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ABSTRACT Microbes are vital in human health. It is helpful to promote diagnostic and treatment of human
disease and drug development by identifying microbe-disease associations. However, knowledge in this area
still needs to be further improved. In this paper, a new computational model using matrix completion to
predict human microbe-disease associations (mHMDA, Fig. 1) is developed. First, we extract the disease
feature by Gaussian kernel-based similarity and symptom-based similarity. Meanwhile, the microbe feature
is computed by Gaussian kernel-based similarity. As treating potential association as the missing elements of
a matrix, the matrix completion is adopted to get the potential microbe-disease associations. Leave-one-out
cross-validation (LOOCV) is carried out which get the AUC (The area under ROC curve) of 0.928 showing
the effectiveness of mHMDA. Furthermore, 5-fold CV get the AUCs of 0.8838 ± 0.0044 (mean ± standard
deviation). Moreover, through the four case studies (asthma, inflammatory bowel disease (IBD), type
2 diabetes (T2D), and type 1 diabetes (T1D)), we find that nine, ten, nine, and eight of top-ten inferred
microorganisms for the four diseases are previously verified by experiments. All these results indicate the
effectiveness of mHMDA. mHMDA might be helpful to infer the disease-related microorganisms.

INDEX TERMS Microbial community, microbe-disease association prediction, matrix completion.

I. INTRODUCTION
Microorganisms are very important to human health [1], [2].
Numerous lab experiments and clinic studies have found
novel links between human diseases and microbes.

It will be helpful to explore the pathogenesis of diseases
and prevent or treat diseases by studying the interactions
of microbes and diseases (MD). To aid experiments, many
computational methods were developed to exploit new rela-
tionship between microorganisms and diseases. HMDAD
(human microbe-disease associations database) provides
basic knowledge of the MD associations [3]. With the knowl-
edge of this database, manymodels were proposed. Some pre-
diction methods were developed by Gaussian similarity [4].
For instance, KATZHMDA adopted KATZ method to find
potential MD associations [5]. PBHMDA was proposed to
treat associations as links between microbes and diseases by
searching depth firstly algorithm [6]. Some researchers used
the matrix factorization technique to investigate the associa-
tion, such as CMFHMDAutilizing factorization of the collab-
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orative matrix to predict novel association [7]. Furthermore,
Random Walk (RW) and its improved algorithms were uti-
lized to get the probabilities of MD association. For instance,
RWRHMDA [8], BiRWHMDA [9], and PRWHMDA [10]
were recently developed tools utilizing RW methods on the
MD network. Moreover, some researches focused on sam-
ple processing. ABHMDA utilized k-means to balance the
samples to train a model to get the possible links between
diseases and microbes [11]. MDPH_HMDA calculated the
HeteSim measure on the heterogeneous graph fusing three
levels of networks [12]. All of these efforts were to improve
the identification of novel MD associations.

However, the efficiency of identifying MD associations
requires to be further improved. This study is to present
a computational model to infer candidate MD associations
with the knowledge of the known associations. In this
paper, we put forward a computational model using matrix
completion to predict human microbe-disease associations
(mHMDA, Fig. 1). For disease feature, we calculate the dis-
ease similarity by Gaussian kernel-based and symptom-based
similarities. Then we combine the two similarities together
to reflect the feature of diseases in different aspects.
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FIGURE 1. The flowchart of mHMDA.

Meanwhile, the Gaussian kernel-based similarity are uti-
lized to calculate the microbe feature. Matrix completion
is adopted to recover the missing associations between
microbes and diseases. Cross-validations (CV) including
LOOCV (leave-one-out cross-validation) and 5-fold CV,
comparison with state-of-the-art methods, and case studies
are implemented to measure the performance of mHMDA.
For LOOCV, the AUC is 0.928, while it is 0.8838 ± 0.0044
(mean ± standard deviation) for 5-fold CV. The CVs show
the effectiveness of mHMDA. In four case studies (asthma,
IBD, T2D, and T1D), more than eight of top-ten inferred
microbes have been experimentally verified for each dis-
ease. The results show that mHMDA is effective to identify
disease-related microorganisms.

The structure of this paper is as follows: The dataset used in
this study is depicted in theMaterial section.We describeMD
feature calculation and the mHMDA model in the Methods
section. The results of LOOCV, 5-fold CV, comparison with
other existing models and the top ten inferred microbes of
four diseases are given in the Results section. The results are
discussed and the work is concluded in the Discussion and
Conclusion part.

