
Received May 21, 2019, accepted July 14, 2019, date of publication July 22, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930401

Layered Software Architecture for the
Development of Third-Generation Video
Surveillance Systems
YAIR VIVEROS MARTÍNEZ1, EDUARDO LÓPEZ DOMÍNGUEZ 1,
YESENIA HERNÁNDEZ VELÁZQUEZ1, SAÚL DOMÍNGUEZ ISIDRO1,
MARÍA AUXILIO MEDINA NIETO2, AND JORGE DE LA CALLEJA2
1National Laboratory of Advanced Informatics, Veracruz 91100, Mexico
2Universidad Politécnica de Puebla, Puebla 72640, Mexico

Corresponding author: Eduardo López Domínguez (eduardo.lopez@lania.edu.mx)

This work was supported by the Consejo Nacional de Ciencia y Tecnología, project assigned to LANIA, under Grant 296230.

ABSTRACT Mobile distributed systems of third-generation video surveillance (MDSV) have become a
useful tool to provide multiple security services to people. For this type of systems, three key aspects must
be carried out: 1) protection, which consists of preventing undesirable events; 2) detection, which refers
to determining the exact moment in which the event occurred; and 3) reply, in this regard, actions such
as activating alarms and generating warnings are executed. Previous works have proposed software archi-
tectures to development video surveillance systems on mobile distributed systems (MDS). However, these
architectures focus mainly on providing services/aspects of protection and detection; without considering in
its design the requirements that arise from the characteristics of the MDS, such as limited processing and
storage capacities of devices, frequent disconnections, among others. In this paper, we introduce a layered
software architecture to buildMDSV. The proposed architecture considers and satisfies the requirements that
arise from the critical aspects of protection, detection, and reply, including the characteristics of the MDS.
Based on our architecture, an MDSV prototype was implemented. The tests carried out on the prototype
show that the proposed architecture correctly provides users with various essential services in terms of
protection, detection, and reply. From our point of view, the most important advantages of our proposed
software architecture are the following: define the basic technical guidelines that an MDSV must have and
accomplish; streamline overall development, providing a solid framework for developers; and contribute to
satisfying the requirements that arise from quality attributes that the MDSV must possess.

INDEX TERMS Mobile distributed systems, third generation video surveillance, layered software
architecture.

I. INTRODUCTION
Video surveillance systems can be defined as a set of devices
with the ability to capture images of events within a specific
area [1], [2]. Based on the use of image processing tech-
nology and the type of communication, video surveillance
systems are classified into three different generations [2]. The
first generation is characterized by the use of an analogous
closed circuit, which depends entirely on people that watch
screens to detect irregular situations [2]. The second gen-
eration also uses a closed-circuit but offers semi-automatic

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuiguang Deng.

solutions by implementing machine learning and computer
vision techniques to process the captured information of the
area; technically, the second generation loads and processes
information at the server-side [1], [3]. The third generation of
video surveillance systems includes computer vision and data
recovery techniques, which is mainly characterized by the use
of distributed and heterogeneous systems. The third genera-
tion takes advantage of the devices on a network to distribute
processing and to integrate sensors that enable the detection
of intruders inside a monitored area, providing scalability
and robustness to video surveillance systems [1], [4]. Some
elements of these systems are the following: specific sensors,
mobile devices, LAN or WAN type networks, databases and

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 98507

https://orcid.org/0000-0002-6167-6309

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

proxies processing servers [4]. According to [5], the third
generation of video surveillance systems that use mobile
devices should support services for three key aspects:
• Protection: consists of preventing undesirable events.
• Detection: determines the specific time on the occur-
rence of an event and is helped by the protection mech-
anisms.

• Reply: refers to actions after an event has occurred such
as activating alarms or generating warnings.

Previous software architectures to support the development of
third-generation video surveillance systems by using mobile
devices (MDSV) have been reported in the literature [3], [4],
[6]–[12], nevertheless, these architectures are mainly focused
on providing protection and detection services and they do
not take into account the features of mobile distributed sys-
tems (MDS) such as devices with limited processing and
storage capacities, frequent disconnections, communication
channels with limited bandwidth and information manage-
ment from heterogeneous sources.

This paper presents a layered software architecture to
develop MDSV systems. The proposed architecture supports
protection and detection services as well as reply. The
designed architecture is based on a pattern that uses layers
and tiers, the vigilant tier, and the analyst tier. In the proposed
architecture, the tiers complement the layers; the vertical
organization of services is modeled in abstract layers, while
tiers organize the functionality of a specific layer into nodes.
On the one hand, the vigilant tier is oriented to work with
limited processing and storage capabilities of mobile devices.
On the other hand, the analyst tier is designed to work with
devices with greater processing and storage capabilities such
as servers; this is also related with the bandwidth of the
MDSV network. Therefore, workload and processing infor-
mation is higher in the analyst tier than in the vigilant tier.
The proposed architecture identifies, classifies, groups and
orders the services for protection, detection, and reply for
MDSV systems. Furthermore, the paper describes a proto-
type that implements the proposed architecture. Prototype
tests show that architecture provides users with the correct
implementation of protection, detection, and reply services.
From our point of view, the most important advantages of
the proposed architecture are the following: a) define the
basic technical guidelines that an MDSV must have and
accomplish; b) streamline overall development, providing a
solid framework for developers; and c) Contribute to satisfy
the requirements that arise from quality attributes that the
MDSV must possess.

II. STATE-OF-THE-ART
Previous software architectures to support the development of
MDSV have been reported in the literature [3], [4], [6]–[12];
the design and development of these systems involve the
consideration and satisfaction of different requirements that
can be classified into two groups. The first group com-
prises requirements that regard with protection, detection
and reply services [4], [5], for example, sensing, information

processing, real-time monitoring, and detection of abnormal
situations or control of alarms. The second group considers
requirements that emerge from the features of an MDS such
as lightness, the security of devices, minimize network traffic,
robustness against disconnections, the abstraction of the
data transmission medium, communication and temporary
storage of information about events [13]. The main software
architectures to support the development of MDSV systems
were analyzed in terms of previous requirements. Research
works reported in [3], [4], [6]–[12] cover protection and
detection services of video surveillance systems, for example,
the architectures proposed in [3] and [9] cover many of the
described requirements, however, [3] they does not consider
surveillance calibration, vigilant device status notification
and control of alarms; the latter is related to the reply service,
neither information processing, integration of information
from heterogeneous sources and detection of abnormal situ-
ations are not taken into account in the architecture proposed
in [9]. The architectures described in [8] and [10] accomplish
most of the described requirements arising from the MDS
characteristics, although they do not consider the security of
devices, minimization of traffic network or requirements of
group communication.

