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ABSTRACT Clustering organizes nodes into groups in order to enhance the connectivity and stability of cog-
nitive radio sensor networks. Mainly depending on the channel availability, many existing spectrum-aware
clustering algorithms may not achieve the most satisfactory clustering. Taking into account the various
influence factors to establish the optimal clustering is a challenge to enhance the network performance. This
paper proposes a novel spectrum-aware clustering algorithm based on weighted clustering metric to obtain
the optimal clustering by solving an optimizationmodel. The newweighted clusteringmetric, simultaneously
evaluating temporal-spatial correlation, confidence level and residual energy, is used to elect clusterheads and
ally member nodes. After clustering, the clusterheads sensing spectrum instead of all member nodes greatly
reduces the energy consumption of spectrum sensing and increases the opportunity of data transmission. The
performance comparison between the traditional spectrum-aware clustering algorithms and our proposed
algorithm has been highlighted with the experiments.

INDEX TERMS Cognitive radio sensor networks, spectrum-aware clustering, weighted clustering metric,
temporal-spatial correlation, confidence level.

I. INTRODUCTION
Tremendous growths of technologies and applications for
wireless sensor networks (WSNs) have brought significantly
increased demand for radio spectrum, but the traditional
static spectrum allocation policies have led to the spectrum
scarcity [1]–[3]. The cognitive radio sensor network (CRSN)
is an emergent paradigm that efficiently alleviates spec-
trum scarcity and better utilizes available spectrum [4].
Equipped with the cognitive radio module, the cognitive sen-
sor nodes (CSNs) can opportunistically access the spectrum
bands licensed to the primary users (PUs) without interfering
with them.

It has known that the CRSN inherits some intrinsic prop-
erties of WSNs (e.g., the limitation of hardware and energy
resource). Therefore, it is difficult to maintain the connec-
tivity and stability of CRSN when the energy consumption
for transmitting a large amount of mutual information and
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application data leads to the invalidation of some nodes [5].
To reduce the resource overheads of spectrum sensing, rout-
ing and data transmission, clustering is widely applied to
scale down network and enhance the network performance.
We observe that clustering can bring about three main
advantages to CRSNs, namely scalability, stability and sup-
porting cooperative tasks [6], [7]. However, the traditional
clustering algorithms (e.g., lowest ID [8], maximum node
degree [9], and K -mean clustering [10]) cannot be directly
applied to CRSNs because of operating on a fixed chan-
nel. The Low Energy Adaptive Hierarchy (LEACH) was a
base line distributed clustering scheme for WSNs [11], [12].
Dealing with the dynamic channel change of CRSNs,
a spectrum-aware clustering protocol termed as CogLEACH
was designed based on LEACH [13]. A low-energy adap-
tive uneven clustering hierarchy (LEAUCH) considered the
advantage of the available channel resource to reduce the
energy consumption [14]. In [15], a RARE protocol splited
the network into clusters by defining cluster formation as
a maximum edge biclique problem. According to spectrum
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availability and nodes mobility, clusters in RARE could
maintain the integrity of the network framework. Compared
to clustering in WSNs, it is necessary to apply the channel
availability to perform cluster formation and cluster mainte-
nance in CRSNs.

A. PROBLEM STATEMENT
Recently, many spectrum-aware clustering algorithms have
been proposed to tackle the clustering problem in CRSNs.
In [16], the nodes were grouped into clusters based on a
highly connected subgraph where the value of each edge
was defined as the number of the common idle channels
between two nodes. In [17], the nodes exchanged informa-
tion, including IDs and available channel lists, with their
one-hop and two-hop neighbours to form local clusters, and
then a spectrum-aware routing was constructed by compar-
ing the available channel lists of adjacent nodes. In [18],
a novel non-parametric Bayesian-based channel clustering
scheme was proposed to identify the supported QoS levels
over multiple available licensed channels, and thus SUs could
identify an appropriate cluster or set of licensed channels that
fulfilled their stringent QoS requirements. In [19], SMART
triggered re-clustering by merging or splitting some of clus-
ters due to the change of available channels. In [20], all sec-
ond users (SUs) sensed the available channels and gathered
the information of neighbour nodes using HELLO packets.
SUs checked their own maintained information set S to per-
form clusterhead election and node join operation. Simply
using the channel availability without analysing the similarity
property of the neighboring nodes’ sensing results, the above
spectrum-aware clustering algorithms may provide subop-
timal clustering. In [21], a ROSS clustering algorithm was
proposed on the basis of the proximity of available channels
between the SUs and their neighbours, where the individual
and neighboring connectivity degrees were used to elect clus-
terheads. However, the proximity of available channels was
defined only comparing the sensed idle channels of a SUwith
that of its neighbours, which could not completely illuminate
the similarity property of spectrum sensing in intra-cluster.
Thus, establishing more reasonable similarity model is an
essential problem to construct satisfactory clustering.
To solve this problem, a spatial similarity model was