II. MATERIAL
HMDAD [3] was adopted in the study as basic knowledge.
In HMDAD, there are Nm = 292 microbes, Nd = 39
diseases, and 483 associations between them. Removing the
repetitive associations, 450 unique associations remained.
Moreover, Human Symptom Disease Network (HSDN) [13]
was used to calculate the symptom-based disease similarity.

III. METHODS
A. DISEASE FEATURE
Gaussian kernel-based similarity comes to one if two vec-
tors are identical, and approaches zero as they move apart.
In order to extract the feature of the disease, we calculated
the Gaussian kernel-based similarity with the information
from HMDAD. Furthermore, the symptom-based similarity
of diseases is calculated according to the disease symptom
term co-existence information in PubMed.

Firstly, let a binary vector MS(di) denote the association
information of the specific disease i with each microbe. The
interactions of disease i with all the microbes denoted by
MS(di) can be calculated as follows

MS(di) = [M1(di),M2(di), . . . ,Mj(di), . . . ,MNm (di)], (1)

where Mj(di) denotes whether disease i is related to the
specific microbe j. Mj(di) can be calculated as

Mj(di) =

{
1 microbe j has relation with disease i,
0 otherwise.

1) GAUSSIAN KERNEL-based DISEASE SIMILARITY
The Gaussian kernel disease-disease similarity is

SD_G =
(
sdg(di, dj)

)
Nd×Nd

, (2)

where sdg(di, dj)(i, j = 1, 2, . . . ,Nd ) denotes the similarity
between diseases i and j calculated as

sdg(di, dj) = exp(−γd
∥∥MS(di)−MS(dj)∥∥2), (3)
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where

γd = γ
′

d
/(

Nd∑
k=1

||MS(dk )||2/Nd ),

and γd denotes the normalized bandwidth based on initial
bandwidth γ

′

d which we set the value as 4.

2) SYMPTOM-BASED DISEASE-DISEASE SIMILARITY
The symptom-based human disease network (HSDN) [13]
can compute disease similarity according to the symptom
and disease information in PubMed. The symptom-based
disease similarity (SD_S) is introduced into mHMDA model
to compute the similarity of diseases.

Thus, the total disease feature Sd is computed by
Sd = α ∗ SDG + β ∗ SDS , (4)

where alpha, beta are the weights of Gaussian kernel-based
similarity and symptom-based similarity, respectively.

B. MICROBE FEATURE
It is assumed that microbes sharing similar diseases tend to
be functionally similar. Suppose the interactions of microbe i
with all the diseases represented by DS(mi) can be calculated
as follows

DS(mi) = [D1(mi),D2(mi), . . . ,Dj(mi), . . . ,DNd (mi)], (5)

where Dj(mi) denotes whether disease j is related to the
specific microbe i. Dj(mi) can be calculated as

Dj(mi) =

{
1 disease j has relation with microbe i,
0 otherwise.

1) GAUSSIAN KERNEL-BASED MICROBE SIMILARITY
The Gaussian kernel-based similarity for microbes is

SM_G =
(
smg(mi,mj)

)
Nm×Nm

, (6)

where smg(mi,mj)(i, j = 1, 2, . . . ,Nm) denotes the
Gaussian kernel-based similarity between microbes i and j
calculated as

smg(mi,mj) = exp(−γm||DS(mi)− DS(mj)||2), (7)

where

γm = γ
′

m/

( Nm∑
k=1

||DS(mk )||2/Nm

)
,

γm denotes the normalized bandwidth based on initial band-
width γ

′

m which we set the value as 4.
Thus, the total microbe feature Sm is computed by

Sm = SMG. (8)

C. mHMDA
Matrix completion method recovering a low-rank matrix
from a partial sampling of its entries has been widely used
in many fields such as collaborative filtering for recom-
mendation [14], multi-label learning [15], [16] and cluster-
ing [17] and link prediction [18], [19]. Inspired by this,

we designed to recover a matrix using the known elements
of MD associations.