III. ANALYSIS AND DESIGN OF THE PROPOSED
LAYERED SOFTWARE ARCHITECTURE
This section presents the analysis and design of the proposed
layered software architecture to support the development of
MVDS systems. This architecture is based on the following
requirements:

1. Implementation of protection, detection and reply
services, and

2. Features of mobile distributed systems.
Next section describes the details of those requirements.

A. REQUIREMENTS TO DEVELOP THIRD-GENERATION
VIDEO SURVEILLANCE SYSTEMS
The design requirements of the proposed layered software
architecture to support the development of third-generation
video surveillance systems adopt the features of previous
works in terms of protection and detection services described
in [3], [6], [8], [10] as well as the reply service. The descrip-
tion of some requirements is as follows:
• Sensing (Sen): refers to media and actions to gather
information about a monitored area [13].

• Processing of information (PI): analyzes if the process-
ing of information is considered to mitigate possible
errors [3].

• Real-time monitoring (RTM): provides of video or audio
of the monitored area in real-time.

• Environment change adaptation (ECA): refers to the
capacity of the architecture to operate under changes in
the conditions of the monitored area such as modifica-
tions of scenes or lightning [10].

• Integration of information from heterogeneous sources
(IIHS): considers the integration of information from

98508 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

different devices on the same event in the monitored
area [10].

• Surveillance calibration (SC): considers the system cal-
ibration for its correct operation (parameter setting for
sensors operation, microphones and cameras) [8].

• Abnormal situations detection (ASD): considers train-
ing, detection and learning of abnormal situations to
identify potential risk situations [6].

• Vigilance device status notification (VDSN): notifies the
status of vigilant devices to guarantee their correct func-
tionality.

• Storage (S): stores information from a monitored area.
• Alarm control (AC): activates or deactivates notifica-
tions or implements specific actions such as calls, doors
and windows closing.

B. REQUIREMENTS FOR MOBILE DISTRIBUTED SYSTEMS
The development approach of video surveillance systems on
mobile distributed systems considers the following require-
ments [6], [13]:
• Lightness (L): mobile devices have limited processing
and storage capacities; these features must be considered
for light management [13].

• Security device (SD): security refers to the fact that only
known devices can be connected to the video surveil-
lance system.

• Vigilant device health (VDH): models the responsible
elements for reporting critical features of devices such
as level of charge of the battery, workload process-
ing or temperature.

• Minimize network traffic (MNT): the architecture
contributes to maintaining the possible lowest network
traffic on the video surveillance system [6].

• Robustness against disconnections (RAD): models the
response of sensors and mobile devices to possible dis-
connections [13].

• Abstraction of the data transmission medium (ADTM):
mobile devices can communicate the captured informa-
tion from an area to their destination regardless of the
network in which they are connected [13].

• Group communication (CG): considers the order of
the generated messages and their correct reception
between the device to device or device to user
communication [13].

• Temporary storage of event information (TSEI): the
information captured from an event is temporarily
maintained in the vigilant device without impacting its
performance.

C. DESIGN OF THE PROPOSED ARCHITECTURE
This paper introduces a layered software architecture with
tiers to support the development of MDSV systems, see
Fig. 1. Each layer provides specific services to upper layers,
hiding details of the lower layer’s implementation. In the
architecture, the tiers complement the layers; services are
modeled in vertical abstract layers, whereas tiers deal with

FIGURE 1. Design of the proposed layered software architecture: vigilant
tier (left) and analyst tier (right).

the functionality of a specific layer into nodes, the vigilant
tier is oriented to work with limited processing and storage
capabilities of mobile devices, and the analyst tier is designed
toworkwith devices with higher processing and storage capa-
bilities such as servers. Therefore, workload and processing
information is higher in the analyst tier than in the vigilant
tier. Although there are layers in both tiers, the services and
functionality are limited to hardware features of each tier.
The architecture proposed in this work allows us identifying,
classifying, grouping, and ordering the different services nec-
essary to carry out aspects of protection, detection, and reply
of an MDSV.

The description of the layers of Fig. 1 is as follows:
Presentation layer: displays a graphical user interface to

access MVDS functions.
Alarm layer: provides access to functions related to noti-

fication, status, and actions of events; these functions are
implemented in the following modules:

• Alarm trigger: activates sounds of the system to alert
about the occurrence of an event of interest in the mon-
itored area.

• Notifications to the operator: transmits messages
directly to the system operator via email or SMS.

• Phone calls: makes phone calls to a number defined by
the user in case the user has not deactivated the alarms
during a specific period.

• Execution of actions: implements different actions after
the occurrence of an event of interest, for example, doors
and windows closing.

It is worth to mention that the services of the alarm layer
depend on services from other layers.
Handling system layer: manages and executes different

commands that are sent from the analyst tier to the vigilant
tier by using the following modules:

• Alarm control: executes commands to activate or
deactivate alarms in both tiers.

VOLUME 7, 2019 98509

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• Analysis control: manages the parameter setting of
mobile devices to monitor an area and the level of infor-
mation analysis performed by the analyst tier.

• Setting of vigilant tier: registers and distributes informa-
tion about battery levels, bandwidth or CPU temperature
of the devices in the vigilant tier.

Sensing layer: manages the life cycle of devices presented
in both tiers by using the following modules:
• Camera controller: manages the life cycle of cameras.
• Microphone controller:manages the life cycle of micro-
phones.

• Sensor controller: manages the life cycle of sensors.
Communication layer: provides of secure communication

between tier and tier, tier and cloud as well as tier and user by
means of the implementation of the following modules:
• Security: handles authentication to ensure that only
authorized devices and users access to the video surveil-
lance system.

• Tier connectivity: establishes the connection between
both tiers for information sharing.

• Cloud connectivity: handles the connection between
tiers and the cloud for information sharing.

Information processing layer: only belongs to the analyst
tier and focuses on the management of information about
events; this classifies, orders and groups the information
for further analysis. The information processing layer has a
module in charge of backups in the cloud to free up space for
the analyst tier through the implementation of the following
modules:
• Warehouse cleaner: deletes information stored locally
after a complete transmission of this information to the
cloud.

• Integration: gathers information of an event such as its
occurrence time or its emergency level.

• Event director: directs the information to a specific layer
like the alarm layer or the information management
layer.

Analysis of information layer: only belongs to the analyst
tier, these information processes are related to the search
of events that interrupt security in a monitored area. The
modules of this layer are the following:
• Identifier: detects people and animals in a video
sequence of the monitored area.

• Event trigger tracking: follows an object in a video
sequence to determine regular flow routes.

• Identity detection: detects faces in a video sequence and
compares them with authorized persons. Also, it verifies
for animals or objects to determine a possible intrusion.

Device status layer: this layer monitors hardware resources
that could affect the proper functionality of vigilant devices
such as battery level, use of memory or CPU workload. The
modules of this layer are the following:
• Temperature: monitors that the CPU temperature must
not exceed the defined limits.

• Traffic: monitors that the flow in the network must not
exceed the defined limits.

• Memory: monitors that the consumption of RAM in the
devices must not exceed the defined limits.

• Processing: monitors that the percentage of CPU work-
load must not exceed the defined limits.

• Battery: activates an alarm when the battery level is
below a defined limit.

Event handling layer: detects and classifies events of the
monitored area by implementing the following modules:
• Motion detection: analyzes captured images from the
perimeter to detect movements.

