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ABSTRACT Regardless of industry, the overload of information facing most organizations today is a drain
on both individuals and the enterprise itself. The increasing volume of this information, which is stored in
different electronic formats, requires new sophisticated systems to analyse and classify them. In this paper,
we attempt to implement a framework Document Classification and Analysis (DoCA) that can simplify and
automate such tasks for different file types, namely: office documents (text, spreadsheets, and presentations),
scanned documents (images and PDFs), multimedia files (video and audio). Each file type requires different
methods for pre-processing, analysis, and classification. The efficiency and feasibility of the DoCA are
examined on HAVELSAN dataset and accuracy of different tasks shows that the DoCA is a promising tool
for document analysis and classification.

INDEX TERMS Document analysis, document classification, OCR, video-audio analysis.

I. INTRODUCTION
Due to the increasing amount of electronic documents and the
rapid growth of the World Wide Web, automatic document
analysis and classification became very important for infor-
mation organization and storage. Document analysis is a form
of quantitative research to systematically evaluate documents
and find meaning in them [1]. Document classification is an
age-old problem in information science with key importance
in a variety of applications. In general, it is the task of assign-
ing one or more labels or categories to a given document. This
task can be tackled in different ways depending on the type
of the document.

For text documents, pre-processing is a must to get reliable
results, that includes tokenization, stemming and vectori-
sation. Document classification is an example of Machine
Learning (ML) in the form of Natural Language Processing
(NLP). The classification can be based either on supervised
or unsupervised learning. In the first case, categories are
predefined and assigned to the appropriate documents in the
training dataset, which is used to train a model that in turn can
predict the categories of new documents. In the second case,
documents must be clustered automatically without the need
for predefined classes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sabah Mohammed.

For images and PDFs that contain text, Optical Character
Recognition (OCR) can be used to extract text from them,
which allows us to treat them as text documents for clas-
sification or keyword search tasks. In case of image-based
search, however, OCR can be skipped and template matching
algorithms can be leveraged for the task. Template matching
is a method for locating a template image in a larger image.
SIFT is an example of algorithms that allows performing such
tasks. The results of template matching and those of text
search (after OCR), served as the basis for classification in
this file type category.

For audio files, classification can be in the form of gen-
der identification or speech/music segmentation for example.
A common technique to achieve that is converting a raw
waveform into a spectrogram that can be then used to feed
a Convolutional Neural Network (CNN) [2], [3]. For video
files, the problem boils down to processing a sequence of
frames, then different neural networks architectures can be
used to implement the classification [4]. In this work a sim-
pler approach is taken; we needed to determine whether a
video is from security camera footage or not.

The motivation for this study was a competition [5] orga-
nized by HAVELSAN [6], and PARDUS [7] which we won
first place in. The biggest challenge we faced in this project
is having to work with a small and unlabeled dataset, while
it mimics real life environments, it limits our options on how
to tackle the problem. In this study, we create a framework
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which provides different institutions and organizations with
a tool to analyze different file types and classify them. To the
best of our knowledge, there is no encompassing study about
the document analysis and classification of all these file types
in a hierarchical way: 1) In the first level, we deal with
document diff and similarity analysis for text-based file types,
template matching for image files, and content analysis for
audio and video files. 2) In the second level, the construc-
tion of the tree structure of the relevant files, the similarity
of each other and the determination of the change in the
parent-child relationship are carried out, a new version of any
file will be saved in the database as a child of the original file.
In other words, we deal with file and folder watchdog anal-
ysis. 3) In the last level, automatic document classification
is implemented; after classifying already existing documents
into their respective classes, a background task will detect
any newly created document and automatically classify it
according to the previously established classes. The different
algorithms used for these tasks were well-established ones,
so our work focused on picking the best and leveraging them
together as one coherent system. Section III will dig deeper
into the technical details of each of these tasks and our choice
of algorithms which, combined together, create an effective
tool for big organizations to help them organize and deal
with their digital clutter, as well as tracking any changes in
important documents.

The rest of this paper is organized as follows: Section II
presents a review of the different tasks in the framework.
Section III describes the presented system architecture with
its submodules. Section IV deals with the realized experi-
ments. In the last section, we discuss the research results and
we propose some future research directions.

