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ABSTRACT Abnormal testing data can severely reduce model performance if not processed properly. In this
paper, we propose a preprocessing system to handle different types of commonly seen abnormal testing data.
The system consists of an aberrant data detector and an aberrant data corrector. The aberrant data detector is
responsible for classifying the type of incoming data. Based on the data type, the aberrant data corrector will
take different actions to amend testing data. Users can then apply their preferred prediction methods on the
corrected testing data. Specifically, corrupted and adversarial images are used as examples of abnormal data.
We show that corrupted data can be reconstructed through aGaussian locally linearmappingsmethod, and the
prediction performance of adversarial samples can be improved by using the nearest neighbors as a surrogate.
We compare the proposed aberrant data detector and corrector with existing andwell-recognized alternatives.
These approaches are published individually and do not put two components together as a pre-processing
system. The numerical outcomes show that our proposed components, standing alone, are competitive. The
proposed system is a generic method that can be applied to different downstream predictive models. We use
three existing prediction methods to illustrate the general usage of the proposed system and its capability of
improving prediction efficacy.

INDEX TERMS Data preprocessing, Gaussian mixture model, image reconstruction, outlier detection,
principal component analysis.

I. INTRODUCTION
Prediction efficacy relies on testing data following the pat-
terns learned by the prediction model built with the training
samples. However, this assumption may not always be valid
in practice. Newly observed data could be altered or contam-
inated, which reduces the prediction performance. To obtain
reliable prediction results on irregular entries, it is necessary
to detect the irregular samples and fix them accordingly.
As the sources of causing irregular patterns may vary, differ-
ent strategies should be applied to different types of abnormal
data. In addition, it is not necessary to apply the repairing
step to regular data. Thus, it may be beneficial to determine
the data types before applying any repairing methods on
the testing data [27], [33]. A reliable preprocessing system
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should contain a detector to determine the type of an input,
and correctors to fix the irregular patterns, depending on the
input type. An input could be normal, which follows the
pattern captured by the model, or abnormal caused by dif-
ferent reasons such as being corrupted or being adversarially
perturbed. A predictive model can be directly applied to a
normal input. In the meantime, it is preferred to pre-process
an abnormal input so that the irregularity can be fixed to
ensure reliable prediction outcomes.

Recent studies focus on detecting two kinds of irregular
samples: outliers and adversarial samples. Outlier detec-
tion, also known as novelty detection or anomaly detec-
tion, aims to construct a classifier to distinguish normal
entities and outliers. Since it is impossible to eradicate all
kinds of outliers, outlier detection often focuses on train-
ing a classifier on normal data, which is the so-called one-
class classifier [8], [22], [32]. The classification performance
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highly relies on the features extracted from the data. When
the features are selected properly, one can obtain a powerful
classifier and achieve high detection accuracy. The represen-
tative features that can separate normal and irregular samples
vary from dataset to dataset and may require excessive time
and efforts to identify. One can also detect outliers based
on reconstruction errors. Developing a reliable reconstruc-
tion strategy is challenging. Several techniques such as low-
rank approximation [25] or deep learning [4] are used to
capture the representative features of normal entities. Since
the features are extracted from normal samples, the recon-
struction errors would be small for normal samples but large
for outliers. Low-rank approximation methods often assume
linearity and may not capture complex associations embed-
ded in the dataset. Deep learning-based methods [15] are able
to model sophisticated associations through different kinds
of network architectures. However, these methods require a
large volume of data for training, which may not be suitable
for moderate size datasets.

The detection task becomes more challenging when deal-
ing with adversarial samples [3], [18], [36]. The differences
between adversarial samples and their normal counterparts
are usually imperceptible, making the conventional strate-
gies of detecting outliers fail. To overcome the difficulty,
maximum mean discrepancy (MMD) [11] is used for test-
ing whether two sets of data are drawn from the same
underlying distribution [12]. However, the procedure requires
bootstrapping to approximate p-values, which increases the
computational burden. Feature squeezing (FS) [34], is moti-
vated by the observation that the feature input spaces are
often unnecessarily large, which leaves room for adversarial
perturbations. FS intends to remove adversarial perturba-
tions by squeezing out unnecessary input features. One can
detect adversarial samples by comparing the model outcomes
obtained from the original input and the squeezed version.
If the outcomes differ, the input is considered as adversarial,
otherwise, regular. FS if effective if classification is the task
of interest. However, for prediction, the potentially corrupted
samples from FS could enlarge the prediction error, with
the side effect of lessening the ability to detect adversarial
entities. MagNet [21] learns the manifold of normal sam-
ples and projects the inputs onto the learned data manifold.
If the input is adversarial, the projection procedure removes
the adversarial perturbations and changes the output results.
Similar to FS, by comparing the output outcomes, one can
detect the adversarial samples. However, MagNet may be less
effective in detecting adversarial examples with sparse per-
turbations [17]. Latent information can be utilized to detect
adversarial examples. In [13], PCA whitening is used to find
the latent space of normal data. The projected coefficients of
abnormal data are different from the ones obtained from the
regular samples. Using this fact, one can effectively distin-
guish adversarial data from normal ones. Notably, all these
methods focus on one type of irregular pattern. Detectors are
built separately to distinguish either normal data v.s. outliers
or normal data v.s. adversarial samples but cannot handle