• Sound detection: detects sounds in the monitored area
• Sensor event detection: analyzes information from sen-
sors in search of variations that suggest the occurrence
of an abnormal event.

• Notification construction: constructs messages with
information about the level of emergency after an event
has been detected.

• Save trigger: stores information after an event of interest
has been detected in the monitored area.

IV. DEVELOPMENT OF THE LAYERED SOFTWARE
ARCHITECTURE
This section describes the implementation of the layered
software architecture described in section III-C. The first
subsection presents the diagrams of components and the sec-
ond one explains the implementation details of the proposed
architecture.

A. DIAGRAMS OF COMPONENTS
Diagrams of components for each tier present the elements
of the previous section; these diagrams are based on software
patterns and recommended technologies according to the spe-
cialized literature. Fig. 2 shows the diagram of components
for the vigilant tier; this is inspired by the Model-View-View
Model (MVVM) pattern proposed by Google for Android

FIGURE 2. Diagram of components for the vigilant tier.

98510 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

applications [14]. The advantages of this software pattern are
the following:
• Decoupling of the model behavior with the view
enabling the change of status individually that improves
efficiency.

• Separation of responsibilities to facilitate changes or
addition of new functionalities.

• Due to the granularity of the code, the execution of code
tests is simplified.

• Promotion of reusability of code or functionalities.
The description of the components of the vigilant tier
(see Fig. 2) is the following:
• View: handles the graphical user interface during the
execution of the application.

• ViewModel: keeps information of a different life cycle
assigned to the application to avoid loss of information
when the setting of an application change, for example,
when the screen is turned on.

• RemoteRepository: handles external storage of informa-
tion for mobile devices, for example, the cloud.

• Abstraction of information: transforms the information
into a format that enables its control and transmis-
sion from the vigilant tier (mobile devices of the video
surveillance network) to the analyst tier (server).

• Repository: sends the information from the device that
operates in the vigilant tier to local storage in the
area.

• Dependency Injection: injects dependencies tominimize
the impact of the use of devices and mitigates possible
errors during the creation of different objects necessary
to execute the system.

• Data Access: gives access to the database for mobile
devices by using processes.

• Database: manages the database of a mobile device.
• Model: maps information stored in the database in such
a way that process can handle and operate with it.

• Cloud Management: this is connected to the cloud and
executes operations with the stored information.

• Communication: provides communication between the
vigilant tier and the analyst tier. Besides, this support
authentication to restrict devices that can communicate
with the analyst tier.

• Smart Video Surveillance: provides the necessary mech-
anisms to process information gathered in the monitored
area such as events of interest detection.

Fig. 2 proposes technologies to implement the components
for the vigilant tier. A brief description of the proposed tech-
nologies is as follows:
• Dagger2 [15] is a static dependency injection framework
for Java language. This operates at compile-time; thus,
this minimizes the start-up time of applications and
reduce possible errors during the creation of the required
objects.

• Material Design [16] is a design standard for graphical
interfaces that seeks to gather best practices.

• OpenCV for Android [16] is a library that implements
computer vision techniques for mobile devices, this is
launched under the terms of the BSD license.

• ViewModel [14] is a class that manages the own life
cycle of data independently of a graphical interface.

• Java [17] is a multiplatform programming language that
can be used to create different applications for personal
computers, mobile devices or web.

• API drive [18] is an Android library that serves as a
client; Google servers provide the services.

• Room [19] is a library that provides an abstraction layer
over SQLite to allow quick access to the database.

• SQLite [20] is used through simple calls to subroutines
and functions. This reduces the latency in the access to
the database, because the calls to functions are more
efficient than the communication between processes.

• Gson [21] is a library that converts JSON objects
into Java objects during their transmission over a net-
work or for further processing.

The replacement of any of the proposed technology must
be compatible with the MVVM pattern.
The diagram of components for the analyst tier

(see Fig. 3) was inspired by the Model View Controller
pattern (MVC) [22].

FIGURE 3. Diagram of components for the analyst tier (server side).

The description of components for the analyst tier is as
follows:

• View: handles elements present in the graphical user
interface.

• Model: maps the information that is stored in the
database. This mapping is performed to manipulate the
information from code before appearing at the graphical
interface or database.

• Controller: controls the application logic and responds
to requests from the graphical interface or some other
process that perform requests.

• Cloud: handles the information stored in the cloud.

VOLUME 7, 2019 98511

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• Notification: provides mechanisms to generate notifi-
cations to the user about unusual events or the system
status.

• Scene analysis: provides mechanisms that enable infor-
mation analysis of the monitored area to identify an
event of interest.

• Data access: provides the media to access the database
of the analyst tier.

• Communication: identifies that the incoming messages
to be from authenticated devices.

• Database: manages the analyst tier database.
Fig. 3 proposes technologies to implement the components
of the analyst tier. A description of these components is as
follows:
• PostgreSQL [23] is an open-source relational database
system.

• Angular [24] is a web application development frame-
work made in JavaScript by Google. Angular is flexible
to work with different patterns.

• OpenCV [25] is a computer vision library launched
under the terms of the BSD license. Therefore, its use
is free for academic and commercial use.

• Java [17].
• Hibernate [26] is a tool that supports Object-Relational
Mapping (ORM) for Java and.NET platforms.

• Spring MVC [27] is an open-source framework that
works as a framework for the Java platform.

• Gateway SMS [28] is a server on the Internet that sends
SMS messages through rest services from a computer to
smartphones.

The replacement of any of the proposed technology for the
analyst layer must be compatible with the MVC pattern.

B. DESCRIPTION OF THE ARCHITECTURE
IMPLEMENTATION
This section describes the main classes for the implementa-
tion of the architecture presented in section III-C.
Communication layer: The main goal of this layer is to

provide services only for known devices by the vigilant tier
and analyst tier, in such away that they can communicate with
each other. The implementation of this layer is made in both
tiers (the vigilant tier and the analyst tier) using the following
classes and interfaces:
• Authenticator: This abstract interface includes the
required methods to authenticate the devices that inte-
grate the video-surveillance network.

• FileUploadProgressListener: This class monitors the file
status that was sent to the cloud with the purpose of
knowing when the load process was completed.

• FileDownloadProgressListener: This class verifies the
status of the downloaded files from the cloud.

• CloudConexion: This class manages the stored files in
the cloud.

• Encryptor: This abstract interface implements a function
addressed to encrypt the information to be transmitted.

• Packer: This class inherits the capacity to split files into
different packages in an object-oriented format such as
JSON.

• StreamingHandler: This class has the required mecha-
nisms for streaming management that will be generated
by mobile devices.

• SyncronisedWaitingList: This abstract interface man-
ages the order of the deliveries from the vigilant tier.

• ThreadSend: This class serializes the information to be
transmitted.

• ThreadListenerOfServerComands: This class listens to
the commands from the analyst tier.

• ThreadSendBatteryStatus: This notifies the current state
of the battery from mobile devices to the analyst tier.