provided to approximate the number of idle channels avail-
able to each node. The nodes with high spatial similarity
thus formed a cluster [13]. In [22], some physically close
nodes could sense more same available channels, so they
were grouped together by measuring the clustering met-
ric, i.e., their Euclidean distances. Considering the avail-
able channels, geographical positions and database statistics,
an improved spectrum-aware clustering algorithm for cen-
tralized cognitive radio networks (CRNs) was proposed to
improve the network throughput and maintain the stability
of clusters [23]. On the other hand, a temporal similarity
model was illustrated by a bipartite graph presented the essen-
tial property of spectrum-aware clustering [24]. When the
idle channels in two sets of vertices were highly temporal

correlation, the edges of these vertices could connect to form
a cluster. As discussed, utilizing the spatial or temporal sim-
ilarity model to form clusters is benefit to improve the net-
work performance. Separately utilizing the spatial correlation
and temporal correlation, however, these clustering methods
do not always provide the most reasonable spectrum-aware
clustering. Authors of [25] illuminated that sensor networks
utilized clustering to aggregate gathered information at the
cluster heads by exploiting correlation. Hence, clustering
can exploit spatial and temporal correlation of sensor nodes’
observations on spectrum sensing. In [26], a distributed
spectrum-aware clustering (DSAC) protocol formed group-
wise constrained clusters, where the optimal number of
clusters was derived to minimize the intra-cluster distances
under the spectrum-aware constraint. In [27], the temporal-
spatial correlation of sensing results was transformed into the
intra-cluster and inter-cluster sensing similarity such that an
optimization problem with respect to the similarity metric
was presented to determine the optimal number of clusters.
We see that the temporal-spatial correlation is a very note-
worthy characteristic of spectrum-aware clustering, but few
existing works perform spectrum-aware clustering based on
temporal-spatial correlation. It is required to establish a clus-
tering metric by modelling the temporal-spatial correlation
of spectrum sensing.

The above frequently-used clustering algorithms can pro-
vide spectrum-aware clustering for CRSNs without unreli-
able nodes, but the established clustering structure will be
broken down using the sensing results of unreliable nodes.
Specifically, some malicious nodes send the tampered sens-
ing results to attack the spectrum decisions of normal nodes,
and some nodes affected by the multi-path or shadow fading
problem sending the biased sensing results will disturb the
spectrum decisions of their neighbours. To exclude these
unreliable nodes, some researchers have defined a cluster-
ing metric with respect to the reliability of nodes as the
clustering criterion. In [28], a trust aware model involving
sensing reliability and energy reliability was used to clus-
tering trustworthy nodes and elect the most credible nodes
as CHs. Thus, the model could reduce the handoff rate and
improve the network throughput. In [29], the reliability ratio
between the number of correct decisions and the total num-
ber of taken decisions was defined as a clustering metric
to elect CHs. An update formula for the reliability param-
eter was introduced in [27]. When the value of reliability
parameter exceeded a given threshold, re-clustering was trig-
gered to delete the unreliable nodes. However, the frequent
re-clustering resultes in the instability of topological structure
and much resource consumption. It is observed that reinforc-
ing the effect of reliable nodes on spectrum-aware clustering
can avoid frequent re-clustering. To quickly recognize and
exclude unreliable nodes, establishing a clustering metric
bymodelling the sensing reliability is an important problem.
In general, most of CSNs are battery powered which is dif-

ficult to recharge or replace for some environmental reasons,
so they should minimize the energy consumption of spectrum
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sensing operations and normal activities in order to maxi-
mize their lifetime. An algorithm ‘‘Quadrant Based Energy
Efficient Clustering Hierarchy’’ (QBEECH) was proposed
to explain that energy efficient clustering could increase
both the stability and the lifetime of the network much fur-
ther [30]. In [31], an energy-efficient spectrum-aware cluster-
ing algorithm was proposed to achieve clustering by allowing
each member node to learn the cooperative sensing costs
of its neighboring nodes. It then gave an optimal clustering
that minimized the network energy consumption. Based on
CogLEACH algorithm, a centralized probabilistic clustering
algorithm (CogLEACH-C) was introduced, where cluster-
heads election depended not only on the number of sensed
idle channels but also on the level of each node’ residual
energy [32]. In [33], a distributed spectrum-aware cluster-
ing algorithm determined the optimal number of clusters
by establishing a network-wide energy consumption model
with respect to the residual energy. In [34], an energy-
aware cluster-based routing protocol for CRSNs selected the
gateway nodes with more energy and picked CHs due to
the residual energy and available channels. Thus, the event
data are routed through an energy-efficient and stable path
from a source node to sink. In accord with some tra-
ditional energy-efficient clustering algorithms, the above
spectrum-aware clustering algorithms have offered the same
idea that the clustering metric need to involve the residual
energy of nodes. In established clusters, the member nodes
sensing spectrum quickly consumes their residual energy.
According to the characteristic of cooperative spectrum
sensing, how to reduce the energy consumption as far as
possible is worth more deep exploration.
As aforementioned, to provide the optimal clustering,