three kinds of inputs at the same time. Some detectors can be
combined together to achieve the goal. However, this solution
is not straightforward nor readily available and would require
sophisticated skills from users to implement it.

The fixing process can be done by finding the closest rep-
resentations in the latent space [2], [7], [19]. Since the latent
space is constructed using regular observations, the abnormal
patterns of the restored data will be mitigated. Nearest neigh-
bors can also be used to reconstruct the problematic data.
In [1], random sampling is adopted to search patch matches,
and these matches are used to correct the damaged parts.
With the patch-based methods copying patches to fill the
missing parts, these methods can generate disconnected lines
or broken edges. In addition, patch-based methods may not
generate proper patches if the background around the missing
region is too complicated. To improve the patch selection
and textual synthesis process, a new priority definition is
proposed in [6] to propagate geometry information. With
the advancement in deep neural networks, the performance
of image restoration has been greatly improved. Deep neu-
ral networks learn hidden representations and reconstruct
images through convolutional filters [14], [16], [24], [35],
which can produce meaningful repair results. When applying
these reconstruction methods (patch-based or deep learning-
based), the location information of the damaged parts needs to
be accessible, which makes the repairing task more difficult
in practice since this information is often unknown.

In this work, we propose a preprocessing system to handle
different types of abnormal observations when conducting
predictions. Our goal is to provide a general framework for
regression tasks so that users can use their preferred model(s)
for prediction while assuring the outcomes are robust to
abnormal data. There are two building blocks in the proposed
method. The aberrant data detector is used to distinguish
different types of testing data. Different from the detectors in
the literature, the proposed approach can classify inputs into
three categories: normal, corrupted and adversarial. We dis-
cuss different alternatives to construct the detector and pro-
vide suggestions on the situations to use them. The goal of
the aberrant data corrector is to provide amended testing
data so that users can obtain reliable prediction outcomes
from them. We devise a reconstruction method to effectively
repair the data without knowing the location of the damaged
parts. The proposed method contribute to design a detector
for multiple types of irregular patterns. In addition, the recon-
struct method utilizing locally-linear mappings is different
from the approaches in the related works. The performance
of the proposed system is demonstrated using three predictive
models showing the general usage of the proposed approach
and the capability of it on improving the prediction efficacy.

II. ROBUST PREPROCESSING SYSTEM
This work focuses on the task of predicting responses Y ∈ RL

using covariates X ∈ RD. It is well-known that outliers could
severely affect model performance. There is a considerable
amount of studies on building prediction models that are
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FIGURE 1. The flowchart of constructing the proposed robust preprocessing system at the training stage.

insensitive to outlying training data. However, even if a model
is built using a robust process, the prediction errors could still
be large if testing samples are abnormal.

Data could deviate from the normal pattern because of
different reasons. One possibility is that the data collecting
procedure is defected, which causes damages to the data.
Another reason could be that data are perturbed under mali-
cious intents. In this work, we refer to the first kind of
abnormal data as corrupted data and the second type of data as
adversarial data. These two kinds of abnormal data are com-
monly seen in practice. To properly handle these abnormal
data, we propose a robust preprocessing system. An aberrant
data detector is designed to distinguish normal, corrupted
and adversarial data. In addition, an aberrant data corrector
is devised to amend corrupted and adversarial data so that
users can still apply their selections of prediction methods for
prediction and obtain reliable outcomes.

A. ABERRANT DATA DETECTOR
The aberrant data detector is responsible for classifying the
query data into three categories: normal, corrupted and adver-
sarial. Principal component analysis (PCA) whitening is used
as the core technique for detection. To perform PCA whiten-
ing, we first calculate the singular vectors and singular values
of the training data. When a new testing sample comes in,
we calculate its aberrant score and compare the score with
a pre-defined threshold . If the aberrant score is greater than
threshold , the testing data point is classified as abnormal
(corrupted or adversarial). Otherwise, it is deemed a normal
sample. The mechanism can essentially differentiate normal
data from abnormal data. We further extend the approach so
that two kinds of abnormal data, corrupted data and adversar-
ial data, can be identified separately.