• ThreadSendFrames: This class sends the captured
frames of the cameras in the monitored area.

• ThreadSendInfoOfSensor: This class sends the files
generated by a special sensor of the video-surveillance
system.

• ThreadSentVideo: This class makes the delivery of the
video files generated in the monitored area.

• ThreadSentAudio: This class is like a secondary process,
which sends the generated sound files from the guarded
perimeter.

• HandlerRemoteConfiguration: This class sends and
receives the setting of the devices that integrate the video
surveillance system.

Sensing layer: this layer manages specifically the life cycle
of different sensor types that enable the improvement of mon-
itoring capacities of the perimeter in both tiers. Therefore, this
layer is implemented in the vigilant tier through the following
classes:
• SensorController: this class manages the life cycle of the
sensor.

• SoundsController: manages the life cycle of the micro-
phone and the sounds captured in the monitored area.

• CameraBridgeViewBase.CvCameraViewListener: con-
trols the camera cycle as well as the captured frames.

The sensing layer of the analyst tier is implemented with the
following classes and interfaces:
• Video: this class models the information from the
database by using an object-oriented approach.

• AudioManagement: an abstract interface that provides
methods to store, delete, and download sound files that
were captured by the devices from the perimeter.

• SensorEventsController: this class implements the
abstract interface ManagementOfSensorEventsCon-
troller.

• VideoManagement: an abstract interface that provides
methods to store, delete, and download video files that
were captured by the monitoring devices.

• VideoController: the class that implements the abstract
interface VideoManagement.

• VideoModel: this uses the Video class to model infor-
mation from the database by using an object-oriented
approach.

98512 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• Streaming: an abstract interface that provides methods
to start and end streaming transmission generated by the
devices of the video-surveillance system.

• StreamingController: the class that implements the
Streaming abstract interface.

• RecordStreamingController: the class that implements
the abstract interface RecordStreaming.

Alarm layer: manages the alarms that are generated by the
system when an event of interest is detected in the monitored
area. This layer belongs to the vigilant tier and is focused on
generating alarms due to the presence of objects, humans and
the critical status of the resources in the mobile device. This
layer implements the following interfaces:
• DeviceAlarm: an abstract interface that has methods to
generate different types of alarms regarding the status of
the resources of mobile devices.

• AlertAlarm: an abstract interface that generates types of
security alarms.

The implementation of the alarm layer in the analyst tier has
a wide range of events from the generation of a sound to the
delivery of messages and calls. The classes and interfaces of
this layer are the following:
• Actions: abstract interface that enables to perform or to
stop an action such as opening or closing doors, activat-
ing or deactivating sounds.

• ActionsController: the class that supports functionality
to the methods of the Actions abstract interface.

• SendingOfMessages: an abstract interface to send
messages.

• SendingOfMessagesController: the class that imple-
ments the SendingOfMessages abstract interface to
enable functionality to its methods.

• CallsByTelephone: an abstract interface that has two
methods to implement actions: the StartCall method that
makes a telephone call and the StopCall method that
stops a call.

• CallsByTelephoneController: the class that implements
the abstract interface CallsByTelephone.

System manipulation layer: The goal of implementing the
system manipulation layer is the parameter setting for the
vigilant tier, which is composed of the following classes and
interfaces:
• ControllerSetting: an abstract interface from the analyst
tier for parameter setting.

• ControllerAlarm: an abstract interface that turns on and
turns off the present alarms in the vigilant tier

• ControllerInformation: an abstract interface that man-
ages the files stored in the devices.

The system manipulation layer of the analyst tier is imple-
mented with the following classes and interfaces:
• SettingUpVigilantTier: class that matches the setting up
information of the mobile devices by using an object-
oriented approach.

• AbstractSettingUpVigilantTier: an abstract interface
that defines the limits to capture information by each
mobile-device related with the vigilant tier and with

the required sensibility to make detections of events of
interest considering the resources of each device and the
possible intrusions in the monitored area. Besides, this
interface manages the access credentials for each device
and user that can communicate with the analyst tier

• SettingAnalystTierController: the class that implements
the abstract interface AbstractSettingUpVigilantTier

• AnalysisSetting: an abstract interface that enables
parameter setting of information registered by each
device operated by the vigilant tier. On the one hand,
this deals with the sensibility to identify objects, sub-
jects or animals presented in the monitored area. On the
other hand, this has methods for setting the level of use
of resources in each mobile device (such as the battery,
bandwidth, storage, processing) and the possible actions
(such as sending messages, generation of telephone calls
and sound activation)

• ManagementOfAlarmsController: the class that imple-
ments the abstract interface ManagementOfAlarms, this
enables specific functionality to its inherit methods

Presentation layer: this layer is intended to consume the ser-
vices provided by the other layers, organize the information
generated due to that interaction and display it on the screen
of the device onwhich each tier operates. The implementation
of this layer in the vigilant tier focuses on providing the user
with graphic access to each configuration option of the device
on which this tier is executed through the following classes
and XML files:
• SettingUp: the class and XML file for configuring the
vigilant tier interface.

• Dashboard: the class and XML file that shows the differ-
ent options for the actions at the vigilant tier application.

• IntelligentVideoSurvillance: the class and XML file to
monitor an area to detect movement.

• Login: the class and XML file that manages the login
and register in the analyst tier.

The implementation of the presentation layer in the analyst
tier supports the following services: visualization of the status
of devices, visualization of videos and streaming, storage in
the cloud, parameter setting in the vigilant tier and analyst
tier. In this case, the following elements were implemented:
• Index: JSP that shows information about the devices
connected to the surveillance system and their respective
actions. Furthermore, the index contains the options to
address the screen setting and the system output.

• Login: Mechanism of the graphical interface that serves
for authentication in the surveillance system.

• Setting: graphical interface for parameter setting that
makes use of the AppController file and the different
services provided by the remaining layers of the surveil-
lance system.

• AppControler: this class works as a controller of
the screen elements. Furthermore, this implements the
requests of the SettingJpa class to consume the differ-
ent services provided by the layers of the surveillance
system.

VOLUME 7, 2019 98513

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

Status of device layer: this layer is exclusive of the vigilant
tier; due to its main function is monitoring the status of
the bandwidth, memory, processing and temperature of the
mobile device. This service is supported by the following
classes and interfaces:

• BatteryManager: an abstract interface to get the current
battery level of the device.

• NetworkMannager: an abstract interface that manages
the transmitted information from the mobile device to
the server.

• MemoryMannager: an abstract interface that monitors
the use of memory in the device.

• WiFiMannager: abstract interface to detect if the devices
are connected to a wireless network.

• TemperatureMannager: an abstract interface to deter-
mine the current temperature of the vigilant device.

• ProsecutionMannager: an abstract interface to obtain
information about the processor consumption in the
device.

• DeviceStatus: this class matches information from the
database by using an object-oriented approach.

• WifiManager: the class to search for an available WiFi
connection.