the clustering criterion needs to consider many influence fac-
tors rather than only the channel availability. A weight-based
localized clustering algorithm partitioned the network into
single-hop clusters on the basis of the channel availability,
the SUs’ speed and the PUs’ interference levels [35]. In [36],
a weighted sum of capacity rank, stability rank and quality
rank values termed as reserved value (RV) was the final
value of each link. A cluster-based MAC protocol used RV to
form clusters. A network stability-aware clustering (NSAC)
defined the weight by considering both spectrum dynamic
and residual energy. One node with the largest weight was
selected as cluster head, then this CH and its neighbors
formed one cluster marked ‘‘clustered’’. The remaining nodes
updated their weights and repeated the above clustering pro-
cess until all nodes had been marked ‘‘clustered’’ [37]. This
sequential clustering, however, increases the delay of cluster-
ing. In this paper, we propose a new spectrum-aware cluster-
ing algorithm based on weighted clustering metric involving
temporal-spatial correlation, confidence level as well as resid-
ual energy. In a distributed mode, the node with the larger
clustering metric than its neighbors is elected as a qualified
CH, and thus the optimal clustering is established by max-
imizing the intra-cluster similarity and the inter-cluster dis-
similarity. After clustering, the CHs sense spectrum instead

of their member nodes and share the sensing information with
them, while the member nodes do not need to detect spectrum
all the time that greatly reduces the energy consumption of
spectrum sensing and increases the time of data transmission.

Our main contributions of this paper are summarized as
follows:
• Different from the traditional spectrum-aware cluster-
ing criterion mainly involving the channel availabil-
ity, we introduce a novel weighted clustering metric
taking into account three important influence factors,
i.e., temporal-spatial correlation, sensing confidence and
residual energy. Due to the weighted clustering metric,
we can provide the optimal clustering according to the
different application scenarios.

• An optimization model measuring the intra-cluster sim-
ilarity and the inter-cluster dissimilarity is established
to solve the optimal number of clusters. Our clustering
hierarchy based on the optimal cluster size can pro-
vide better network performance than some traditional
spectrum-aware clustering methods relying on the chan-
nel availability.

• After clustering, the CHs periodically sense spectrum
instead of their member nodes. Thus, the member nodes
can choose provisional dormancy to avoid rapidly run-
ning out of the residual energy and becoming invalida-
tion. This cooperative spectrum sensing mode guaran-
tees the stability of the network topology. On the other
hand, the member nodes can also choose to transmit data
in order to enhance the network throughput.

B. ORGANIZATION
The rest of this paper is organized as follows. Section 2 intro-
duces four evaluation criteria to propose a new weighted
clustering metric for spectrum-aware clustering. Section 3
presents a clusterhead election method to elect high-
performance CHs and establishes an optimization model to
solve the optimal number of clusters. In Section 4, the exper-
iments are provided to evaluate the performance of our pro-
posed algorithm, showing the available throughout gain.

II. SYSTEM MODEL
A. SENSING STRUCTURE FOR SPECTRUM-
AWARE CLUSTERING
In general, a CRSN consists of a Base Station (BS) and
some randomly distributed sensor nodes equipped with CR
module. The spectrum resource in this area is divided into Nc
channels sharing byNp PUs andNs sensor nodes, where these
nodes are equipped with the computation module to pro-
cess complicated mathematical operation. All nodes use the
energy detection method [38] to detect the idle channels, and
a clustering metric is applied to organize these nodes into K
clusters. Because spectrum sensing causes additional energy
consumption, Figure 1 proposes a new sensing structure for
spectrum-aware clustering, in which the CHs periodically
sense spectrum instead of all member nodes after clustering.
More specially, once some of CHs find that the number of the
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FIGURE 1. New sensing structure for spectrum-aware clustering in CRSNs.

common idle channels in their clusters is less than a threshold
value, they immediately informs BS to broadcast the alert
information about the change of channels. Receiving themes-
sage from BS, other CHs sense spectrum again such that the
new spectrum sensing results trigger local re-clustering. This
means that a CH make its member nodes join re-clustering if
it also find the number of idle channels in its cluster reduces
to the threshold, while a CHmaintains its cluster if there is no
change of idle channels in its cluster, and it only allows nodes
outside cluster to join. In the other case, the BSwill trigger the
global re-clustering especially when the states of all PUs in
the monitoring area change within a short time. Because the
CHs have better sensing accuracy and more residual energy,
this new sensing structure for spectrum-aware clustering can
significantly reduce the network energy consumption without
affecting the precision of spectrum sensing.

