f22 and
f23. Although MCS is not as good as CS algorithm in most
functions, it exceeds CS algorithm in f10 and f14. MSACS is
the best performing of all functions, with 100% convergence
rate for all functions except f13 and f20. MSACS is trapped
in local minimum value on f12, which is the same with
FLC-CS and NoCuSa. It is better than CS algorithm in all
the 24 benchmark problems. Among multimodal functions,
MSACS is better than all other algorithms in f7, f8, f11, f15,
f17 and f20, and almost the best in f6, f12 and f19, indicating
that MSACS has a good global search ability.

As can be seen from table 4, in f1-f10 of 30-D, PSCS can
converge well on f2, f4, f5 and f9. Although FLC-CS cannot
converge on f7 and is weaker than NoCuSa on f2 and f3, but it
can converge to 0 in other functions. NoCuSa cannot find the
global optimal successfully in f7 and f8, and it is weaker than
MSACS in f3. MSACS has a good effect in high dimension,
with a 59% success rate in f8, which is weaker than 100%
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TABLE 6. 10-D Comparison of simulation results of the improved algorithm based on DE and PSO on 24 benchmark functions.

of FLC-CS and stronger than other algorithms. It has a 100%
success rate in the rest of the test functions and is superior to
all other functions in f7.

D. COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS ALGORITHMS
In this section, MSACS is compared with other state-of-the-
art algorithms, and the results of the comparison are recorded
in table 6, table 7 in appendix.A.

As can be seen from table 6 and table 7, MSACS is
the best of all algorithms in the first group of benchmark
functions and can achieve 100% success in all functions.
In the second group of basis functions, it ranks first in all
functions except f14, which is only inferior to SaDE. In all
the other functions, MSACS is in the first level. It surpasses
all other algorithms particularly in f6 and f13. SaDE and
jDE are at the second level, and they are trapped in the local
minimum on f13 and cannot find the optimal value. In the

third group of multimodal functions, MSACS and SaDE
have shown good search performance. The optimal solution
can be found successfully in f7, f8, f11, f15, f17 and f19.
AEPD-DE has a 100% success rate in f20, which cannot
be achieved by other algorithms. MSACS also has good
performance in 30-D functions and is superior to all other
algorithms in f1 and f6. SaDE is stronger than other functions
in f7 and is the only algorithm with a 100% success rate
in f8.

In disk-shaped function and bowl-shaped function. Most
algorithms are able to find the optimal value. While in f12,
f23, f24 and f6-f8, f11, f12 and f20, which have many local
minima, only jDE, SaDE and MSACS can successfully con-
verge, which indicates that they all have good optimization
ability, and the results of MSACS are better. jDE is slightly
worse when dealing with high-dimensional functions, and
SaDE is successful in solving single-mode problems, but its
convergence rate is slow.
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TABLE 7. 30-D Comparison of simulation results of the improved algorithm based on DE and PSO on 24 benchmark functions.

TABLE 8. 30-D Comparison of simulation results of the improved algorithm based on DE and PSO on 24 benchmark functions.

MSACS makes each individual group into each strategy
adaptively according to the performance of each strategy, and
adjusts the probability of each strategy being used, so that
MSACS has both good search ability and fast convergence,
and shows good characteristics in many functions.

E. ANALYSIS OF THE STRATEGY POSSIBILITY
In order to study the adaptive selection of different strategies
in MSACS algorithm, the selection probability of five strate-
gies with the number of iterations was simulated, as shown
in figure 4.

Figure 4 are the results of MSACS running on f7, f12,
f19 and f24. Among them, strategy 1, Levy’s flight strategy,
is more likely to be used in f11 and f20. It also performs well
in the first 100 generations of f6 and f19, but it is around
0.2 after 100 generations. Strategies 3 and 5 are more likely to
be used on f6 and f19. Strategy 2, as a search strategy, remains
around 0.2 in all functions. Strategy 4, as a search strategy, has
a small probability in the process of rapid convergence of the
function at the beginning, but after the function converges,
the probability increases and gradually returns to 0.2, which
makes the function have the ability to jump out of the local
minimum after falling into it. To some extent, Strategy 2-5
make up for the shortcomings of Levy flight strategy in

original CS algorithm and improve the performance of the
algorithm.

F. ANALYSIS OF THE STRATEGY POSSIBILITY
Different length of memory bank will affect the results of
MSACS algorithm. Using different memory lengths on dif-
ferent functions will yield different results. In this chapter,
the memory bank length is changed from 10 to 60 with an
interval of 5, and the experiment is repeated for 30 times for
each memory bank length. The results of the experiment are
recorded in table 8 in appendix.

It can be seen from table 8 that in f1-f3 and f6-f13,
the changes of memory Banks have little influence on the
results. In f4, a shorter memory bank can help MSACS
find better solutions; In f5, a longer memory bank can help
MSACS find better solutions; In f14, MSACS can find
better solutions when the memory bank length is between
40 and 45.

This shows that, for most functions, the memory
bank length has little influence on the final iteration
result of the algorithm, but if the time required by the
algorithm is taken into account, the minimum memory
bank length should be selected to reduce the work of
computer.
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V. CONCLUSION
A MSACS algorithm is proposed in this paper. Five search
strategies with different characteristics were used to replace
Levy’s flight strategy, so as to diversify individual search
modes. The adaptive strategy is adopted. According to the
play of each strategy in different functions and different
stages of iteration. Selecting more appropriate strategies
adaptively to make the use of strategies more reasonable. The
adaptive strategy is used to determine the parameters of the
algorithm, so that the size of the parameters is changed from
pre-determined to according to their own needs. This adaptive
strategy enhances the search ability of CS algorithm.

Through simulation experiments and surface analysis,
compared with the other 11 algorithms, the multi-strategy
adaptive algorithm proposed in this paper makes CS algo-
rithm have strong optimization ability and can find effective
solutions to the problem to be solved. Based on the results of
running on 24 benchmark functions, it can be concluded that
MSACS can effectively solve various optimization problems
and significantly improve the performance of the original CS
algorithm.

APPENDIX. A
See Table 3–8.
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