Event handling layer: the implementation of the event han-
dling layer consists of a set of inter-related classes and
interfaces to allow the vigilant tier monitors a specific area
automatically and to register the events of interest through
the following classes:

• AudioSyncronize: the class that implements the Syn-
chronizedWaitingList and SynchronizedAudioByte to
synchronize the captured information and to put in a
waiting list the generated file in such a way that another
process oversees its delivery.

• SyncronizedAudioByte: an abstract interface that pro-
vides a method to register the audio frames captured in
the guarded perimeter.

• SynchronizedVideoFrame: an abstract interface that
provides a method to register the captured audio frames

• SynchrinizeEventOfSensor: the class to synchronize the
main process with the secondary process to register
events from a sensor.

• GenerateAudio: the class that captures audio.
• GenerateInfoOfSensor: the class that works as a
sub-process to capture a video event from a sensor.

• GenerateVideo: the class that captures a video FrameRe-
cord: class that manages the video recording, this
depends on FrameSychronize to record the video.

• FrameSynchronizer: the class that implements the Syn-
chronizedWaitingList and SynchronizedVideoFrame to
synchronize the captured information since the main
thread and the secondary thread and to put the generated
file in a waiting list while another process oversees its
deliver.

• EventsOfSensroRecord: the class that controls the
recording of events from the sensor.

• AudioRecord: an abstract interface that has a method to
record audio, this depends on AudioSychronize class.

• FrameMotionDetection: an abstract interface that must
be implemented for movement detection.

• SoundsDetection: an abstract interface to detect sounds
using a modulator for noise sensibility.

• EventOfSensorDetection: an abstract interface that
manages the detection of events out of the defined
parameters.

• SynchronizedVideoFrame: an abstract interface to
capture frames.

• PackerAudio: the class that extends Packer and imple-
ments the Encryptor abstract interface to package and
encrypt sound information captured in the perimeter.

• PackerInfoOfSensor: the class that extends Packer and
implements the Encryptor abstract interface to package
and encrypt information from a sensor.

• PackerVideo: the class that extends Packer and imple-
ments the Encryptor abstract interface to package and
encrypt information from a video.

• FrameSynchronizer: the class that implements the Syn-
chronizedWaitingList and SynchronizedVideoFrame
interfaces to synchronize the captured information from
the main and secondary threads.

• ThreadHumanDetector: this class detects a human sil-
houette.

Information treatment layer: the goal of this layer is to
make that the analyst tier manages information of an event
presented in a monitored area. A set of classes oversees
the storage size, integrating the captured information, and
addressing the event information to the analyst tier or a
user. The following classes and interfaces were designed to
accomplish this goal:
• DBStore: an abstract interface in charge of cleaning the
local store of the analyst tier when a critical level has
been reached.

• BDStoreController: the class that implements the
DBStore interface.

• EventAddresser: an abstract interface that enables
addressing a notification directly to the user.

• EventAddresserController: the class that implements the
EventAddresser an abstract interface by specifying its
methods.

• Integration: an abstract interface with methods that
transform information from mobile devices.

• IntegrationController: the class that implements the Inte-
gration abstract interface by specifying its methods

Information analysis layer: this layer processes the captured
information from the monitored area by the different devices
of the vigilant tier to detect the intrusion of not allowed
persons, access to a zone outside of the allowed schedule or
the presence of foreign objects. The following classes and
interfaces were implemented to accomplish the goal of the
information treatment layer:
• DetectionOfPerson: an abstract interface that provides a
method to detect persons in a captured frame.

98514 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• DetectionOfPersonController: the class that implements
the DetectionOfPerson interface.

• DetectionOfPersonIdentity: an abstract interface that
has a method to detect the identity of a person that enters
a scene.

• DetectionOfPersonIdentityController: the class that
implements the DetectionOfPersonIdentity interface.

• DetectionOfAnimal: an abstract interface that provides
a method to detect animals in a captured frame.

• DetectionOfAnimalController: the class that imple-
ments the DetectionOfAnimal interface.

C. DEVELOPMENT OF A MOBILE DISTRIBUTED SYSTEM
OF THIRD-GENERATION VIDEO SURVEILLANCE BASED
ON THE PROPOSED ARCHITECTURE
A prototype of a third-generation video surveillance system
on mobile devices was created using the proposed architec-
ture; the aim is to conduct a product-oriented evaluation.
Section V-B presents the prototype tests. The prototype called
SAVI (an acronym for the Spanish expression ‘‘Sistema
Automatizado de Videovigilancia Inteligente’’) consists of
a web application that acts as the analyst tier and a mobile
application that acts as the vigilant tier. SAVI detects and
records movement in a monitored area automatically. The
system identifies if a person makes a movement and sends a
notification via SMS to a specific phone number. In addition,
SAVI includes the following functionalities: store and man-
age captured videos locally and in the cloud; configure an
operation schedule; visualize the battery level of the devices
that monitors an area; and, store the names and phone num-
bers of the people who will receive notifications. Fig. 4 shows
the general schema of SAVI. The description of nodes that
form the deployment diagram is the following:
• Web Client: contains the components to manage web
pages. This node request streaming initialization to the

FIGURE 4. Deployment diagram of the SAVI prototype.

analyst tier and communicates with the server node to
ask for consuming the generated streaming.

• Analyst Tier: focuses on listening and responding to
REST requests performed by the web client and the
vigilant tier. Furthermore, this can manage stored infor-
mation locally and in the cloud.

• Cloud: works as external storage of the generated infor-
mation from the monitored area.

• Vigilant Tier: This operates as a vigilant in the area
of interest, detects events in search of a risk situation
that affects security. Also, this automatically generates
videos of interesting events and transmits the captured
scenes.

• Streaming Server: serves as a link channel between the
streaming generated by the vigilant tier and the stream-
ing player of the web client.

On the vigilant tier side, the SAVI prototype offers the
following services:

Authentication for mobile devices: provides authentica-
tion in such a way that only authorized mobile devices to
belong to the video surveillance network.

Vigilant tier device configuration: this service defines
the recording time and the names of videos files for devices.
Moreover, this configures the notifications via phone calls
when the system detects a foreign person in the monitored
area.

Monitoring area: this service aims to capture the informa-
tion of the monitored area to determine events of interest such
as intruders or risk situations. Fig. 5 shows an example of a
monitored area. This service support functions such asmotion
detection, video recording, delivery of captured videos to the
analyst tier, detection of people, execution of instructions in
the analyst tier, delivery of captured frames to the analyst
tier or notify about the battery level.

FIGURE 5. Example of a monitored area.

On the other hand, the implemented functionalities for the
analyst tier are:

User authentication: This service authenticates users that
will interact with the video surveillance system.

Streaming generation: This functionality was imple-
mented through a REST service created in the analyst tier
(backend) that is called by the frontend through the clicking

VOLUME 7, 2019 98515

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

event on the ‘‘generate streaming’’ button. As a result,
the backend communicates with the designated device for
streaming initialization.

Streaming visualization: This functionality works with a
server that receives the video generated by a mobile device as
follows (see Fig. 6):
• Step 1: The mobile device begins to generate the stream-
ing of the monitored area.