B. NEW EVALUATION CRITERIA FOR CLUSTERING
To create clusters, the similarity measurement between the
observations of all nodes is required. In most clustering
methods, this is achieved by use of the clustering metric.
Hence, the choice of an appropriate clustering metric has a
great impact on the quality of clustering. Focusing on chan-
nel availability, geographical location and residual energy,
we define a new clusteringmetric to performmore reasonable
clustering. Our clusteringmetric is evaluated by the following
criteria.

1) SPATIAL CORRELATION:
The channel availabilities of all nodes are subject to their
geographical locations, i.e., some geographically close nodes
have higher probability in a cluster [39]. To illustrate the rela-
tionship of channel availability and geographical location,
we define the spatial correlation between node i and node j
in the t-th round of clustering as follows:

SCi,j,t =

1−
di,j,t

min{ri, rj}
, di,j,t < min{ri, rj}

0, di,j,t ≥ min{ri, rj}
(1)

where di,j,t is the Euclidean distance between two nodes,
di,j,t < min{ri, rj} means two nodes are in each other’s
communication range, and ri, rj are the communication radii
of two nodes, respectively. To evaluate the mean spatial
correlation between node i and its one-hop neighbours,

the expectation of spatial correlation is defined as

E(SCi,t ) =
1
ni,t

ni,t∑
j=1

SCi,j,t (2)

where ni,t is the number of the neighbours of node i.

2) TEMPORAL CORRELATION
Suppose that the behaviour of a PU is a semi-Markov
ON-OFF process and all nodes in this PU’s coverage range
simultaneously detect the idle channels. It is clear to see that
the channel availabilities of these nodes are high correlation
at a timestamp, so we define the temporal correlation between
node i and node j as follows:

TCi,j,t =
|ci,t ∩ cj,t |

nc
(3)

where ci,t , cj,t are two sequences of the sensed idle channels
for node i and node j respectively, and |ci,t ∩ cj,t | is the
number of the common idle channels. For example, if ci,t =
{2, 3, 4} and cj,t = {2, 4}, then |ci,t ∩ cj,t | = 2. Thus,
the expectation of temporal correlation between node i and
its one-hop neighbours is defined as follows:

E(TCi,t ) =
1
ni,t

ni,t∑
j=1

TCi,j,t (4)

The larger expectation value reveals that a node and its neigh-
bours have more common idle channels (i.e., higher temporal
correlation), which makes them have high probability in a
cluster.

3) CONFIDENCE LEVEL
As discussed, without shadowing problem or unsuspecting
interference, the channel availabilities of the geographically
close nodes have high spatial and temporal correlation so
that the sensing confidences of these nodes also have high
correlation. To evaluate all nodes’ initial confidences before
the first round of clustering, the BS broadcasts a Training
start message. After receiving the message, each node starts
to detect spectrum and sends sensing result to BS inmulti-hop
manner. Then, the BSmakes a global decision by themajority
criterion [40] and broadcasts its decision. In the Training
stage, a confidence level is defined to measure the similarity
of sensing results between node i and BS

CLi,0 =
|ci,0 ∩ cg,0|
|cg,0|

(5)
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where ci,0, cg,0 are two sequences of the sensed idle channels
for node i and BS, respectively. In the Clustering stage,
node i updates the confidence level by exchanging the sensing
results with its cluster CHk , i.e.,

CLi,t =
|ci,t ∩ ck,t |
|ck,t |

(6)

where ci,t , ck,t are two sequences of the sensed idle channels
for node i and CHk , respectively. We thus define the expecta-
tion of confidence level for node i as follows:

E(CLi,t ) =
1
T

T∑
t=1

CLi,t (7)

where T is the total rounds of clustering.

4) RESIDUAL ENERGY LEVEL
One of the main challenges of spectrum-aware clustering is
high energy consumption especially when exchanging sens-
ing results and making local spectrum decision. Such issue
becomes more challenging for the energy limited CRSNs,
so the energy-efficient clustering is necessary to prolong net-
work lifetime [41], [42]. Because the CHs need more energy
to make local decision and allocate the sensed idle channels
for member nodes, a node with higher residual energy is more
likely to become a CH. To evaluate the energy of all nodes,
the residual energy level for node i is defined as

RELi,t = ei,t/emax (8)

where ei,t is the residual energy of node i, and emax is the
maximal initial energy within all nodes.