The flowcharts for constructing the robust preprocessing
system and building the aberrant data detector/corrector are
shown in Figs. 1 and 2, respectively. We first center the
training data around zero and perform the singular value
decomposition. Denote X train ∈ RN×D as the centered train-
ing dataset whereN is the number of the training samples and
D is the dimension of the sample. We decompose the training
dataset as X train = U6V> where U is an N × N unitary

matrix, 6 is an N × D diagonal matrix and V is a D × D
unitary matrix. Letting xn be the n-th sample in X train and
x̃n ∈ RD be the normalized coefficients of xn, we have

x̃n,i =
xn · vi
σi

, (1)

where vi is the i-th column vector of matrix V and σi is the
i-th singular value following in descending order.
PCA whitening projects a query sample onto the principal

components extracted from the training dataset. The pro-
jected coefficients are normalized by the singular values (σi)
corresponding to the principal components (PC), which we
refer to as the normalized coefficients. These normalized
coefficients can be used to detect abnormal images. As shown
in Fig. 3, the normalized coefficients for a normal sample lie
within a small range whereas those for an abnormal sample
might not. Here, the high indexes correspond to those for
the small singular values. In particular, the scale of the high-
indexed normalized coefficients for a problematic sample
could be large. For a normal sample, even after the normalized
coefficients are scaled by small singular values, the resulting
coefficients are still within a certain range. On the other hand,
we would obtain larger normalized coefficients from the last
few principal components when they correspond to those
being distorted or perturbed as shown in Fig. 3. Based on the
normalized coefficients at high indexes, we can distinguish
normal data from abnormal (corrupted and adversarial) data.

1) CALCULATE THE ABERRANT SCORE
In [13], the variance of the high-indexed normalized coeffi-
cients is used as the aberrant score. Hereinafter, we refer to
this method as high-indexed variance (HIV). We denote PNC
as the portion of the high-indexed normalized coefficients
used to calculate the variance. As an example, if the data
dimension (D) is 1024 and PNC = 10, we would use the
last 103 normalized coefficients (the 992-th to the 1024-th) to
calculate the variances. We further consider other approaches
to calculating aberrant scores. The rolling variance (RV)
method calculates the variances using the normalized coef-
ficients in a sliding window. The length of the sliding win-
dow is defined by a parameter Pwindow, which is the portion
of the consecutive normalized coefficients included in the
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FIGURE 2. The flowchart of the proposed robust preprocessing system at the testing stage.

FIGURE 3. Examples of different kinds of images. The first row shows the
normal, corrupted, adversarial and adversarially corrupted images.
The second row shows the corresponding normalized coefficients against
the principal component (PC) indexes.

sliding window. The aberrant score is the maximum value of
all of the rolling variances. Finally, the maximum absolute
value (MAV) method treats the normalized coefficients with
the largest absolute values as the aberrant scores.

2) DETERMINE THE CLASSIFICATION THRESHOLD
In Fig. 1, we calculate the aberrant score strain for each
training sample. The next step is to determine the threshold
for detection. Three methods are proposed. First, we can

directly assign (DA) the threshold . The threshold is selected
to reach the best detection results. Under this scenario, both
normal and abnormal images are assumed to be accessible.
In the second approach, we propose to control the false
positive rate, fpr , of wrongly detecting abnormal data. That is,
given a false positive rate fpr , the threshold is set to the 1−fpr
quantile of the aberrant scores obtained from the normal
training data. Our last proposed approach is to locate the
so-called ‘‘fence’’ which is commonly used in the boxplots.
We calculate the mean, µscore and the standard deviation,
σscore of the aberrant scores, and the upper fence is calculated
as µscore + M × σscore, so that the distance between the
fence and the mean is M times standard deviation. We note
that the last two approaches do not utilize abnormal entries
and can accommodate the scenarios when only normal data
are available. These three methods are referred to as ‘‘DA’’,
‘‘FPR’’ and ‘‘Fence,’’ respectively.

3) DIFFERENTIATE CORRUPTED AND ADVERSARIAL DATA
By comparing the aberrant score and the pre-determined
threshold , we can classify the testing data as normal or
abnormal. To further differentiate corrupted from adversarial
samples, we take advantage of the following observations.
In Fig. 3, there are only a few extreme normalized coefficients
for adversarial data. On the other hand, no obvious spike
appears on the normalized coefficients of corrupted data.
Thus, we can remove the spikes and re-calculate the aberrant
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score again. If the classification result changes, we classify
the query data as an adversarial entry, and otherwise as a
corrupted entry.