• Step 2: Streaming is transmitted from the mobile device
to the streaming server.

• Step 3: Subsequently, the transmitted video is trans-
formed toMP4 format so that different clients can repro-
duce this.

• Step 4: Finally, the analyst tier consumes the streaming
that is available on the streaming server and starts its
reproduction.

FIGURE 6. Flow to visualize the captured streaming of the monitored
area.

Information on cloud storage: this functionality was
implemented with three REST services. The first one uploads
a file to the cloud. The second one deletes specific videos.
Finally, the third REST service downloads some videos.
All these services are performed when the user check and
uncheck the checkboxes, illustrated in Fig. 7.

Device management (vigilant tiers): This functionality
consists of editing or eliminating mobile devices from the
video surveillance network by using the edit or delete buttons.

FIGURE 7. Handling files in the cloud from SAVI in the analyst tier.

Configuration of operation parameters: Manages the
parameter settings to each device connected to the video
surveillance system in order that all the system elements have
the same configuration.

We want to highlight that the functionality of the SAVI
prototype corresponds to the protection, detection, and reply
services of a third-generation video surveillance system on
mobile devices [5].

V. EVALUATION OF THE PROPOSED ARCHITECTURE
The evaluation of the layered software architecture is based
on two approaches: the first one makes a qualitative com-
parison between the architectures of related works and
the proposed architecture. This comparison is described
in section V-A. The second approach evaluates the SAVI
prototype, that is, the resulting product from the proposed
architecture. The results of the latter approach are presented
in section 5-B.

A. FIRST EVALUATION APPROACH: QUALITATIVE
COMPARISON
This section presents a qualitative comparison of the soft-
ware architectures presented in the related works and the
proposed architecture (see Table 1 and Table 2). The compar-
ison is based on the identification of desirable requirements
for third-generation video surveillance systems on mobile
devices described in the specialized literature reported in [2],
[3], [5], [8] and [10]. The descriptions of these requirements
can be found in sections III-A and III - B.

TABLE 1. Features of architectures for MVDS systems part 1.

98516 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

TABLE 2. Features of architectures for MVDS systems part 2.

Table 1 summarizes the comparative analysis of each
related work with respect to the requirements or essential fea-
tures that third-generation video surveillance systems must
fulfill. Note that the architectures described in [3], [6]–[11]
and [12] do not consider requirements such as surveillance
calibration (SC), vigilant device status notification (VDSN),
information processing (IP), environment change adapta-
tion (ECA), integration of information from heterogeneous
sources (IIHS), detection of abnormal situations (DAS) and
control of alarms (CA); the latter requirement is directly
related to the reply service.

Although the architectures reported in [3], [6]–[11]
and [12] fulfill several features or requirements, they do not
consider security device (SD), vigilant device health (VDH),
minimization of traffic network traffic (MTN), abstraction of
the data transmission medium (ADTM) neither group com-
munication.

Note that the proposed architecture accomplishes the
requirements that are related to protection, detection, reply
services of MVDS systems and considers the features of
mobile distributed systems.

B. SECOND APPROACH: PRODUCT-ORIENTED
EVALUATION
This section describes the evaluation based on the quality of
the SAVI prototype, the resulting product of the proposed
architecture. This type of evaluation is also known in the
literature as a prototype oriented assessment [29]. In this
product-oriented evaluation, unit tests on services for each
application were performed, as well as integration tests with
both applications of the system. Furthermore, performance
tests were carried out to measure aspects of battery con-
sumption, RAM and CPU workload in both tiers. Unit,
integration, and performance tests were performed in a room
of 4.92 meters wide by 10.13 meters long with lighting pro-
vided by two 100-watt spotlights. In all the case tests, the vig-
ilant tier was executed in 3 mobile devices. Tables 3, 4 and 5
describe these devices, respectively.

The analyst tier was executed on a laptop with the charac-
teristics presented in Table 6.

Unit, integration, and performance tests are described in
detail below.

TABLE 3. Description of the alcatel device.

TABLE 4. Description of the samsung device.

TABLE 5. Description of the lenovo device.

TABLE 6. Description of the computer used as the analyst tier.

1) UNIT TESTS
The goal of unit tests is to ensure the correct operation of
each service of the SAVI prototype. The vigilant tier tests
were executed on the Alcatel device, described in Table 3.
Likewise, the laptop described in Table 4 was used for the
analyst tier. The execution of all tests followed the standard
format compose of the next elements:
• Module: the name of the tested module.
• Test: an identifier for the test.
• Purpose: indicates the expected functionality of the
tested module.

• Requirements: Conditions that must be ready to
execute the module.

VOLUME 7, 2019 98517

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• Entry: Input data for the test.
• Result: Indicates whether the test archive the expected
purpose.

A set of errors were found and fixed during the tests in the
vigilant tier. Table 7 shows the type and number of errors
found per module. A total of five iterations were performed
for each test.

TABLE 7. Summary of errors found in the vigilant tier.

Table 8 shows the type and number of errors found per
module during the tests to the analyst tier. Also, a total of
five iterations were performed.

TABLE 8. Summary of errors found in the analyst tier.

2) INTEGRATION TESTS
Integration tests were performed to ensure the correct oper-
ation of services during the interaction between the vigilant
tier and the analyst tier. Integration tests follow the format
presented for unit tests; they were recorded and then fixed
the found errors. The results of the integration tests are sum-
marized in Table 9.

TABLE 9. Summary of integration tests.

As a result of unit and integration tests, the operation of all
services in the proposed architecture was corrected.

3) PERFORMANCE TESTS
The features of the scenarios considered during the perfor-
mance tests were the following:
• 2, 4 and 6 people (P) simultaneously in the monitored
area by the vigilant tier.

• 0, 2 and 4 background applications (Apps) such as
phone, SMS, clock, calendar, schedule or Gmail running
in the vigilant tier

• 2, 4 and 6 meters (M) away from the vigilant tier with
respect to the monitored area

The performance tests were divided into two phases. In the
first phase, three vigilant tiers were running on the mobile
devices described in Tables 3, 4 and 5. The purpose of this test
was to evaluate the CPU workload, RAM and battery, when
performing tasks such as area monitoring, motion detection,
video recording, delivery of captured videos to the analyst
tier, detection of people, delivery of frames, and notification
of battery levels or analysis of information. In the second
phase, the server performance was evaluated (analyst tier) in
terms of CPU workload and RAM usage while this was mak-
ing notifications to the mobile devices that integrate the video
surveillance network. Each test lasted about 30 minutes.
In these tests, we consider unreliable and asynchronous com-
munication channels. The message transmission delay con-
sidered was between 0 and 450 ms and the message lost
rate considered at communication channels was between
0-5 percent, which reflects a real network load. The obtained
results are shown below.

a: PERFORMANCE TEST FOR THE VIGILANT TIER
Fig. 8. shows the results obtained during the execution of the
first phase of the performance tests related with RAM con-
sumption. The observations for each device are the following:
• The Alcatel device maintained RAM consumption less
than 128MB even in the scenario that involved 4 parallel
running applications with the vigilant tier and simulta-
neous detection of 6 people in the monitored area

• The Samsung device consumed less than 65 MB despite
the distance and the number of people detected

FIGURE 8. RAM consumption of vigilant tiers.

