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ABSTRACT Understanding and simulating human behavior during the evacuation is essential in cognitive
computing, which can be used to guide pedestrians to evacuate quickly and to avoid a potential hazard. In this
paper, we propose a model to simulate the human behavior for evacuation from a classroom. Specifically,
first, we give an improved evacuation model based on cellular automata, which consists of the static floor
field and the dynamic floor field. Then, we present the detailed algorithms for calculating both the floor
fields. The static floor field is calculated using an A-star algorithm, which can be used to solve the evacuation
environments with and without obstacles. The dynamic floor field is calculated based on the impact of
the number of pedestrians in each exit area on evacuation. Finally, the calculation method of pedestrian
movement probability and the model evolution rules are given. The simulation experiments using our model
have been conducted, and comparisons between our model and some state-of-the-art evacuation models are
also conducted. The experimental results show that the model is effective and can reproduce the evacuation
experiments conducted by students well. The model is expected to yield the optimal evacuation plan from
the indoor environment.

INDEX TERMS Cognitive computing, human behavior, modeling, evacuation, cellular automata.

I. INTRODUCTION
Cognitive computing aims to mimic the functioning of the
human brain and help to improve human decision-making,
and it has been widely used in data intelligence [1], brain-
computer modeling [2], and healthcare [3]. As an impor-
tant component of cognitive computing, understanding and
simulating human behavior during the evacuation has gained
more attention in recent years [4]–[6]. In pedestrian-intensive
environments, if pedestrians are improperly evacuated, it will
cause crowding, falling and stampede accidents, which seri-
ously threaten people’s safety and health. It is a necessary
work to construct a reasonable evacuation model to simulate
and understand human behavior, whichwill be applied to help
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pedestrians to evacuate safely and protect human health for
different evacuation environments [7].

Researchers have proposed several evacuation models to
understand and simulate human behavior for evacuation.
Those models can be divided into two main categories:
macroscopic evacuation models and microscopic models [8].
Macroscopic models ignore the differences between individ-
uals and take pedestrians as a whole, and the pedestrians
can be treated as the flow of water in the pipeline [9]–[11].
Xiong et al. [12] proposed a model that simulates the
phenomenon of pedestrian flow self-organization in oppo-
site pedestrian flow. Tian et al. [13] introduced a two-
dimensional lattice hydrodynamic model of traffic, which
extends the bidirectional pedestrian lattice fluid dynam-
ics model [14] to two-dimensional bidirectional pedestrian
flow. Microscopic models represent each pedestrian indi-
vidually, which can reflect individual properties such as
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walking velocity and the interactions between pedestrians.
Microscopic models include social force model [15], [16],
centrifugal force model [17], optimal velocity model [18],
lattice gas evacuation model [19], [20] and cellular
automaton model [21]–[25]. Zheng et al. [21] proposed
a dynamic parameters cellular automaton, the model is
used to simulate the behavior of passenger in subway.
Kirchner and Schadschneider [22] presented an evacuation
model, which uses bionics to describe the interaction between
pedestrians. Yuan and Tan [23] used the results of reliability
analysis to simulate evacuation from a room full of smoke.

Although those evacuation models can simulate human
behavior for evacuation, some of those models still exist
the following two limitations. Some evacuation models only
consider the case of no obstacles in the room [22]–[24].
In fact, obstacles in the room are common in the evacuation
environment. Meanwhile, the number of pedestrians in the
exit area is a very important factor for evacuation [24], [25],
but the factor is rarely studied in those models.

In this paper we propose a model based on cellular
automata to study the human behavior in evacuation from a
classroom. The model consists of the static floor field and the
dynamic floor field. We use A-star algorithm to calculate
the static floor field and consider the dynamic impact of
the number of pedestrians in the exit area on evacuation.
In addition, simulation experiments have been conducted.
The experiment results show that the number of pedestrians
in the exit area is an important factor for evacuation and our
model can reproduce the evacuation experiments conducted
by students well.

II. EVACUATION MODEL
In this section, we first describe the evacuation model based
on cellular automata. Then we propose the algorithms for
calculating the model’s static floor field and dynamic floor
field. Finally, we give the method of calculating transition
probability and the evolution rules of the model.