II. RELATED WORKS
In this section, a summary of related works of different tasks
of DoCA will be presented.

A. DOCUMENT DIFF AND SIMILARITY ANALYSIS
Google Diff-Match-Patch [8] implements Myer’s diff algo-
rithm which is generally considered to be the best
general-purpose diff. It was first presented in 1986 [9] and
has a variety of applications, including UNIX Diff utility, and
Google’s Diff-Match-Patch library. Myer’s algorithm builds
on earlier notable work on Longest Common Subsequences
(LCS) [10], [11].

String matching is the process of finding strings that
match a given pattern approximately (rather than exactly),
like literally. Hence it is also known as approximate string
matching. Usually, the pattern that these strings are matched
against is another string. For string matching, Levenshtein
distance is used [12]. Since then, considerable researches
have been done on the subject of the string-to-string correc-
tion problem [13]–[15].

Other researchers delve into more specific problems such
as the case with semantic interoperability between IoT
devices and users [16].

B. TEMPLATE MATCHING
Over the years, a wide variety of features detectors and image
matching frameworks have been proposed. Building on pre-
vious works like Harris’ on edge detection [17], Lowe came
up with Scale Invariant Feature Transform (SIFT) [18], [19].
Later work byMuja and Lowe introduced FLANN [20]–[22],
a library for performing fast approximate nearest neighbor
searches in high dimensional spaces, which can be used in one
of SIFT steps for better performance. Ling and Jacobs pro-
posed a deformation invariant imagematching [23]. Bay et al.
proposed Speeded-Up Robust Features (SURF) [24] and
Simo-Serra, Torras and Moreno-Noguer proposed Deforma-
tion and Light Invariant (DaLI) descriptor [25], [26]. There is
also a significant number of works focusing on studying and
evaluating the performance of some descriptors [27]–[30].

C. AUDIO CONTENT ANALYSIS
Audio data can be useful for analysis. Indexing music collec-
tions according to their audio features, recommending music
for radio channels, similarity search for audio files, speech
processing and synthesis are a few examples of the potential
applications of audio processing [31]. Audio classification is
also a fundamental problem in the field of audio processing.
The task is essential to extract features from the audio, and
then identify which class it belongs to. Many useful appli-
cations pertaining to audio classification can be found in the
wild-such as genre classification, instrument recognition and
artist identification [32], speech recognition [33] and gender
classification [34].

D. VIDEO CONTENT ANALYSIS
The recent trend is to rely on Neural Networks (NN) for video
classification by extracting what is often called as feature
descriptors from frames. Researchers have accomplished this
with several methods. Joe et al. [35] discussed two methods:
The first uses CNNs to extract frame-based features through
time, and the second treats the video as an ordered sequence
of frames fed to a recurrent neural network that uses Long
Short-Term Memory (LSTM) cells which are connected to
the output of the underlying CNN. However, training with
LSTM is difficult and expensive. Graham et al. improved on
that by introducing Convolutional Drift Networks (CDNs) for
video classification [36], their method relies on combining
CNNs and ESNs. A trainable end-to-end architecture that
requires no hand-crafted features.

The area of object recognition in surveillance videos
also has seen a considerable amount of research. Nasci-
mento and Marques [37] compared five different algorithms
in this field. Their focus was moving object detection, but
these algorithms can be leveraged for non-moving objects
as well. More specifically, research on detecting abandoned
luggage has shown results as well, either by means of
background subtraction [38] or by using CNNs for better
results [39].
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FIGURE 1. Overview of the DoCA architecture.

E. FILE AND FOLDER WATCHDOG ANALYSIS
There are several system event monitors and loggers that
can allow us to identify and track any changes to files and
folders. Among them, inotify-tools [40] is the most popular
one which is a C library and a set of command-line programs
for Linux providing a simple interface to inotify, the Linux
kernel subsystem that acts to allow noticing changes to the
file system. There is also Listen gem [41] and Guard [42],
offering similar functionality with extending it to MacOS
and Windows and implemented using Ruby. For Python
users, there is pyinotify [43] on Linux and the cross-platform
PyFilesystem [44], an abstraction layer for Python’s file sys-
tem. The most recent and most popular choice, however,
is Watchdog [45].