98518 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

• The Lenovo mobile device has a consumption of less
than 130MBdespite increasing the size of themonitored
area, the distance of the mobile device and the number
of people detected

The results of the CPU workload by the vigilant tier on
mobile devices are illustrated in Fig. 9. The observations for
each device are the following:
• The Alcatel device had a higher CPU consumption,
as there were more people in the monitored area. How-
ever, these peaks remain below 72% of its CPU capacity.

• The Samsung device consumed less than 76% despite
changing the number of people and the distances
between the monitored area and this device.

• The Lenovo device maintained CPU consumption below
88% in its maximum peaks by varying the number of
people in the monitored perimeter.

FIGURE 9. CPU consumption of mobile devices during the first phase of
the performance tests.

In the second testing phase, the battery consumption during
the execution of the vigilant tier on the three devices was
below 15% as is showed in Fig. 10. Table 10 presents the
average consumption of performance. The results presented
in this section indicate that the performance of RAM, CPU

FIGURE 10. Battery consumption of mobile devices during the first phase
of the performance tests.

TABLE 10. Average consumption of resources during the first testing
phase.

workload and battery consumption were acceptable even in
complex scenarios [29].

b: PERFORMANCE TEST FOR THE ANALYST TIER
The results of the performance test for the analyst tier
was obtained considering a simultaneous interaction with
the three vigilant tiers running on the previously described
devices. The test lasted 45 minutes approximately; there were
six people in the monitored area. The objective of this test
was to measure and evaluate the consumption of resources
that the analyst tier had when this was running on a server
mounted on the laptop described in Table 6, the interaction
was done with three vigilant tiers. Fig. 11 shows the results
of CPU workload and RAM consumption; the results were
below 85% and 65%, respectively. It is worth to mention
that during the execution of test basic Windows 10 processes
were coexisting. The video reception from the monitored
area was also part of the test, the Google Chrome browser
66.0.3359.181 version was used (Official build, 64 bits);
speakers were also used.

FIGURE 11. CPU and RAM use during the performance test for the
analyst tier.

VI. CONCLUSIONS AND FUTURE WORK
This work introduces a layered software architecture that
models protection, detection, and reply services in third-
generation video surveillance on mobile devices. Two tiers
integrate the architecture: vigilant tier and analyst tier. The
vigilant tier was developed to run on devices with limited
capabilities regarding processing and storage such as low and
mid-range mobile devices. On the other hand, the analyst tier
was designed considering devices with higher processing and
storage capacities (such as personal computers or servers).
Therefore, workload and processing information is higher in
the analyst tier than in the vigilant tier. Each tier is composed
of a set of layers where the lower layers provide services to
the upper layers. The vigilant tier is integrated by the layers

VOLUME 7, 2019 98519

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

for communication, sensing, the status of the device, event
handling, systemmanipulation, alerts and presentation, while
the analyst tier includes layers for communication, sensing,
processing of information, analysis of events, system manip-
ulation, alerts and presentation. Besides, we have presented
a prototype that implements the proposed architecture; the
results of unit and integration tests show that the proposed
architecture provides users and developers of technical guide-
lines to implement protection, detection and reply services.
The results of the performance tests in the vigilant and analyst
tiers running on three different mobile devices and a laptop
maintained an acceptable consumption of resources even
for complex scenarios. In comparison with related works,
the proposed architecture includes the features of mobile
distributed systems; this defines basic technical guidelines
and a robust framework for developers in order to satisfy
quality requirements of third-generation video surveillance
systems. The implementation of computer vision methods
and algorithms to identify people and action recognition in
the monitored areas are planned as future work.

REFERENCES
[1] R.-C. Mihailescu, P. Davidsson, U. Eklund, and J. A. Persson, ‘‘A survey

and taxonomy on intelligent surveillance from a system perspective,’’
Knowl. Eng. Rev., vol. 33, no. E4, pp. 1–25, 2018.

[2] M. Valera and S. A. Velastin, ‘‘Intelligent distributed surveillance systems:
A review,’’ IET J., vol. 152, no. 2, pp. 192–204, 2005.

[3] M. D. Ruiz-Lozano, ‘‘Un modelo para el desarrollo de sistemas de detec-
ción de situaciones de riesgo capaces de integrar información de fuentes
heterogéneas. Aplicaciones,’’ Ph.D. dissertation, Dept. Ciencias Com-
putación Inteligencia Artif., Escuela Técnica Superior Ingenierías, Univ.
de Granada, Granada, España, 2010, p. 328.

[4] P. Kumar, A. Mittal, and P. Kumar, ‘‘Study of robust and intelligent
surveillance in visible and multi-modal framework,’’ Informatica, vol. 32,
no. 1, pp. 63–77, 2008.

[5] M. A.Maloof,Machine Learning and DataMining for Computer Security:
Methods and Applications. London, U.K.: Springer, 2006.

[6] D. J. F. Gutiérrez et al., ‘‘Sistema de video vigilancia semántico basado
en movimiento, aplicación a la seguridad y control de tráfico,’’ Ph.D.
dissertation, Dept. de Teoría de la Señal y Comunicaciones e Ingeniería
Telemática, Univ. de Valladolid, Valladolid, España, 2013, p. 93.

[7] H. D. Park, O.-G. Min, and Y.-J. Lee, ‘‘Scalable architecture for an
automated surveillance system using edge computing,’’ J. Supercomput.,
vol. 73, no. 3, pp. 926–939, 2017.

[8] I. H. Velasco, E. L. Domínguez and J. de la Calleja, ‘‘Propuesta de una
arquitectura en capas para el desarrollo de sistemas distribuidos de video-
vigilancia,’’ Adv. Inf. Technol., vol. 57, no. 1, pp. 107–114, 2012.

[9] R. Vezzani and R. Cucchiara, ‘‘Event driven software architecture for
multi-camera and distributed surveillance research systems,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., San Francisco,
CA, USA, Jun. 2010, pp. 1–8.

[10] E. Cermen̄o, A. Pérez, and J. A. Sigüenza, ‘‘Intelligent video surveil-
lance beyond robust background modeling,’’ Expert Syst. Appl., vol. 91,
pp. 138–149, Jan. 2017.

[11] A. Alshammari and D. B. Rawat, ‘‘Intelligent multi-camera video surveil-
lance system for smart city applications,’’ inProc. IEEE 9th Annu. Comput.
Commun. Workshop Conf. (CCWC), Las Vegas, NV, USA, Jan. 2019,
pp. 317–323.

[12] D. Nagothu, R. Xu, S. Y. Nikouei, and Y. Chen, ‘‘A microservice-enabled
architecture for smart surveillance using blockchain technology,’’ in Proc.
IEEE Int. Smart Cities Conf. (ISC2), Kansas City, MO, USA, Sep. 2018,
pp. 1–4.