A. MODEL DESCRIPTION
In our model, we divide the room into two-dimensional
square cells. Each cell is 0.5m×0.5mwith three states: empty,
occupied by a pedestrian and occupied by an obstacle. Obsta-
cles include the wall, the furniture, the household appliance,
and so on. As shown in Figure 1a, we use theMoore neighbor-
hood, and a pedestrian can only have two options each time:
stay unmoved or move to one of the eight neighbors cells.
The next movement of a pedestrian is based on the transition
matrix, as shown in Figure 1b, which is determined by the
evolution model consisting of the static floor field and the
dynamic floor field.

The static floor field reflects the influence of the room’s
structure and obstacles on evacuation, and it will stay
unchanged during the evacuation. The dynamic floor field is
updated simultaneously with time steps, and in this paper we
consider the dynamic impact of the number of pedestrians in
the exit area on evacuation.

FIGURE 1. (a) Potential direction of pedestrian movement. (b) Matrix of
movement probability.

B. STATIC FLOOR FIELD CALCULATION
A-star algorithm is used to find the path, and it simulates
human’s pathfinding well in the known environment. A-star
algorithm is widely used in the robot path planning and
aircraft navigation [26], but it is rarely used in calculat-
ing the static floor field of the evacuation model. In this
section, we use A-star algorithm to calculate the static floor
field.

Assume that there are N exits Exit1,Exit2, . . .ExitN in a
room and the length and width of the room are L× 50cm and
W × 50cm, respectively. Let Ci,j denote a cell in the room
with 1 ≤ i ≤ L and 1 ≤ j ≤ W . Let Cxend,yend denote the cell
at Exit i with 1 ≤ i ≤ N . Let Path1,Path2, . . . ,PathN denote
the paths form Ci,j to Exit1,Exit2 . . .Exitn, respectively. Let
L1,L2, . . .LN denote the lengths of Path1,Path2,. . .PathN ,
respectively. The following formulas are used in our
algorithm.

F(Cx,y) = G(Cx,y)+ H (Cx,y) (1)

G(Cx,y) = D+ G(Cxpar,ypar ) (2)

H (Cx,y) = 10× (|x − xend | + |y− yend |) (3)

where,
Cx,y represents the current cell;
Cxpar,ypar represents the parent of Cx,y;
F
(
Cx,y

)
denotes the movement cost of the path from Ci,j

to Cxend,yend and constrained to go through Cx,y;
G
(
Cx,y

)
denotes the movement cost of the path fromCi,j to

Cx,y; if the pedestrian moves horizontally or vertically, then
D is equals to 10; otherwise, D is equals to 14;
H
(
Cx,y

)
denotes the estimated cost movement of the path

from Cx,y to Cxend,yend .
In addition, two empty lists called the open list and the

closed list are used to store cells. Let Si,j be the static floor
field value of the cell Ci,j, and we could use Algorithm 1 to
calculate Si,j.

Now we give an example to illustrate Algorithm 1. The
structure of the room is shown in Figure 2a, which has two
exits. We first find each cell’s two paths form the cell to
the two exits (see Figure 2b), next calculate the length of
these two paths, after find the minimum path value from the
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FIGURE 2. (a) An example of an evacuation room. (b) The two paths to the two exits of the pedestrian. (c) Minimum path value for
each cell.

Algorithm 1 Calculating Static Floor Field Based on A-Star Algorithm for a Room
Input: the obstacles in the room
Output: the static floor field of the room
Step 1: If the state of Ci,j is empty or occupied by a pedestrian, then go to Step 2; otherwise, Si,j is Null and return.
Step 2: Find Path1,Path2, . . .PathN and calculate L1,L2, . . .LN . The procedures of finding Pathi and calculating Li

are as follows, with 1 ≤ i ≤ N .
Step 2.1: Calculate and record G,H , and F cost of Ci,j, and add Ci,j to the open list.
Step 2.2: While the open list is not empty
Step 2.3: Find the cell with minimum F in the open list and add the current cell to the closed list.
Step 2.4: For each of the 8 cells adjacent to the current cell, denoted by Cxa,ya.
Step 2.5: If Cxa,ya is not in the closed list and the state of Cxa,ya is not occupied by an obstacle. Then
Step 2.6: If Cxa,ya is not in the open list Then
Step 2.7: Calculate and record G,H and F cost of Cxa,ya using formula (2), (3) and (1), respectively.