As noted by the flowchart of the aberrant data detector
at the testing stage shown in Fig. 2, for each testing data,
x test ∈ RD, we first calculate the aberrant score stest using
the results of SVD on the training dataset (V , 6). The aber-
rant score is compared to threshold ′. If stest < threshold ′,
the testing data is classified as a normal sample. Otherwise,
it is deemed as an abnormal sample. We next find its nearest
neighbor in the training dataset, denoted as xNN , and cal-
culate the normalized coefficients of xNN , denoted as x̃NN .
We replace the normalized coefficients of x̃ test . Denoting x̃ ′

as the new normalized coefficient vector after replacement,
x̃ ′ is constructed as follows:

x̃ ′i =

{
x̃NNi if |x̃ testi | > cutoff ,
x̃ testi otherwise,

(2)

where the subscript i denotes the i-th normalized coefficient
of x̃ test , x̃NN and x̃ ′; cutoff is a pre-defined value to identify
spike coefficients. The process described in (2) is referred to
as spike replacement, where we replace the spike coefficients
with normal ones. We then calculate the aberrant score of
x̃ ′ as s′ and compare s′ to threshold ′. The testing sample is
classified as an adversarial sample if the aberrant score is less
than threshold ′, and as a corrupted sample otherwise.

B. ABERRANT DATA CORRECTOR
Based on the classification results of the aberrant data
detector, the aberrant data corrector would adopt different
mechanisms. For the corrupted data, we would conduct data
reconstruction, which utilizes the associations learned by
Gaussian Locally Linear Mappings (GLLiM) [5]. GLLiM
assesses complicated relationships between X and Y by
dividing data into different clusters, and data within each
cluster are assumed to follow a linear association. For a
K -component model, GLLiM introduces a latent variable Z
such that

X =
K∑
k=1

I(Z = k)(AkY + bk + Ek ), (3)

where I is an indicator function, Ak ∈ RD×L and bk ∈
RD define the mapping from Y to X , and Ek ∈ RD×D is
the error term capturing the remaining uncertainty. Under
the Gaussianity assumption, the hierarchical structure can be
written as follows:

p(X = x|Y = y,Z = k) = N (x;Aky+ bk , 6k ), (4)

p(Y = y,Z = k) = N (y; ck , 0k ) (5)

p(Z = k) = πk , (6)

whereN (·;µ,6) denotes the Gaussian density function with
mean µ and covariance 6, ck ∈ RL , 0k ∈ RL×L are the
mean and the covariance matrix at low dimension, and πk is
the multinomial prior with

∑K
k=1 πk = 1.

The parameters can be estimated using the Expecta-
tion Maximization algorithm described in [5]. GLLiM is a
bi-directional modeling process. It is typical to let the dimen-
sion of X , D, to be larger than that of Y , L. The mixture setup
learns the association not only from Y (low-dimensional)
to X (high-dimensional) but also from X to Y . The former
model defined in (4)-(6) is referred to as the inverse model,
which can be used for data reconstruction. The latter can be
obtained directly from the estimated inverse model, while
avoiding dealing with a high-dimensional set of predictors
in a regression setting, and is called the forward model,
which can be used for prediction. Denote GLLiM -Inv(·) as
the GLLiM inverse model:

GLLiM -Inv(y) =
K∑
k=1

πkN (y; ck , 0k )∑K
j=1 πjN (y; cj, 0j)

(Aky+ bk ). (7)

Given a response y ∈ RL , we can reconstruct the high-
dimensional data x through x = GLLiM -Inv(y). The recon-
struction of the corrupted data can be formulated as follows.
Let

y∗ = argmin
y
Sim(x test ,GLLiM -Inv(y)), (8)

where Sim(·, ·) is a function measuring the similarity distance
between the testing data x test and the reconstructed data,
GLLiM -Inv(y). Note that with x test being a corrupted image,
we should leave out the corrupted pixels when measuring the
similarity distance between the testing image and the recon-
structed one. To achieve this goal, we design the similarity
function using the truncated sum of squared differences. The
similarity distance between two vectors a, b of dimension D
for a given truncated quantile q is defined as follows:

Sim(a, b) =
D′∑
i=1

c′i, (9)

where we define c as a vector with its i-th entry ci = (ai−bi)2

and let c′ be a permutation of c in ascending order, i.e. c′i is the
i-th smallest squared difference between elements in a and b.
We define D′ = bD × qc where b·c denotes the floor
function. The truncated sum of squared differences is the
summation over the firstD′ smallest squared differences. The
reconstructed image is denoted as xrec in Fig. 2, which can be
obtained by xrec = GLLiM -Inv(y∗).
The output of the aberrant data corrector depends on the

results of the detector. If the testing data is identified as nor-
mal, x test would be provided directly. Otherwise, the detector
will determine the type of abnormal data. The output would
be xrec for a corrupted sample. As for an adversarial example,
we use the nearest neighbor in the training dataset, xNN ,
as the prediction surrogate since adversarial examples are
close to the manifold of the normal data. After obtaining
the preprocessed data from the corrector, we can apply the
selected predictive method for prediction.
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III. PERFORMANCE EVALUATION
We use images to demonstrate the performance of the pro-
posed method. Nevertheless, the preprocessing system is a
general framework and is not restricted to image data. The
face dataset [29] contains 698 images (of size 64 × 64 and
being further condensed to 32 × 32) and is separated into
a training dataset and a testing dataset. The training dataset
contains 598 images and the rest of the 100 images are testing
samples. Our goal is to predict the head pose (Y ) using a
given image (X ). The pose of each image is defined by three
variables in Y : Light, Pan and Tilt. We treat the original
images in the dataset as normal data. To evaluate the proposed
method, we will discuss the generation of the corrupted and
adversarial images followed by demonstrating the perfor-
mance of aberrant data detection and correction for different
types of testing images. We compare these two components
within our pre-processing system to the existing aberrant data
detection and reconstruction methods, respectively. The con-
figuration and experimental setup behind these comparisons
are specified within subsections III-B, III-D, III-E and III-F.
In particular, besides evaluating performances for each spe-
cific function (detection and correction), the prediction per-
formances using three predictive models are presented to
illustrate the efficacies of the proposed method for reducing
the prediction errors.

A. GENERATING ABNORMAL DATA
Corrupted images are those with a small region of distortion.
Different reasons can result in corrupted images. For exam-
ple, a shadow will appear on the picture if the light source is
blocked. In addition, images could be deteriorated because of
physical damages such as stains or scratches. The irregular
area could be small but could severely reduce the prediction
performance. To generate corrupted images from the normal
images, we randomly select an area within an image. The
maximum size of the area is set to be 4 × 16 (pixel2).
Compared to the original image size, 32 × 32, at most
1/16 of the image will be corrupted. Next, we set the pixel
within the selected area to be masked (replaced with pixel
values of black color), mimicking the occurrence of damage.
The second image in Fig. 3 is an example of the corrupted
images.

Adversarial images are intentionally designed to result in
model failure [10], [28]. By adding imperceptible perturba-
tions to the input data, we can easily fool a well-trained
model. That is, we would obtain large prediction errors.
To test the robustness of the proposed method, we use Auto-
ZOOM [31] to generate adversarial samples. AutoZOOM is
an effective method that adopts dimension reduction tech-
niques as well as random gradient vector to accelerate the
generation process. The adversarial examples are generated
toward a GLLiM forward model with the restriction of the
normalized perturbationmust be less than 0.001.We also con-
sider mixed-type abnormal data by adding adversarial pertur-
bations to the corrupted images with the same restriction of
the normalized perturbation. Hereinafter, we call this type of

abnormal images as adversarially corrupted (adv-corrupted).
Specifically, adv-corrupted samples help us understand how
would the aberrant data detector react when both abnormal
patterns exist in a single sample. Examples of the adversarial
image and the adv-corrupted image are shown in Fig. 3. Com-
paring the adversarial images to their counterparts, we can
hardly identify the difference. However, adversarial pertur-
bations can actually lead to large prediction errors as we will
illustrate in Section III-E.

B. ABERRANT SAMPLES DETECTION
The proposed aberrant data detector reports two types of
outcomes. The basic detector only differentiates normal
and abnormal data. The full detector further divides the
detected abnormal images into adversarial and corrupted
ones. We report our experimental outcomes in two parts.
Within this subsection, we use cross-validation to determine
the tuning parameters employed in the classification pro-
cesses for three proposed aberrant scores, detailed below,
and report their numerical performances. The classification
accuracies obtained by different settings were illustrated with
the Receiver Operating Characteristic (ROC) curves and the
corresponding area under the curve (AUC). The description
and the comparative outcomes to two existing aberrant data
detectors are given in Subsection III-C. The normal face
images, coupling with the corrupted and adversarial counter-
parts, were used in the evaluation processes throughout the
rest of the paper. For the basic detector, users need to spec-
ify the portion of the normalized coefficients used in the
calculation of the aberrant score. We first perform a tuning
parameter selection study on PNC ,Pwindow under different
settings. Next, the detection performance of the data detector
is presented.