III. SPECTRUM-AWARE CLUSTERING ALGORITHM
BASED ON WEIGHTED CLUSTERING METRIC
A. CLUSTERHEAD ELECTION
The proposed evaluation criteria allow to clustering nodes
involving various influence factors, which contributes to
obtain the optimal spectrum-aware clustering. Now, we apply
these evaluation criteria to define the following weighted
clustering metric for node i

WCMi,t=w1(E(SCi,t ) · E(TCi,t ))+ w2E(CLi,t )+w3RELi,t
(9)

where E(SCi,t ) · E(TCi,t ) represents the temporal-spatial
correlation between node i and its one-hop neighbours, and
w1,w2,w3 are three weight coefficients indicating the influ-
ence of three influence factors on the clustering metric.

Using WCM to elect CHs and form clusters, the cluster-
ing process is described as follows. First, each node senses
spectrum and exchanges the sensing information with its
one-hop neighbours, followed by computingWCM and send-
ing a WCM message to its neighbours. Then, after receiving
multipleWCMmessages, each node compares itsWCM with
all received messages. If the values of all received WCMs
are less than its own, the node declares itself as a CH and
broadcasts aCHAnnouncementmessage; otherwise, the node

FIGURE 2. Flow chart of spectrum-aware clustering based on weighted
clustering metric.

that cannot declare itself as a CH joins a one-hop cluster,
whose clusterhead has the largest value of WCM. The node
that does not receive any CH Announcement message elects
itself as a CH. Finally, the Ns nodes are partitioned into K
clusters by self-organizing mode. Figure 2 shows the flow
chart of spectrum-aware clustering based on weighted clus-
tering metric.

B. OPTIMAL NUMBER OF CLUSTERS
For cluster-based CRSN, the cluster size (i.e., the number of
nodes in a cluster) has great impact on cooperative tasks such
as channel allocation, channel switch and data routing. The
small cluster size (i.e., the large number of clusters) inevitably
incurs high routing overhead and transmission delay. On the
other hand, the large cluster size (i.e., the small number of
clusters) leads to less common idle channels in a cluster.
Therefore, it is very important to investigate whether group-
ing Ns nodes into K clusters due to WCM is reasonable.
In other words, whether is the number of clusters K optimal?

To solve the optimal number of clusters, we need to define
the intra-cluster similarity and the inter-cluster dissimilarity.
Suppose that the k-th cluster at the t-th round has a clus-
terhead CHk and mk member nodes. The intra-cluster simi-
larity is defined by the average temporal-spatial correlation
between CHk and its member nodes

ICRk,t =


1
mk

mk∑
i=1

SCi,k,t · TCi,k,t , mk > 0

0, mk = 0

(10)

where SCi,k,t · TCi,k,t represents the temporal-spatial corre-
lation between the i-th member nodes and CHk . For con-
venience, we use the temporal-spatial correlation between
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two CHs to denote the correlation between two clusters.
The inter-cluster dissimilarity is thus defined by the average
temporal-spatial incorrelation between the k-th cluster and
the other K − 1 clusters

UNRk,t =
1

K − 1

K∑
l=1,l 6=k

(1− SCl,k,t · TCl,k,t ) (11)

where 1 − SCl,k,t · TCl,k,t represents the temporal-spatial
incorrelation between the l-th cluster and the k-th cluster.
Combining (10) and (11), the following optimization model
maximizing the intra-cluster similarity and the inter-cluster
dissimilarity is proposed to solve the optimal number of
clusters K∗

max
K

L(K ) =
1
K

K∑
k=1

IRAk,t +
1
K

K∑
k=1

UNRk,t (12)

Note that our proposed algorithm has grouped Ns nodes
into K clusters so that we can compute the corresponding
objective function L(K ). As we all know, some of clusters
with high temporal-spatial correlation can be merged while
some of clusters with low temporal-spatial correlation usually
remain separation. Therefore, we merge the pair of clusters
with the highest temporal-spatial correlation, where one of
two CHs with larger value of WCM is elected as a new
CH. Next, the objective function L(K − 1) is calculated for
the new K − 1 clusters. If L(K − 1) is smaller than L(K ),
the existing K clusters is optimal and the network topology
remains unchanged. Otherwise, we sequentially merge clus-
ters until the corresponding value of objective function no
longer becomes larger. By this way, the Ns nodes are grouped
into clusters with the optimal number of clusters K∗.
From the above discussion, our proposed algorithm solving