Make the current cell the parent of Cxa,ya. Add Cxa,ya to the open list.
Step 2.8: Else
Step 2.9: Calculate Gnew cost of Cxa,ya using formula (2). If Gnew < G, then G = Gnew, recalculate and

record H and F cost of Cxa,ya using formula (3) and (2) respectively, and make the current
cell the parent of Cxa,ya.

Step 2.10: End If
Step 2.11: End If
Step 2.12: If Cxend,yend in the open list, which indicates that Pathi has been found, then Pi is marked have-path and

go to Step 2.16 and Step 2.17.
Step 2.13: End For
Step 2.14: End While
Step 2.15: If the open list is empty and Pathi is not marked have-path, then Pathi is marked no-path and set Li = +∞.
Step 2.16: If Pathi is marked have-path, then obtain the path and calculate Li.
Step 2.17: Work backwards from Cxend,yend , go from each cell to its parent cell until reach Ci,j, and then obtain the path.

Calculate Li according to the path.
Step 3: Find the minimum value of L1,L2, . . .LN , denoted by MinL i,j.
Step 4: Find the maximum value of all theMinl i,j of the room, denoted by MaxL, with 1≤ i ≤ RL and 1 ≤ j ≤ RW .
Step 5: Obtain Si,j = MaxL −MinLi,j.

two paths, then record minimum path value for each cell
(see Figure 2c), and finally can obtain the room’s static floor
field by Step 4 and 5 of Algorithm 1.

C. DYNAMIC FLOOR FIELD CALCULATION
In this section we give an algorithm for calculating the
dynamic floor field. We consider the dynamic impact of the
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FIGURE 3. (a) An example of evacuation cost of pedestrians in exit area.
(b) An example of evacuation cost of a pedestrian to an exit.

number of pedestrians in the exit area on evacuation, and
use Di,j to denote the dynamic floor field. We first give the
following definitions which will be used in the algorithm for
calculating the dynamic floor field.

(1) Exit area is defined as the rectangular area near the
exit. The size of the exit area can be adjusted according to
the evacuation room. As shown in Figure 3a, the exit areas of
exit A and exit B are R1 and R2, respectively.
(2) Evacuation cost of pedestrians in an exit area is defined

as the sum of the distance from pedestrians in the exit area
to the exit, and it denoted by VE . As shown in Figure 3a, the
evacuation cost of pedestrians in R1 is the sum of the distance
from the two pedestrians in R1 to exit A. The evacuation cost
of pedestrians in R2 is the sum of the distance from the five
pedestrians in R2 to exit B.

(3) Evacuation cost of a pedestrian to an exit is defined as
the Euclidean distance from the pedestrian to the exit, and it
is denoted by VP. As shown in Figure 3b, the evacuation cost
of the pedestrian P to exit A and exit B, denoted by VP,A and
VP,B are d1 and d2, respectively.

(4) The cost of pedestrian choosing an exit, denoted by VS ,
is defined as follows:

VS = k1VE + k2VP (4)

where, k1 and k2 represent the sensitive factor of VE and VP,
respectively. In this paper we set k1 = 1 and k2 = 1.
Now we give the following algorithm, which is used to

calculating the dynamic floor field of a room of two exits.
In Step4 of Algorithm 2, parameter VL and V can be set

according to the evacuation room. Algorithm 2 can calculate
a pedestrian’s dynamic floor field at time t , and we can obtain
all pedestrians’ dynamic field at time t by calculating each
pedestrian’s dynamic field using Algorithm 2.

D. TRANSITION PROBABILITY CALCULATION
After calculating the static floor field and the dynamic floor
field according to Algorithm 1 and Algorithm 2, we can
obtain the pedestrian’s movement probability Pi,j using to the
following formulas:

Pi,j = N exp{ksSi,j + kDDi,j}αi,j(1− ni,j) (5)

Algorithm 2 Calculating a Pedestrian’s Dynamic Floor Field
at Time t
Input: the pedestrian’s position at time t
Output: the dynamic floor field of the pedestrian
Step 1: Set the size of the exit area for the two exits.
Step 2: Calculate the evacuation cost of the two exit

areas, denoted by VE,1 and VE,2.
Step 3: Calculate evacuation cost of a pedestrian to the

two exits, denoted by VP,1 and VP,2.
Step 4: Calculate the cost of pedestrian choosing the

two exits using formula (4), denoted by VS,1 and
VS,2. Calculate the absolute difference between
VS,1 and VS,2, denoted by VG.