F. DOCUMENT CLASSIFICATION
When it comes to text data classification, we can split it
into two different categories; classification based on a model
trained on labeled data first, or clustering without the need
for any pre-labelled dataset. Both cases have seen signif-
icant research. That includes research on word represen-
tation in vector space [46], on labeled text classification
using various techniques ranging from the simplest Naive
Bayes (NB) and TF-IDF (Term Frequency-Inverse Document
Frequency) classifiers [47] to NNs passing by Support Vec-
tor Machines (SVM) based ones [48], [49]. There are also
works on the use of genetic algorithms for the task [50].
When it comes to clustering, in 1996 Martin Ester et al.
proposed density-based spatial clustering of applications with
noise (DBSCAN) [51], it finds core samples of high density
and expands clusters from them. DBSCAN is good for data
which contains clusters of similar density. Frey introduced
a newer clustering algorithm called Affinity Propagation
(AP) [52], [53]. More recent work also explores techniques
like Sampling-PSO-K-means [54].

III. SYSTEM ARCHITECTURE
In this section, the system architecture is presented, with each
subsection including details of algorithms for different tasks
of DoCA. The proposed system is implemented using Python
programming language, this choice is mainly due to the ease
of use and availability of 3rd party libraries to reduce the
amount of work needed. A high-level representation of the
DoCA is shown in Figure 1.

In addition to what the Figure 1 shows, there is a watchdog
functionality that can run in the background and automati-
cally perform the appropriate tasks on any new files. There
is also a search functionality on image text content offered
through the GUI as shown in Figure 2.

A. COUCHDB INTEGRATION
NoSQL, which stands for ‘‘not only SQL’’ is an alternative
to traditional tabular relations used in relational databases in
which data schema is carefully designed before the database
is built making any later changes very difficult. NoSQL
databases are especially useful and increasingly chosen for
working with large sets of distributed data and real-time
web application [55]. Among the key features of NoSQL
approach, we can point out: simplicity of design, horizontal
scaling to clusters of machines, superior performance, more
flexibility [56].

We opted to adopt Apache CouchDB as our NoSQL
database of DoCA (as seen in Figure 3). CouchDB has
document-oriented NoSQL database architecture. Which
means it differs from relational databases in the sense that
RDBs store data in separate tables where a single object may
be spread across several tables, while document databases
dedicate a single instance, or document, for each object where
it stores all its information.

CouchDB is implemented in Erlang, handles concurrency
with a form of multi-version concurrency control (MVCC).
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FIGURE 2. GUI design of DoCA. Tasks are grouped under tabs for each of the document file types.

It offers an intuitive RESTful HTTP/JSON API and uses
MapReduce of JavaScript functions as the query method.

Other features include document-level ACID (Atom-
icity, Consistency, Isolation, Durability) semantics and
multi-master replication, which allows it to scale across
machines to build high-performance systems. A database
handler is created to facilitate running any operation across
the whole DoCA system.

B. DOCUMENT DIFF AND SIMILARITY ANALYSIS
Google Diff-Match-Patch [8] is used for document difference
and similarity analysis. It implements Myer’s diff algorithm
which is generally considered to be the best general-purpose
diff algorithm [9]. An example of its output is shown in
Figure 4

Meyer’s diff works by finding the LCS in an edit graph.
In Figure 5, we see an edit graph for two sequences, A =
abcabba and B= cbabac. The points (x, y) for which ax= by
are called match points. A trace of length L is a sequence of
L match points which is the number of diagonal edges in the
resulting path.

For string matching; i.e. similarity analysis, Fuzzy-Wuzzy
library [58] is used. It implements Levenshtein distance [12].

Fuzzy string matching is the process of finding strings that
match a given pattern.

C. TEMPLATE MATCHING
For the task of template matching, the SIFT algorithm is
used. Even though it is slower to run, it offers unparalleled
accuracy. SIFT is an image descriptor for image-basedmatch-
ing and object recognition. The SIFT descriptor is invariant
to translations, rotations and scaling transformations in the
image domain and robust to moderate perspective transfor-
mations and illumination variations. There are fivemain steps
involved in the SIFT algorithm, the following is a high-level
summarization of these steps:

• Scale-space [59] Extrema Detection: Difference of
Gaussian (DoG) is found for the image with various σ
values. It is obtained by subtracting one blurred ver-
sion of an original image from another, less blurred
version. This process is done for different octaves of
the image in the Gaussian Pyramid. An octave being the
set of images generated by progressively blurring out an
image. Once the DoGs are found, images are searched
for local extrema over scale and space, which represent
potential keypoints locations.
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FIGURE 3. An example of CouchDB JSON document from DoCA system.