the optimal number of clusters is summarized as follows.
After clustering, the BS constructs a shortest path tree

routing for all CHs according to their reported locations,
and then the CRSN steps into the Data Transmission stage.
In intra-cluster range, each CH broadcasts a Transmission
start packet containing the channel assignment message and
the transmission time. Each member node transmits data to
its CH after it receives the Data Transmission start packet.
In inter-cluster range, all CHs transmit the collected data to
BS by the established routing. In the interval of data trans-
mission, all CHs periodically sense spectrum instead of all
member nodes. Once the channle availability changes in the
monitoring area, the CRSN will trigger the local or global
re-clustering to establish a new optimal clustering in terms
of the CHs’ sensing results. As such, the high-efficiency
spectrum monitoring based on the optimal clustering is a key
to implement high-performance dynamic spectrum sharing
and high-speed data transmission.

IV. EXPERIMENTAL RESULTS AND ANALYSES
In this section, the feasibility and effectiveness of our pro-
posed algorithm are studied and analyzed by the following
extended simulation experiments in MATLAB platform.

Algorithm 1 The Optimal Number of Clusters for
Spectrum-Aware Clustering Algorithm Based on Weighted
Clustering Metric
Initialization: At the t-th round, group nodes into K clus-
ters by comparing their WCMs
1: while K > 2 do
2: for each cluster k ∈ {1, · · · ,K }
3: calculate ICRk,t and UNRk,t ;
4: end
5: calculate L(K );
6: find one pair clusters

(li, lj) = max SCli,lj,t · TCli,lj,t ;
7: merge two clusters and elect a new clusterhead

ClusterCi← ClusterCi ∪ ClusterCj;
8: for each cluster k ′ ∈ {1, · · · ,K − 1}
9: calculate ICRk ′,t and UNRk ′,t ;
10: end
11: calculate L(K − 1);
12: if L(K − 1) ≤ L(K )
13: K∗ = K ;
14: else if L(K − 1) > L(K )
15: K = K − 1;
16: end
17: end
Output: the optimal number of clusters K∗.

A. PERFORMANCE ANALYSIS OF SPECTRUM-AWARE
CLUSTERING ALGORITHM
We consider a regular cognitive radio sensor network where
the PUs and the CSNs share radio spectrum by CSNs sens-
ing and accessing the PUs’ idle channels. The experimen-
tal scenario is set as follows: 3 PUs and 50 sensor nodes
are randomly distributed in a square area with size 200m2,
and their communication ranges are 100m and 50m, respec-
tively. The spectrum resource in this area is divided into
8 channels licensed to PU1,PU2,PU3. In Figure 3, three
PUs are occupying the channels {2,3}, {2,5} and {1,6},
respectively. In other word, the idle channels that the nodes
can detect are {1,4,5,6,7,8},{1,3,4,6,7,8} and {2,3,4,5,7,8},
respectively. Accordingly, we set the sensed idle channels of
a node due to its geographical location. For example, if a
node is in the coverage ranges of PU1 and PU2, its sensed
idle channels are randomly chosen from {1,4,6,7,8}. The
remaining energy level of each node is randomly chosen from
(0,1). In terms of the sensing results of all nodes, Figure 3(a)
displays that the typical spectrum-aware clustering algorithm
groups nodes into 13 clusters, where 5 nodes cannot join
any cluster and have to declare themselves as clusterheads
CH9 ∼ CH13. These nodes, however, may group together
due to the temporal-spatial correlation. Setting w1 = w2 =

w3 = 1/3, our proposed algorithm divides 50 nodes into
10 clusters in Figure 3(b), where only three nodes declare
themselves as clusterheads CH8,CH9,CH10. It is clear to
see that grouping nodes based on various influence factors
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FIGURE 3. Comparison of clustering results for different spectrum-aware clustering algorithms. (a) Clustering using typical
spectrum-aware clustering algorithm (b) Clustering using our proposed algorithm.

can providemore reasonable spectrum-aware clustering com-
pared to only focuse on the sensed idle channels of all nodes.

B. VERIFICATION OF THE OPTIMAL CLUSTERING
We next try to verify our spectrum-aware clustering is
optimal. Applying Algorithm 1 to the clustering result
in Figure 3(b), Figure 4 shows that the objective function
L(K ) is monotone decreasing with respect to the number of
clusters K , where the maximum function value is obtained
as K = 10. More specifically, merging a pair clusters C5,C7
with the maximum temporal-spatial correlation, the objective
function value of the new clustering L(9) reduces 1.97%
compared to L(10). Nevertheless, the new clusterhead CH5
elected from {CH5,CH7} cannot communicatewith themem-
ber nodes in the cluster C7, so the mergence operation can-
not obtain better clustering than the initial clustering with
10 clusters. The similar result happens after merging the new
generated cluster C5 and the previous cluster C6. Repeat-
ing the above mergence operation, the value of objective
function decreases until all nodes finally form two clusters.
The monotone decreasing property of the objective function

FIGURE 4. Objective function L(K) with respect to the number of
clusters K.

implies that our proposed algorithm can provide the optimal
spectrum-aware clustering when considering the intra-cluster
and inter-cluster correlation characteristics.