Step 5: IF the pedestrian is not in the two exit area and
VG > VL . Then

Step 6: Find the exit with the smaller value of VS
form the two exits, denoted by ELOW

Step 7: Find the cell that is the closest to ELOW from
the nine cells of the pedestrian possible to
move, denoted by U .

Step 8: Set the value of dynamic floor field of cell U
to V , and set the value of dynamic floor field
of the other night cells to 0.

Step 9: End If

N = [
∑
(i,j)

exp{ksSi,j + kDDi,j}αi,j(1− ni,j)]−1 (6)

where,
Si,j and Di,j denote the static floor field and the dynamic

floor field, respectively;
kS and kD denote the sensitive factor of the static floor field

and the dynamic floor field, respectively;
ni,j represents the factor of pedestrian occupancy; if the

position of the cell is occupied by a pedestrian at time t, then
ni,j is equal to 0; otherwise, ni,j is equal to 1;
αi,j represents the factor of obstacle occupancy; if the

position of the cell is occupied by the obstacle at time t, then
αi,j is equal to 0; otherwise, αi,j is equal to 1;
N represents normalization coefficient.
In formula (4) and (5), we can adjust the values of kS and

kD to control the influence of Si,j and Di,j on Pi,j.

E. MODEL EVOLUTION RULES
The model uses the parallel update rules, and pedestrians
satisfy the following evolution rules during the evacuation
from time t to t + 1.

(1) With the movement probability calculated by the for-
mula (5) and (6), a pedestrian moves to a next cell with the
maximum probability to the target position at time t + 1.
If there are multiple choices with the same probabilities, then
the pedestrian will randomly select a position with a uniform
probability at time t + 1.
(2) When multiple pedestrians compete for the same target

position at the same time, the system randomly selects one
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TABLE 1. Comparison of key evacuation data for Experiment 1.

TABLE 2. Comparison of key evacuation data for Experiment 2.

of the pedestrians to move to the target position with equal
probability at time t + 1, and the remaining pedestrians
remain do not move.

(3) If two pedestrians simultaneously take the position
occupied by the other as the target position at time t+ 1, then
the two pedestrians will exchange positions; otherwise, they
will remain unmoved.

(4) When a pedestrian moves to an exit, the pedestrian will
be removed from the room at time t+1, namely the pedestrian
successfully completed evacuation.

(5) When all pedestrians in the room have successfully
completed evacuation, namely there are no pedestrians in the
room, the simulation ends.

III. EXPERIMENTAL RESULTS AND DISCUSSION
To validate efficiency of our proposed model, we use our
proposed model to simulate the evacuation experiments
conducted by Liu et al. [25], and compare key data of
experiments. The model’s algorithms were coded in the C#
programming language. The computationwas performed on a
computer with a processor of Dual-core 2.6GHz, main mem-
ory 4G and operation system Microsoft Windows 8 64bit.

A. EVACUATION EXPERIMENT DESCRIPTION
Liu et al. [25] organized 40 students to conduct two evac-
uation experiments in a classroom, and these students were
between 20 and 23 years old. The two experiments are called
Experiment 1 and experiment 2, respectively. The classroom
is divided into 27 × 23 grids, and the size of each grid is
50cm× 50cm. The classroom has two exits, and each exit has
two doors. In the following statement, we use ‘‘pedestrian’’
to stand for ‘‘student’’. We assume that each time step in the
model costs 0.2 s, which is the same as Liu’s model [25]. The
initial distribution of the two experiments are described as
follows.
Experiment 1: Figure 4a shows the initial distribution of

the classroom and the pedestrians in Experiment 1. There are
only one door open for each exit.

Experiment 2: Figure 5a shows the initial distribution of
the classroom and the pedestrians in Experiment 2. There are
two doors open for each exit.