• Keypoint Localization: In this step low-contrast key-
points and edge keypoints are eliminated, what remains
is strong interest points. The first is achieved by means
of interpolation using quadratic Taylor series expansion
of scale space.

• Orientation Assignment: An orientation histogram with
36 bins covering 360 degrees is created. Peaks in the
orientation histogram correspond to dominant directions
of local gradients. The highest peak and local peaks
within 80% of it are selected to assign multiple orienta-
tions to them which improves the stability of matching
significantly.

• Keypoint Descriptor: Following the steps so far, each
keypoint got image location, scale, and orientation
assigned to it. Now, gradient magnitude and orientation
are computed at each sample in a 16× 16 neighborhood
around the keypoint. Then divided into 4×4 sub-blocks
by accumulating the contents as 8 bin orientation his-
tograms. It is represented as a vector to form a keypoint
descriptor.

• Keypoint Matching: Keypoints between two images are
matched by identifying their nearest neighbors. Then
a ratio of closest-distance to second-closest distance is
taken, matches with a ratio greater than 0.8 are rejected.

D. AUDIO CONTENT ANALYSIS
inaSpeechSegmenter is a CNN-based audio segmentation
toolkit [3] for studying gender equality based on men/female
speech times in multimedia and it is reliable for large scale
studies. We use inaSpeech with its original trained model
because it performed well enough with Turkish speech, and
the provided dataset was not big enough to allow train-
ing of a new model. inaSpeech works by first extracting a

FIGURE 4. An example of how Google Diff output is visualized [57].
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FIGURE 5. An edit graph for two sequences A and B [9].

FIGURE 6. Video pre-processing pipeline.

Mel-Frequency Cepstrum (MFC) of the given audio using
SIDEKIT [60]. Then it is fed through a CNN. The output is
a segmentation of speech and music audio tracks, followed
by another segmentation of speech tracks as female or male
voices.

E. VIDEO CONTENT ANALYSIS
The aim of video content analysis in DoCA is to implement
an efficient program that could determine whether a video
is from a security camera or not. To achieve that we rely
on the fact that security cameras are stationary, hence their
footage should have more similar frames than normal videos.
The approach relies on comparing consecutive frames from
a video to determine a similarity ratio between them. Then
based on a chosen threshold, any video can be classified
as either security footage or not. The whole process fol-
lows three steps: pre-processing, computing a similarity ratio,
decision.

In pre-processing, OpenCV is used to open the video and
extract its metadata, namely resolution and FPS. FPS is used
to determine which frames to use in the comparison because
only one frame from each second is taken and then it is
converted to grayscale. While the resolution is used to get
the aspect ratio which is maintained while resizing the frame
to only 144 pixels in height. This pre-processing as shown
in Figure 6 allows for significantly faster computations and
the use of fewer resources in the next step.

In the second step, a list of the previously processed frames
is passed to a comparison function, where they are split into
four different groups to allow multi-threading computation,
each frame in each group is then compared to the next three
frames, the similarity scores are averaged as one ratio.

Finally, this ratio is used to determine whether the video
is security footage or not, the threshold can be hand tuned
depending on the dataset to achieve better results. Structural
Similarity Index (SSIM) is themethod used in the comparison
part. SSIM is a standard for image quality metrics because
it solves the drawbacks of the simpler Mean Squared Error
(MSE) [61], [62], by taking texture into account instead of
being applied globally. Formally, SSIM is defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(1)

where µx , µy are the average of x,y respectively, σ 2
x , σ

2
y are

their variance, σxy is their covariance, c1 = (k1 L)2, c2 =
(k2 L)2 are two variables to stabilize the division with weak
denominator, L is the dynamic range of the pixel-values
(2bitsperpixel − 1), and k1, 2 << 1. SSIM value is between
0 and 1, the higher the value the more similar the images.

F. FILE AND FOLDER WATCHDOG ANALYSIS
Part of documents analysis is tracking historical changes and
storing different versions of a file over time. This can be easily
done using Watchdog [45] a Python API library and shell
utilities to monitor file system events. Whenever an event is
detected, the following tasks are performed depending on the
event type (creation, deletion, modification) and the file type:

• store the new version of old files in the database with
their metadata. the new version is added as a child of the
original file.

• auto-classify newly added files.