By feature extraction, we can get the human MD associ-
ation matrix A ∈ RNd×Nm , disease feature Sd ∈ RNd×fd ,
microbe feature Sm ∈ RNm×fm , where fd = 3Nd , fm =
2Nm. Since experimentally verified associations are very few,
the matrix A is very sparse. The potential associations are
treated as missing relationships. The target of our study is
to complete the missing elements of A with the supervision
of matrix A. The recovered matrix with missing relationships
can be denoted as Ã = SdWHT STm , where Ã ∈ RNd×Nm ,
Sd denotes the feature of diseases, W ∈ Rfd×k , H ∈ Rfm×k ,
and Sm is the feature of microbes, k is the minimum rank of
W and H . W and H can be obtained by optimizing

min
W .H

ϕ =
1
2

∥∥∥A− SdWHT STm
∥∥∥2
F
+

1
2
‖W‖2F +

1
2
‖H‖2F ,

s.t. W ≥ 0, H ≥ 0,

(9)

where
∥∥A− SdWHT STm

∥∥2 /2 denotes the least square cost
function, ‖W‖2F /2 and ‖H‖2F /2 are regularizations to avoid
over-fitting. The method in [20] is utilized to solve the min-
imum problem. W and H initialized with the random dense
matrix can be updated by the iterative equations (10) and (11)
until convergence. The iterative equations of W and H are

Hk ← Hk
(STmA

T SdW )k
(STmSmHW T STd SdW + H )k

, (10)

Wk ← Wk
(STd ASmH )k

(STd SdWH
T STmSmH +W )k

. (11)

Finally, the probability of having associations between
disease i and microbe j can be calculated by applying W
and H to

S(di,mj) = Sd (i)WHT STm (j). (12)

IV. RESULTS
A. RESULTS OF SIMILARITY
In HMDAD, the distribution of associations is shown in
Fig. 2(a) and 2(b). In Fig. 2(a), X-axis denotes the association
number, while the Y-axis denotes the number of disease had
this number of associations. Fig. 2(a) and Fig. 2(b) indicate
that there are 38.46% of diseases (15 diseases) having only
one associated microbe. Therefore, some information besides
HMDAD is required. Thus, we introduce the symptom-based
disease feature which is calculated based on the co-existence
of diseases and symptoms.

Gaussian kernel-based similarity is a measurement of
similarity between two vectors, which is one if they are
identical, and approaches 0 as they move further apart.
Considering of this, we calculated the Gaussian kernel-based
disease similarity using the interaction profile. Furthermore,
symptom-based disease similarity is calculated based on the
co-existence of diseases and symptoms. The two kinds of
similarity reflect different features of diseases. The Gaussian
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FIGURE 2. The distribution of associations in HMDAD. (a) The diseases with different associations. (b) The diseases with
different associations.

A
llergic asthm

a
A

llergic sensitization
A

llergy
A

sthm
a

A
topic derm

atitis
A

topic sensitisation
A

topy
B

acterial Vaginosis
C

lostridium
 difficile infection C

D
I

C
olon cancer

C
olorectal carcinom

a
C

onstipation Irritable bow
el syndrom

e IB
S

C
O

P
D

C
rohnS

 disease C
D

C
ystic fibrosis

D
iarrhea Irritable bow

el syndrom
e IB

S
E

czem
a

G
astric and duodenal ulcer

G
astro−oesophageal reflux

G
uttate psoriasis

Ileal C
rohnS

 disease C
D

Infectious colitis
Inflam

m
atory bow

el disease IB
D

Irritable bow
el syndrom

e IB
S

K
idney stones

Liver cirrhosis
N

ecrotizing E
nterocolitis

N
ew

−onset untreated rheum
atoid arthrits

O
besity

Periodontal
P

soriasis
R

ecurrent w
heeze

R
heum

atoid arthrits
S

kin and m
ucosal infections

S
ystem

ic inflam
m

atory response syndrom
e

Type 1 diabetes
Type 2 diabetes
U

lcerative colitis
W

hippleS
 disease

Allergic asthma
Allergic sensitization
Allergy
Asthma
Atopic dermatitis
Atopic sensitisation
Atopy
Bacterial Vaginosis
Clostridium difficile infection CDI
Colon cancer
Colorectal carcinoma
Constipation Irritable bowel syndrome IBS
COPD
CrohnS disease CD
Cystic fibrosis
Diarrhea Irritable bowel syndrome IBS
Eczema
Gastric and duodenal ulcer
Gastro−oesophageal reflux
Guttate psoriasis
Ileal CrohnS disease CD
Infectious colitis
Inflammatory bowel disease IBD
Irritable bowel syndrome IBS
Kidney stones
Liver cirrhosis
Necrotizing Enterocolitis
New−onset untreated rheumatoid arthrits
Obesity
Periodontal
Psoriasis
Recurrent wheeze
Rheumatoid arthrits
Skin and mucosal infections
Systemic inflammatory response syndrome
Type 1 diabetes
Type 2 diabetes
Ulcerative colitis
WhippleS disease