B. SIMULATION EXPERIMENTAL RESULT
The parameters of our model to simulate Experiment 1 and
Experiment 2 are set as follows: kS = 1,kD = 1,V = 25
and VL = 4. As shown in Figure 4a and Figure 5a, we set
rectangular areas R1 and R2 as two exit areas. Since some
rules of the model are based on probability, we run 10 times
for each simulation experiment to ensure the reliability of the
results, namely our result is an average value of 10 times’
runs.

Table 1 shows the key evacuation data which are derived
from Experiment 1 conducted by students, simulated Exper-
iment 1 using Liu’s model and simulated Experiment 1 using
our model. Table 2 shows the key evacuation data which are
derived from Experiment 2 conducted by the 40 students,
simulated Experiment 2 using Liu’s model [25] and simulated
Experiment 2 using our model.

Figure 4 shows the snapshots at the 10th, 20th, 30th, 40th,
and 45th time steps of the simulations for Experiment 1 using
our model in a simulation experiment. Figure 5 shows the
snapshots at the 5th, 10th, 15th, 20th, and 30th time steps
of the simulations for Experiment 2 using our model in a
simulation experiment.

C. DISCUSSION
In the previous section, we give the experimental results of
the simulation evacuation. Now we analyze the experimental
results as follows.

(1) Our model can reproduce the evacuation experiments
conducted by students well. As shown in Table 1 and Table 2,
the number of pedestrians choosing the two exits in simu-
lation experiments using our model is the same as that in
experiments conducted by students. The maximum evacua-
tion time for two exits and the average evacuation time in
simulation experiments using our model are well fitted to that
in experiments conducted by students.
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FIGURE 4. The initial distribution of the classroom for Experiment 1 and the snapshots at the 10th, 20th, 30th, 40th, 45th time steps of the simulation
using our model for Experiment 1.

FIGURE 5. The initial distribution of the classroom for Experiment 2 and the snapshots at the 5th, 10th, 15th, 20th, 30th time steps of the simulation
using our model for Experiment 2.
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In addition, compared to the experiments conducted by
students and the simulation experiments using Liu’s model,
simulation experiments using our model can evacuate pedes-
trians in a shorter average evacuation time.

(2) The number of pedestrians in each exit area is also
an important factor for pedestrians to choose to evacuate the
exit in the evacuation. When the gap of the cost of a pedes-
trian choosing exit between two exits reach the threshold,
the pedestrian will consider to evacuate from the exit with
a fewer pedestrians in that exit area.

We believe that our evacuation model can be applied to
derive the reasonable evacuate plan to prevent from the indoor
environment and protect human health. In addition, our evac-
uation model may be guide pedestrians to improve human
decision-making during evacuation.

The limitations of our model should be acknowledged.
In our evacuation model, we ignore the factors which affect
the field of pedestrian’s view, such as smoke and fire.
If those factors exist in evacuation, our model needs to be
improved.

An important direction for future work might be to study
the relationship between the desks layout of the classroom
and the time of evacuation from the classroom using our
evacuation model, which may help us to select a reasonable
layout to evacuate quickly from the classroom.Another future
research work is to extend our model and apply it for evacua-
tion form other indoor environments, such as the conference
hall.

IV. CONCLUSION
We propose an evacuation model based on cellular automata
that is used to simulate the human behavior during evacuation
from a classroom. In our model two factors affecting evacu-
ation are considered: the room’s obstacles and the number of
pedestrians in each exit area. The factor of room’s obstacles
is represented by the static floor field that is calculated using
A-star algorithm. The factor of the number of pedestrians in
each exit area represented by the dynamic floor field, and the
algorithm for calculating the dynamic floor field is also given
in this paper. In addition, we give the method of calculating
pedestrian movement probability and the evolution rules of
the model. Our model can be used to handle the two evacu-
ation environments with and without obstacles. Two simula-
tion experiments and some experimental comparisons have
been conducted. Our model can reproduce the evacuation
experiments conducted by students well and evacuate pedes-
trians in a shorter average evacuation time. The experiment
results show that the number of pedestrians in the exit area is
an important factor for evacuation, and our model is effective
and superior.
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