When calculating the aberrant scores using a given method
(HIV, RV or MAV), one needs to specify the portion of
the normalized coefficients used in the calculation (PNC ) or
the window size to calculate the rolling variance (Pwindow).
We conduct a 10-fold cross-validation (CV) study on different
combinations of aberrant score calculation and classification
threshold determination to select the tuning parameters. The
normal images in the CV training dataset are used to calcu-
late the principal components and the singular values. Using
these principal components and singular values, we calculate
the normalized coefficients and aberrant scores of each CV
testing sample and compare the aberrant scores to threshold ,
which is determined by the specified classification threshold.
The quality of the detection performances is shown by con-
sidering different combinations of aberrant score calculation
and classification threshold determination. The procedures
are described below.

1) CALCULATE THE ABERRANT SCORE
1) High-indexed variance (HIV): We calculate the vari-

ance of the high-indexed normalized coefficients as the
aberrant score. The parameterPNC specifies the portion
of the high-indexed normalized coefficients used for
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FIGURE 4. The classification accuracies under different settings. For each sub-figure, the plot on the left shows the results when the
aberrant scores are calculated using HIV under different values of PNC and the plot on the right shows the results when the aberrant scores
are calculated using RV under different values of Pwindow . (a) The threshold is directly assigned (DA). (b) The threshold is calculated using
the FPR method. (c) The threshold is determined using the Fence method.

calculation. We study the detection performance when
PNC = 5, 10, 20, 30, 40.

2) Rolling variance (RV): The rolling variance is calcu-
lated on the normalized coefficients with the window
size defined by the parameter Pwindow, and the aber-
rant score is the maximum value of the rolling vari-
ance. We investigate the detection performance when
Pwindow = 5, 10, 20, 30, 40.

3) Maximum absolute value (MAV): The aberrant score
is the largest absolute value of the normalized coeffi-
cients. No extra tuning parameter is needed when using
this method to calculate the aberrant score.

2) DETERMINE THE CLASSIFICATION THRESHOLD
1) Directly assign (DA): When this method is adopted,

we specify the threshold directly by setting it to be
10, 20, 30.

2) False positive rate (FPR): By specifying the false pos-
itive rate, fpr , we will set the threshold as the 1 − fpr
quantile of the training aberrant scores and evaluate the
detection performance on the threshold. We set fpr =
0.05, 0.01, 0.005 for performance evaluation.

3) Fence: We calculate the mean, µscore, and the standard
deviation, σscore, of the aberrant scores. The fence is
defined by a tuning parameterM , which is a multiplier
of the standard deviation, and is calculated as fence =
µscore +M × σscore. We use the fence as the threshold
and conduct studies when M = 2, 3, 4.

When using the DA approach, we use the normal training
data and the abnormal training data together to evaluate the
classification accuracy. In each fold of CV, the aberrant data
detector is first built based on normal training images. Next,
we calculate the classification accuracy using the CV normal
testing images and their abnormal counterparts (corrupted
and adversarial). To make the number of normal data and
abnormal data the same, we double-weighted the normal
data. As an example, if there are 60 CV testing data, we use
60 CV normal testing data with weight fraction 50%, 60 CV
corrupted testing data with weight fraction 25% and 60 CV
adversarial data with weight fraction 25% to calculate the

TABLE 1. The selected values of PNC and Pwindow under different
settings.

classification accuracy. Fig. 4(a) shows the results for the DA
approach. When more normalized coefficients are included
to calculate the variance, i.e. large PNC or large Pwindow,
we obtain a smaller variance. Thus, we can obtain bet-
ter classification accuracy when the threshold is small and
PNC (Pwindow) is large. We can obtain similar detection
accuracy when threshold = 10 and threshold = 20 if
PNC and Pwindow are set to certain appropriate values. When
threshold = 30, the detection accuracy is slightly lower if
we use high-indexed normalized coefficients to calculate the
variance. The selected parameters are shown in Table 1.

For the FPR and the Fence approaches, only the normal
training images are used to build the aberrant data detector
and to determine threshold . The results are shown in Fig. 4(b)
and (c). Note that the lower the fpr is, the higher the threshold
we would obtain, and thus the higher the accuracy we would
obtain in detecting the normal images. Similarly, for a larger
value of M in the Fence approach, we would set a larger
value for the fence, which results in greater accuracy in
classifying the normal images. The classification accuracy is
not sensitive to the change in the values of PNC or Pwindow.
We selected the values of PNC and Pwindow by CV, which are
shown in Table 1.