0

0.2

0.4

0.6

0.8

1

A
llergic asthm

a
A

llergic sensitization
A

llergy
A

sthm
a

A
topic derm

atitis
A

topic sensitisation
A

topy
B

acterial Vaginosis
C

lostridium
 difficile infection C

D
I

C
olon cancer

C
olorectal carcinom

a
C

onstipation Irritable bow
el syndrom

e IB
S

C
O

P
D

C
rohnS

 disease C
D

C
ystic fibrosis

D
iarrhea Irritable bow

el syndrom
e IB

S
E

czem
a

G
astric and duodenal ulcer

G
astro−oesophageal reflux

G
uttate psoriasis

Ileal C
rohnS

 disease C
D

Infectious colitis
Inflam

m
atory bow

el disease IB
D

Irritable bow
el syndrom

e IB
S

K
idney stones

Liver cirrhosis
N

ecrotizing E
nterocolitis

N
ew

−onset untreated rheum
atoid arthrits

O
besity

Periodontal
P

soriasis
R

ecurrent w
heeze

R
heum

atoid arthrits
S

kin and m
ucosal infections

S
ystem

ic inflam
m

atory response syndrom
e

Type 1 diabetes
Type 2 diabetes
U

lcerative colitis
W

hippleS
 disease

Allergic asthma
Allergic sensitization
Allergy
Asthma
Atopic dermatitis
Atopic sensitisation
Atopy
Bacterial Vaginosis
Clostridium difficile infection CDI
Colon cancer
Colorectal carcinoma
Constipation Irritable bowel syndrome IBS
COPD
CrohnS disease CD
Cystic fibrosis
Diarrhea Irritable bowel syndrome IBS
Eczema
Gastric and duodenal ulcer
Gastro−oesophageal reflux
Guttate psoriasis
Ileal CrohnS disease CD
Infectious colitis
Inflammatory bowel disease IBD
Irritable bowel syndrome IBS
Kidney stones
Liver cirrhosis
Necrotizing Enterocolitis
New−onset untreated rheumatoid arthrits
Obesity
Periodontal
Psoriasis
Recurrent wheeze
Rheumatoid arthrits
Skin and mucosal infections
Systemic inflammatory response syndrome
Type 1 diabetes
Type 2 diabetes
Ulcerative colitis
WhippleS disease

0

0.2

0.4

0.6

0.8

1

A
llergic asthm

a
A

llergic sensitization
A

llergy
A

sthm
a

A
topic derm

atitis
A

topic sensitisation
A

topy
B

acterial Vaginosis
C

lostridium
 difficile infection C

D
I

C
olon cancer

C
olorectal carcinom

a
C

onstipation Irritable bow
el syndrom

e IB
S

C
O

P
D

C
rohnS

 disease C
D

C
ystic fibrosis

D
iarrhea Irritable bow

el syndrom
e IB

S
E

czem
a

G
astric and duodenal ulcer

G
astro−oesophageal reflux

G
uttate psoriasis

Ileal C
rohnS

 disease C
D

Infectious colitis
Inflam

m
atory bow

el disease IB
D

Irritable bow
el syndrom

e IB
S

K
idney stones

Liver cirrhosis
N

ecrotizing E
nterocolitis

N
ew

−onset untreated rheum
atoid arthrits

O
besity

Periodontal
P

soriasis
R

ecurrent w
heeze

R
heum

atoid arthrits
S

kin and m
ucosal infections

S
ystem

ic inflam
m

atory response syndrom
e

Type 1 diabetes
Type 2 diabetes
U

lcerative colitis
W

hippleS
 disease

Allergic asthma
Allergic sensitization
Allergy
Asthma
Atopic dermatitis
Atopic sensitisation
Atopy
Bacterial Vaginosis
Clostridium difficile infection CDI
Colon cancer
Colorectal carcinoma
Constipation Irritable bowel syndrome IBS
COPD
CrohnS disease CD
Cystic fibrosis
Diarrhea Irritable bowel syndrome IBS
Eczema
Gastric and duodenal ulcer
Gastro−oesophageal reflux
Guttate psoriasis
Ileal CrohnS disease CD
Infectious colitis
Inflammatory bowel disease IBD
Irritable bowel syndrome IBS
Kidney stones
Liver cirrhosis
Necrotizing Enterocolitis
New−onset untreated rheumatoid arthrits
Obesity
Periodontal
Psoriasis
Recurrent wheeze
Rheumatoid arthrits
Skin and mucosal infections
Systemic inflammatory response syndrome
Type 1 diabetes
Type 2 diabetes
Ulcerative colitis
WhippleS disease