C. EVALUATION FOR NETWORK PERFORMANCE
After forming the optimal clustering, the member nodes
receive the Data Transmission start packet from their CHs
and start to transmit data. To test the cluster-based net-
work performance, the following simulation experiments set
the system parameters based on IEEE 802.15.4 as follows.
We perform a round of the PU′s ON-OFF process, where
each process maintains 60s. Due to the new sensing structure
in Figure 1, the sensing time and sensing period are 10ms
and 40ms, respectively, and the re-clustering costs 40ms. The
rate of each node’s data generation is 2kb/s, and the messages
for sensing and clustering are 150bits and 300bits, respec-
tively. The energy consumption for handling these messages
is 50nJ/bit. During the available time of data transmission,
each member node transmits sensing data to its CH where
the energy consumption of data transmission follows the free
space transport model [28]. Each CH then fuses its own
data and the received data with the data fusion rate 20%.
Finally, the BS located on (150, 0) fuses the received data
from all CHs to accomplish data collection and information
management. In Figure 5(a), our proposed algorithm only
needs CHs to periodically sense spectrum after clustering that
helps their member nodes achieve more data transmission
time to improve the network throughput. On the contrary,
the periodical spectrum sensing algorithm in [18] needs all
nodes periodically sense spectrum, which makes the amount
of data transmission reduces from 8.28% to 21.63% with
the increasing number of nodes compared to our proposed
algorithm. On the other hand, Figure 5(b) displays that the
energy consumption of spectrum sensing and clustering for
our proposed algorithm is less than that of the periodical
spectrum sensing algorithm, where the maximum reduction
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FIGURE 5. Comparison of the network performance for the periodical spectrum sensing algorithm and our proposed
algorithm after clustering. (a) Amount of data transmission for different number of nodes (b) Energy consumption of
spectrum sensing and clustering for different number of nodes.

is about 88% as Ns = 120. The above experimental results
reveal that applying the new sensing structure makes our
proposed algorithm obtain better network performance.

D. INFLUENCE OF THREE WEIGHT COEFFICIENTS
From the implement processes of our spectrum-aware cluster-
ing algorithm, we observe that the WCM plays an important
role in clusterhead election and cluster formation. Further-
more, three weight coefficients w1,w2,w3 are the influence
of temporal-spatial correlation, sensing confidence and resid-
ual energy on WCM, respectively. In the front experiments,
we suppose that three weight coefficients have the same
value, i.e., three evaluation factors have the equal influence
onWCM. In different practical scenarios, however, the impor-
tance of three evaluation factors to spectrum-aware cluster-
ing is different. For instance, with the purpose of real-time
data transmission, the clustering may mainly think about
sensing confidence because highly reliable nodes coopera-
tively detecting idle channels is the guarantee of high-quality
communication. On the other hand, in a video monitoring
system, the CHs must have residual energy as much as pos-
sible in order to fuse a large amount of the video signals
observed by their member nodes. At this point, the clus-
tering needs to emphasize on the effect of residual energy
on WCM.
The following experiments test the performance of our

proposed algorithm with respect to three weight coefficients
according to the different application scenarios. To achieve
the most compact hierarchical structure for a CRSN, we set
w1 = 3/4,w2 = 1/8,w3 = 1/8 to emphasize on the
influence of temporal-spatial correlation. Figure 6(a) shows
that 50 nodes are grouped into 9 clusters, where only one
node elects itself as CH. Compared to the equal weight coeffi-
cients in Figure 3(b),WCM giving priority to temporal-spatial

correlation can effectively clustering nodes thereby avoiding
too much isolated CHs. When weakening the influence of
temporal-spatial correlation and reinforcing the influence
of sensing confidence, two nodes elect themselves as CHs
in Figure 6(b). Figure 6(c) gives the most number of clusters
if emphasizing on the influence of residual energy. There-
fore, the results of spectrum-aware clustering mainly depends
on the linear combination mode of three evaluation factors
in WCM.