3) RECEIVER OPERATING CHARACTERISTIC (ROC)
CURVE FOR THE BASIC DETECTOR
To evaluate the overall detection performances, we construct
the Receiver Operating Characteristic (ROC) curves using
different approaches to calculate the aberrant score (HIV,
RV and MAV). The area under the curve (AUC) are 0.9760,
0.9755 and 0.9697 for the three methods, respectively. The
AUCs for HIV and RV are almost the same, and the AUC for
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MAV is slightly smaller, but the results are still satisfactory.
The AUC values suggest that the basic detectors built upon
these three methods are all powerful tools to distinguish
normal images from abnormal images.

C. DETECTION PERFORMANCE
The detection performance is evaluated using 100 testing
images of three different kinds (normal, corrupted and adver-
sarial). We implement the full version of the proposed
aberrant detector and compare its detection performance to
two existing approaches: the Coherence Pursuit (CoP) and
Feature squeezing (FS). The details are described below.

1) Aberrant data detector (full version): Instead of clas-
sifying images into two categories (normal v.s. abnor-
mal), we further divide the abnormal images into
adversarial v.s. corrupted. The mechanism follows
the same methodology except that if a query sample
is identified as abnormal, we would perform spike
replacement and classify the data point again. Our stud-
ies show that the performance is not sensitive to cutoff .
Thus, we fix cutoff = 30. We use the same threshold
as the criterion to differentiate corrupted and adversar-
ial images. That is, we set threshold ′ = threshold .
Through this extra step, we are able to classify the
testing data into three categories. The detection is
conducted using three proposed aberrant scores (HIV,
RV and MAV) with the classification threshold being
threshold = 10 (DA), fpr = 0.05 (FPR) and M = 2
(Fence). The tuning parameters are shown in Table 1.

2) CoP: Coherence pursuit (CoP) [25] is devised to dis-
cover robust principal components, which can facilitate
detecting outliers. We follow the procedure in [25] and
use 100 principal components for recovery with the
recovery error as the classification criterion. For an
input data x and its CoP estimated x̂, the recovery error
is defined as ||x − x̂||2/||x||2. The decision threshold
is determined by the recovery errors obtained from the
training dataset with the false positive rate equals 5%.
CoP is designed to detect outliers. We evaluate its capa-
bility on differentiating normal and corrupted samples.

3) FS: Feature squeezing [34] is implemented for detect-
ing adversarial entities. The model outputs could be
largely different before and after applying feature
squeezing. Thus, we use the normalized squared error
of the model outcomes as the evaluation score. For
an input, the normalized squared error is calculated as
||y− ŷ||2/||y||2, where y and ŷ are the model outcomes
before and after feature squeezing. We use the joint
score described in the paper, which summarizes the
scores from different feature squeezing settings from
1-bit depth to 8-bit depth. The joint score is the max-
imum normalized squared errors obtained from differ-
ent bit depths. We evaluate FS on its performance of
detecting adversarial samples.

The detection accuracies is shown in Fig. 5. We observe
that the detection accuracy of normal and adversarial samples

FIGURE 5. The detection accuracies of different types of the testing
images when using different approaches to calculate the aberrant scores
and threshold determination methods. Each type of the testing images
contains 100 samples.

is lower when using MAV. This is because MAV uses only
one value to represent the aberrant scores and cannot capture
the variability of the normalized coefficients. The detection
performances when using DA is generally the best. However,
selecting the correct threshold for the DA method may be
a time-consuming process. The FPR and the Fence method,
though with slightly lower detection accuracies, can deter-
mine the threshold more generally and thus might be used
as the methods to start with. The adv-corrupted data would
be classified as corrupted. This type of data possesses both
corrupted and adversarial patterns. After spike replacement
is adopted, the large normalized coefficients are removed but
the high variety coming from the corrupted parts still exist.
The aberrant score would still be large and thus the adv-
corrupted image would be classified as corrupted data.

On identifying corrupted data, the proposed aberrant detec-
tors achieve similar detection accuracies to that of CoP. The
FS’s ability to detect adversarial data, even after excluding
the corrupted samples, is surprisingly low. This seems to
due to the fact that FS cannot determine if the high nor-
malized squared errors are the consequences of adversar-
ial perturbations or the errors brought-forward by the FS’s
modified inputs. Our proposed methods provide competitive
and/or superior results in detecting both types of abnormal
samples.

D. DATA RECONSTRUCTION
In this section we demonstrate the capability of reconstruct-
ing the corrupted images. Corrupted data are fixed using the
following methods.