0

0.2

0.4

0.6

0.8

1

FIGURE 3. The disease-disease similarity. (a) Gaussian kernel-based similarity. (b) Symptom-based similarity. (c) Combined similarity.

kernel-based similarity of diseases is shown in Fig. 3(a).
Symptom-based disease similarity is shown in Fig. 3(b).
Fig. 3(a) and 3(b) show that by these two similarities, we can
get more information. Combining these similarities (α = 0.9,
β=0.1), the disease feature reflects much more information
(Fig. 3(c)).

B. CROSS VALIDATION
LOOCV was performed on the known MD associations from
HMDAD. In each round, one known MD association is
recruited to test the model trained by the other remaining
associations. This is repeated until all the known associations
are tested. The test sample is then ranked according to the
prediction score in all unverified MD associations. After
obtaining the score for each pair, the Receiver Operating
Characteristic (ROC) curve can be plotted, with the x-axis
representing the false positive rate (FPR) and the y-axis rep-
resenting the true positive rate (TPR). TPR and FPR vary
according to the threshold as a predictive criterion. For a
specific threshold, the TPR is calculated as the ratio of the
number of correctly predicted positive samples (i.e., having a
higher score than a particular threshold) to the number of all
positive samples. While FPR refers to the ratio of the number
of correctly predicted negative samples to the number of all
negative samples. The area under the ROC Curve (AUC) as a
metric of the model is calculated to measure the performance.
Finally, LOOCV AUC reached 0.928 (Fig. 4 in gray line).

FIGURE 4. The ROC curves and AUC values of different methods.

Furthermore, 5-fold CV was implemented by randomly
dividing the MD associations of HMDAD into five groups
with no overlap. Of the five groups, four are used to train the
model, and the remaining one is used to test the model. This
process is repeated until all groups have been tested. To mea-
sure the robustness, 5-fold CV was repeated 100 times.
Finally, it gets the result of 0.8838 ± 0.0044 (mean AUC ±
standard deviation).
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TABLE 1. The top-ten candidate microbes of Asthma.

C. COMPARISON WITH OTHER METHODS
LOOCV of some state-of-the-art methods (KATZHMD [5],
RW3RHMDA [8], BiRWHMDA [9], and PRWHMDA [10])
were also implemented on the same data. The ROCs are
shown in Fig. 4. The AUCs of the four methods are 0.8112,
0.8332, 0.8964, and 0.915, respectively. The comparison
shows that mHMDA gets a better ROC with relatively higher
AUC.

D. CASE STUDIES OF NOVEL ASSOCIATIONS
In this section, we apply mHMDA to four diseases to infer
related microbes as case studies.

1) ASTHMA
By mHMDA, we obtained the top-ten related microbes of
asthma (Table 1). Among them, nine predicted associations
have been experimentally verified.

TABLE 2. The top-ten candidate microbes of IBD.

Lactobacillus, Actinobacteria, Lachnospiraceae, and Fir-
micutes (1st, 2nd, 5th, and 7th predicted association) were
reported to be lower in asthmatic than non-asthmatics [21],
while Pseudomonas, Burkholderia, clostridium(3rd, 6th, 9th
predicted association) were found to be over-represented in
asthmatics [22], [23]. Clostridium coccoides (4th predicted
association) species was reported as an early predictor of
developing asthma [24]. Streptococcus (8th predicted asso-
ciation) might affect the development of asthma [25].

2) INFLAMMATORY BOWEL DISEASE
By mHMDA, we obtained the top-ten related microbes of
inflammatory bowel disease (IBD) (Table 2). All of the top-
tenmicrobes in Table 2 have been verified by published work.

TABLE 3. The top-ten candidate microbes of T2D.

TABLE 4. The top-ten candidate microbes of T1D.