G. DOCUMENT CLASSIFICATION
As with any Natural Language Processing (NLP) project,
this work starts by some pre-processing of text dataset, each
document is stored as a string in an array containing all
documents. The strings are then tokenized, cleaned from stop
words and finally, we can perform stemming on our tokens.
Then we use Gensim’s Doc2Vec model [63] to vectorize
the documents and store the resulting model for later use.
Doc2Vec [64] allows unsupervised learning of continuous
representations for larger blocks of text found in entire docu-
ments. To classify unlabeled data, two different approaches
have been used, clustering using Affinity Propagation and
Hierarchical clustering using a Linkage Matrix. The former
is mentioned in section II-F. We chose Affinity Propagation
because it eliminates the need for specifying the number of
classes without being susceptible to noise like DBSCAN.
AP has quadratic algorithmic complexity (O(n2)) and uses the
negative squared Euclidean distance between points, formally
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TABLE 1. Document types and their numbers. * gifs are one frame, pdfs are multipage.

TABLE 2. Experimental results.

TABLE 3. Comparison results.

defined as:

||a− b||22 =
∑
i

(ai − bi)2 (2)

The latter is a general family of clustering algorithms that
build nested clusters. The hierarchy of these clusters is then
represented as a Dendrogram i.e. a tree with its root repre-
senting the cluster that includes all samples, and each leave
representing a single sample. We opted for an Agglomerative
strategy; meaning that it is a ‘‘bottom-up’’ approach starting
from the leaves and merging them in clusters successively.
An implementation with a complexity of O(n2) is offered by
scipy.cluster.hierarchy.linkage module [65] which we used
with the following parameters: ‘‘Euclidean’’ for distance
metric, and ‘‘average’’ for the method of clustering, this is
also called the UPGMA algorithm (Unweighted Pair Group
Method with Arithmetic Mean) [66] and defined as:

d(u, v) =
∑
ij

d(u[i], v[j])
|u| · |v|

(3)

for all points i and j where |u| and |v| are the cardinalities of
clusters u and v, respectively.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
This project was implemented in Python 3 and tested on a
local machine with the following specifications: CPU: Intel
Core i7-7700HQ, RAM: 12 GB DDR4-2400, GPU: Nvidia
GeForce GTX 950M 2GB GDDR5, OS: Ubuntu 18.04 LTS.

The codes are available at: https://github.com/husmen/
DoCA_GUI/

B. DATASET INFORMATION
The dataset on which experiments have been done was pro-
vided by HAVELSAN [5] and includes the following file
types with the number of files as shown in Table 1.

C. EXPERIMENTAL RESULTS AND DISCUSSION
Table 2 summarizes the results, it shows the running time,
maximum RAM usage, and accuracy for each of the tests
(omitted when unavailable). Text search in document type-2
results refers to the first run including OCR, following runs
use the stored content directly from the database whichmakes
them significantly faster. For image search in document
type-2, we used amanually selected set of 11 logos to perform
the search. The experiments show near perfect results in our
use case.

D. COMPARISONS WITH OTHER METHODS AND TOOLS
Comparing the performance of our software to that of other
researchers in a meaningful way is quite difficult due to
the use of a non-standard dataset that our project was built
around. However we can offer some insight with the results
summarized in Table 3:

For Document type-1 classification, replacing Affinity
propagation with DBScan resulted in an increase in speed
(24ms) but also in RAMusage (630MB). Accuracy decreased
to 91% due to noise.

For Image search in document type-2, replacing SIFT with
SURF resulted in a decrease in RAM usage (6728MB) but it
was significantly slower (452s).
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For Audio classification, pyAudioAnalysis [67] library ran
fast (105s) and used less memory (1205MB) than InaSpeech
but at a heavy cost in accuracy with only 63%.

V. CONCLUSION AND FUTURE WORK
We achieved good and reliable results with reasonable run-
ning times and RAM usage which makes it a good framework
for general document classification and analysis on different
file types. It could serve as a starting point for future work on
a more robust, flexible and feature-rich solution. The whole
process can also be fully automated.

Future work will include some improvements and will
address some of the current shortcomings: For feature
matching, different and newer algorithms could be explored
for better performance such as FLANN. The same thing
goes for clustering, other methods like HDBSCAN can be
explored [68]. As well as new vector distance metrics such
as TS-SS [69]. Feature selection could also benefit from
some improvements [70], [71]. For audio content analysis,
different modules could be trained for each language because
acoustic features of speaker gender are language dependent.
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