To evaluate the network performance for the different lin-
ear combination modes of three evaluation factors, we define
the average amount of data transmission and the average
energy consumption by performing Monte Carlo experiment.
Following the above experiments, Figure 7(a) shows that the
average number of clusters for four linear combinationmodes
greatly increases with the increasing of the number of nodes,
which leads to the notably increasing of the average energy
consumption in Figure 7(c). The average energy consumption
with respect tow1 = 1/8,w2 = 1/8,w3 = 3/4 is higher than
that of the other linear combination modes, and the average
amount of data transmission is the lowest in Figure 7(b). This
is because that spectrum-aware clustering mainly focusing
on the effect of residual energy cannot take advantage of the
high correlation of sensing results to form reasonable clus-
tering. The other linear combination modes, however, make
use of temporal-spatial correlation to obtain better network
performance. Especially when setting w1 = 3/4,w2 =

1/8,w3 = 1/8, we have the best network performance
including the smallest number of clusters, the highest average
amount of data transmission and the lowest average energy
consumption. It is easy to see that the temporal-spatial cor-
relation plays a more important role on the spectrum-aware
clustering, which is consistent with the previous theoretical
analyses. Our clustering metric well utilizes this property
to achieve the satisfactory spectrum-aware clustering-based
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FIGURE 6. Comparison of spectrum-aware clustering for different linear combination modes of three weight coefficients.
(a) w1 = 3/4, w2 = 1/8, w3 = 1/8 (b) w1 = 1/8, w2 = 3/4, w3 = 1/8 (c) w1 = 1/8, w2 = 1/8, w3 = 3/4.

FIGURE 7. Comparison of the network performance for the different values of three weight coefficients. (a) Number of clusters for the different
number of nodes (b) Amount of data transmission for the different number of nodes (c) Average energy consumption of data transmission for
the different number of nodes.

network topology so as to improve the quality of service
of CRSNs.

E. PERFORMANCE COMPARISON OF
DIFFERENT ALGORITHMS
The next experiment compares the performance of our pro-
posed algorithm with two existing spectrum-aware clustering
algorithms in terms of the number of clusters. Figure 8 illus-
trations the relation between the number of nodes and the
number of clusters for three algorithms. It can be seen that
the number of clusters for three algorithms increases with the
increasing of the number of nodes, where the proposed algo-
rithm using w1 = w2 = w3 = 1/3 constructs the less number
of clusters. For example, when the number of nodes up turns
to 500, the proposed algorithm groups nodes into 22 clusters
while RARE and cluster-based protocol [36] create 24 clus-
ters and 26 clusters, respectively. Obviously, the high node
density enhances the temporal-spatial correlation that makes
a cluster include the more number of neighboring nodes

in our proposed algorithm. In terms of the experimental
conditions in Figure 7, Figure 8(b) displays the average
energy consumption of data transmission for three clustering
algorithms after forming clusters listed in Figure 8(a). The
average energy consumption of RARE and our proposed
algorithm are lower than that of cluster-based protocol, and
the corresponding reduction proportion is from 3.45% to
51.74%. This is because the number of clusters of RARE
and our proposed algorithm are less that of cluster-based
protocol. The energy efficiency of our proposed algorithm,
which forms the optimal clustering, outperforms RARE and
cluster-based protocol. As Ns = 500, the average energy
consumption of our proposed algorithm reduces 3.12% and
9.81% compared to RARE and cluster-based protocol. From
the experiments in Figure 7 and Figure 8, we can clearly
see that the temporal-spatial similarity of spectrum sensing is
the essential characteristic of CRSNs. Taking full advantage
of this characteristic is not only benefit to quickly form
clusters, but also to design effective routing protocol and data
transmission protocol.
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FIGURE 8. Performance comparison of the proposed algorithm with RARE and cluster-based protocol. (a) Number of clusters for
the different number of nodes (b) Average energy consumption of data transmission for the different number of nodes.

V. CONCLUSION
The spectrum-aware clustering algorithm can better group
nodes than some typical clustering algorithms by well
exploiting the cognitive characteristic of CRSNs. Differ-
ent from the traditional spectrum-aware clustering algo-
rithms, a novel spectrum-aware clustering algorithm based
on weighted clustering metric is proposed to take account
into various clustering criteria including temporal-spatial cor-
relation, sensing confidence and residual energy. Comparing
theWCMof all nodes, the optimal spectrum-aware clustering
is formed to efficiently enhance the network connectivity of
a CRSN. After clustering, our proposed algorithm involving
CHs sensing spectrum instead of all member nodes provides
an energy-efficient spectrum sensing method. The experi-
ments show that the data transmission and energy consump-
tion are greatly improved under the optimal spectrum-aware
clustering. In the future work, we will test the proposed algo-
rithm in some application scenarios, e.g., smart community,
internet of vehicles and ecological monitoring.
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