Clostridium coccoides, Bacteroidetes, Alistipes, and
Rikenellaceae(1st, 2nd, 8th, 10th predicted association)
were less enriched in IBD patients than in healthy sub-
jects [26]–[28], whereas Streptococcus, Firmicutes (3rd, 5th
predicted association) were significantly increased [28]. Pre-
votella (4th predicted association) was found to be associated
with dysbacteriosis in IBD patients [29]. A recent study
showed that Lactobacillus (6th predicted association) could
help control IBD [30]. Genus of Parabacteroides (9th of
prediction association) was the most represented in Crohn
patients [31].

3) TYPE 2 DIABETES
Table 3 showed the top-ten potential relatedmicrobes of T2D,
9 of which have been experimentally validated by previous
work.

There were significant differences in the enrichment
of Prevotella, Actinobacteria and Pseudomonas (1st,
2nd, 3rd predicted association) between diabetic and
non-diabetic patients [32]. The species of Haemophilus,
order of Bacteroidales, the family of Lachnospiraceae,
andFusobacterium (4th, 5th, 8th, 9th predicted association)
were highly enriched in the control samples [33]–[36],
while Fusobacterium nucleatum, andStaphylococcus aureus
(7th and 10th predicted association) were detected sig-
nificantly more often in diabetic subjects than in non-
diabetics [36], [37].

4) TYPE 1 DIABETES
Besides the known associated microbes of T1D, we found
some novel candidate microbes associated with T1D. Eight
of the top-ten associations have been experimentally verified
(Table 4).
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Fusobacterium nucleatum, Clostridium, Pseudomonal,
Enterobacteriaceae, Clostridium, Tannerella (1st, genus
of 2nd, 4th, 7th, 9th, 10th inferred microbes) were found
with higher enrichment in T1D group [39]–[43], whereas
the enrichment of Clostridium leptum (5th inferred microbe)
was reduced [38]. It was identified that Faecalibacterium
prausnitzii(8th inferred microbes) in the gut microbes was
correlated with the development and onset of T1D [44].

The four case studies show that mHMDA can be an effec-
tive tool to exploit potential MD associations. For all the
diseases in HMDAD, the top-ten inferred related microbes
are available in S1 File.

V. DISCUSSION AND CONCLUSION
mHMDAwas proposed as a novel computational model with
the knowledge of previously experimentally validated associ-
ations between diseases and microorganisms. To get the dis-
ease feature, Gaussian kernel-based and symptom-based sim-
ilarities were computed. Then we combined the two similar-
ities. To get the microbe feature, Gaussian kernel-based sim-
ilarity is calculated. Then matrix completion was employed
to recover the missing MD associations (possible associ-
ations). Apart from CVs (LOOCV and 5-fold CV), com-
parison, and case studies were carried out to verify the
effectiveness of mHMDA. Finally, mHMDA got the AUCs
of 0.928 (LOOCV) and 0.8838 ± 0.0044 (5-fold CV). The
case researches show that more than 8 of top-ten inferred
microbes have been experimentally verified to have associ-
ations with asthma, IBD, T2D, and T1D, respectively. It is
believed that mHMDA could be helpful to identify novel MD
associations.

The good performance of the proposedmethodmay benefit
from the following aspects. (1) Multi-source of information
was introduced to calculate the disease feature. We used not
only the information of HMDAD, but also the information on
symptoms of the disease. (2) Matrix completion method as a
semi-supervised learning method was utilized to recover the
missing associations with validated microbe-disease associa-
tions.

However, there are some limitations to mHMDA. (1) The
experimentally validated MD associations used to train the
mHMDA are inadequate. For some disease, we have more
associations, but most of the diseases have little known asso-
ciations. This issue is expected to be resolved when more
microbe-disease associations are available in the future. (2)
Although for disease, we have used multi-source informa-
tion. For microbe, some other substantial datasets such as
microbe homologous sequence similarity should be used to
enhance the reliability of microbe feature. We hope that
mHMDA might aid medical experiments to get potential
associations.

APPENDIX
The top-ten potential inferred microbes of the researched
diseases are available in S1 File.

ABBREVIATIONS
mHMDA computational model using Matrix completion

to predict Human Microbe-Disease
Associations

CV Cross-Validation
LOOCV Leave–One-Out Cross-Validation
IBD Inflammatory Bowel Disease
T2D Type 2 Diabetes
T1D Type 1 Diabetes
MD Microbes and Diseases
HMDAD Human Microbe-Disease Associations Database
RW Random Walk
HSDN Human Symptom Disease Network
ROC Receiver Operating Characteristic
FPR False Positive Rate

TPR True Positive Rate
AUC Area Under the ROC Curve
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