[13] M. A. M. Acosta, E. L. Dominguez, G. G. Castro, S. E. P. Hernandez,
and M. A. M. Nieto, ‘‘Two-level software architecture for context-aware
mobile distributed systems,’’ IEEE Latin Amer. Trans., vol. 13, no. 4,
pp. 1205–1210, Apr. 2015.

[14] Google. ViewModel Overview|Android Developers. Accessed:
Jun. 5, 2018. [Online]. Available: https://developer.android.com/topic/
libraries/architecture/viewmodel

[15] Google. (2018). Dagger. Accessed: Jun. 5, 2018. [Online]. Available:
https://google.github.io/dagger/

[16] Google. Design—Material Design. Accessed: Jun. 5, 2018. [Online].
Available: https://material.io/design/

[17] ORACLE. Java SE|Oracle Technology Network|Oracle. Accessed:
Jun. 5, 2018. http://www.oracle.com/technetwork/java/javase/Poverview/
index.html

[18] Google. (2018). Manage APIs in the Cloud Platform Console—Ayuda
de Cloud Platform Console. Accessed: Jun. 5, 2018. [Online]. Available:
https://support.google.com/cloud/answer/6326510

[19] Google. Room Persistence Library|Android Developers. Accessed:
Jun. 5, 2018. https://developer.android.com/topic/libraries/architecture/
room

[20] SQlite. (2000). About SQLite. Accessed: Jun. 5, 2018. [Online]. Available:
https://www.sqlite.org/about.html

[21] Google. (2018). GitHub—Google/Gson: A Java Serializa-
tion/Deserialization Library to Convert Java Objects Into JSON and
Back. Accessed: Jun. 5, 2018. [Online]. Available: https://github.
com/google/gson

[22] Y. F. Romero and Y. D. González, ‘‘Patrónmodelo-vista-controlador,’’ Rev.
Telem@tica, vol. 11, no. 1, pp. 47–57, 2012.

[23] The PostgreSQL Global Development Group. PostgreSQL: Docu-
mentation. Accessed: Jun. 5, 2018. [Online]. Available: https://www.
postgresql.org/docs/

[24] Google. (2018). AngularJS—Superheroic JavaScript MVW Framework.
Accessed: Jun. 5, 2018. [Online]. Available: https://angularjs.org/

[25] OpenCV Team. Android—OpenCV Library. Accessed: Jun. 5, 2018.
[Online]. Available: https://opencv.org/platforms/android/

[26] H. Reb. Your Relational Data. Objectively—Hibernate ORM. Accessed:
Jun. 5, 2018. [Online]. Available: http://hibernate.org/orm/

[27] Pivotal. (2018). Web on Servlet Stack. Accessed: Jun. 5, 2018. [Online].
Available: https://docs.spring.io/spring/docs/current/spring-framework-
reference/web.html

[28] Infobip. Gateway SMS. Accessed: Jun. 5, 2018. [Online]. Available:
https://www.infobip.com/es/glosario/gateway-sms

[29] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. New York, NY, USA: Reading, MA, USA: Addison-Wesley, 2004.

YAIR VIVEROS MARTÍNEZ is currently pur-
suing the master’s degree in applied computing
with the National Laboratory on Advanced Infor-
matics (LANIA). His current research interests
are focused on software engineering and software
development.

EDUARDO LÓPEZ DOMÍNGUEZ received the
Ph.D. degree from the National Institute of
Astrophysics, Optics and Electronics (INAOE),
Mexico, in 2010. He is currently a Researcher with
the Department of Computer Science, National
Laboratory of Applied Informatics (LANIA),
Veracruz, Mexico. Since 2004, he has been
researching in the field of mobile distributed sys-
tems, partial order algorithms, and multimedia
synchronization.

98520 VOLUME 7, 2019

Y. V. Martínez et al.: Layered Software Architecture for the Development of Third-Generation Video Surveillance Systems

YESENIA HERNÁNDEZ VELÁZQUEZ received
theM.Sc. degree from the Benemérita Universidad
Autónoma de Puebla (BUAP), Mexico, in 2011.
She is currently a Researcher with the Depart-
ment of Computer Science, Laboratorio Nacional
de Informática Avanzada (LANIA), Veracruz,
Mexico. Since 2009, she has been researching in
the field of mobile learning systems.

SAÚL DOMÍNGUEZ ISIDRO received the Ph.D.
degree in the artificial intelligence program from
the University of Veracruz, Mexico, in 2017. He is
currently a Researcher with the Department of
Computer Science, Laboratorio Nacional de Infor-
mática Avanzada (LANIA), Veracruz, Mexico.
Since 2010, he has been researching in the field
of soft-computing.

MARÍA AUXILIO MEDINA NIETO is currently
an Associate Professor of computer science with
the Universidad Politécnica de Puebla (UPPuebla).
Her current research topics are knowledge rep-
resentation based on ontologies, semantic web,
information and communications technologies
(TICs), and social network analysis. She has
the candidate status of the National Researchers
System (SNI).

JORGE DE LA CALLEJA received the M.Sc.
and Ph.D. degrees from the National Institute of
Astrophysics, Optics and Electronics (INAOE),
Mexico. He is currently a full-time Professor
with the Computer Science Department, Univer-
sidad Politécnica de Puebla (UPPuebla), Mexico,
since March 2008. His research interests include
machine learning, computer vision and data min-
ing, with applications in medicine, education, and
complex systems.

VOLUME 7, 2019 98521

	INTRODUCTION
	STATE-OF-THE-ART
	ANALYSIS AND DESIGN OF THE PROPOSED LAYERED SOFTWARE ARCHITECTURE
	REQUIREMENTS TO DEVELOP THIRD-GENERATION VIDEO SURVEILLANCE SYSTEMS
	REQUIREMENTS FOR MOBILE DISTRIBUTED SYSTEMS
	DESIGN OF THE PROPOSED ARCHITECTURE

	DEVELOPMENT OF THE LAYERED SOFTWARE ARCHITECTURE
	DIAGRAMS OF COMPONENTS
	DESCRIPTION OF THE ARCHITECTURE IMPLEMENTATION
	DEVELOPMENT OF A MOBILE DISTRIBUTED SYSTEM OF THIRD-GENERATION VIDEO SURVEILLANCE BASED ON THE PROPOSED ARCHITECTURE

	EVALUATION OF THE PROPOSED ARCHITECTURE
	FIRST EVALUATION APPROACH: QUALITATIVE COMPARISON
	SECOND APPROACH: PRODUCT-ORIENTED EVALUATION
	UNIT TESTS
	INTEGRATION TESTS
	PERFORMANCE TESTS

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YAIR VIVEROS MARTÍNEZ
	EDUARDO LÓPEZ DOMÍNGUEZ
	YESENIA HERNÁNDEZ VELÁZQUEZ
	SAÚL DOMÍNGUEZ ISIDRO
	MARÍA AUXILIO MEDINA NIETO
	JORGE DE LA CALLEJA