1) Corrupted data corrector: We use the proposed method
to reconstruct a corrupted sample. Not knowing which
pixels are damaged, we need a mechanism to only
utilize the reliable information provided by regular pix-
els. In Fig 6, we compute the average squared differ-
ences of pixels between the corrupted images and their
nearest neighbors in the training dataset. There is an
abrupt change around the 90% quantile and thus we
set q = 0.9. That is, we only calculate the similarity
using 90% of the squared differences. The GLLiM
inverse function is obtained with 20 clusters (K = 20)
and 9 latent factors (Lw = 9) using the training
dataset. Two scenarios are considered when applying
corrupted data corrector. One is that no information
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FIGURE 6. The sorted squared differences between corrupted images and
their nearest neighbors in the training dataset.

about the damaged locations is available when fixing
the corrupted images and the data corrector would
reconstruct thewhole images. The other is that the dam-
age locations are known. Thus, we only replace pixels
in the damage region after obtaining the reconstructed
images. We report the outcomes for the former under
‘‘Reconstructed’’ and the latter under ‘‘Supervised-
reconstructed (S-Rec).’’

2) NDI: New definition inpainting [6] utilizes a new pri-
ority definition to encourage geometry propagation.
We use the default settings in this method to fix the
corrupted region. NDI requires the information of the
corrupted locations to be known.

3) PConv: In [16], partial convolution is used to avoid
generating artifacts and leads to more realistic inpaint-
ing results. We use the pre-trained model to conduct
inpainting. Like NDI, the information of the corrupted
locations needs to be known in advance.

We conduct the experiment on 100 corrupted testing
images and evaluate the reconstruction performance using
the reconstruction mean squared error (Rec MSE), which
is the average of the squared differences between the nor-
mal images and the reconstructed images over the dam-
aged pixels. The Rec MSEs are 0.4410, 0.0064, 0.0064,
0.0653 and 0.0178 for Corrupted, Reconstructed, S-Rec, NDI
and PConv, respectively. A figure in the Appendix shows a
corrupted image and its reconstruction using different meth-
ods. We observe all the fixing approaches can effectively
reduce the Rec MSE. The results obtained from the proposed
corrupted data correctors (Reconstructed and S-Rec) outper-
form the other methods.

E. PREDICTION PERFORMANCE
Our proposed preprocessing system produces ‘‘amended’’
images that can be used by other prediction methods. A test-
ing image is passed through the preprocessing system before
applying the chosen prediction method. Depending on the
identified testing data type, the preprocessing method would
apply different mechanisms to the testing data. One can then
apply the selected prediction method(s) to the processed data.

We use the following prediction models to investigate the
efficacies and generality of the proposed methods.

1) GLLiM: We use the GLLiM forward model for predic-
tion. The forward model can be easily obtained from
the inverse model we used for data reconstruction [5].
The GLLiM model is trained under K = 20, Lw = 9.

2) FGAM: Considering the predictor X and the scalar
response Y , the functional generalized additive model
(FGAM) [20] builds the relationship between X and
Y as:

g(E[Y |X ]) = β0 +
∫
F(X (t), t)dt, (10)

where β0 is the intercept, g is a known link function
and F is an unspecified smooth function to be esti-
mated. In our case, we set g(x) = x and let t be the
index of the image pixel. The function F(·, ·) is esti-
mated through tensor-product B-splines with rough-
ness penalties. FGAM is built using the R package
refund [9]. We build the model on each dimension of Y
using 100 knots, which leads to three FGAM models.
We use the default values for the rest of the settings.

3) SAM: Similar to LASSO [30], the sparse additive
model (SAM) [26] introduces the L1 penalty to encour-
age sparse solutions on the functional coefficients. For
the predictor X and the scalar response Y , SAM aims
to find the solution that minimizes

E

{
Y −

D∑
d=1

βd fd (Xd )

}2

(11)

subject to

D∑
d=1

|βd | ≤ P (12)

E[f 2d ] = 1, (13)

where fd is a function to be estimated, β =

(β1, ..., βD)> is a vector and P is a scalar constraint.
The constraint of β imposes the sparsity of the esti-
mated β. The model is trained using the R package
SAM [37] under the default setting. We build a predic-
tive model for each dimension of Y separately.

The prediction mean squared errors (PMSE) using differ-
ent kinds of testing datasets are shown in Table 2. Each kind of
testing dataset contains 100 testing images. Parts (a) and (b)
of the table reconstruct the regular and ‘‘adv-corrupted’’
images, respectively. The PMSE of the reconstructed adv-
corrupted images are referred to as ‘‘Adv-corrupted Rec’’
in Table 2. In addition, the 10%, 90% quantiles of prediction
errors are presented to demonstrate the variation of each
method’s performance for almost all data samples.

The improvements on the reconstructed datasets demon-
strate the benefits of adopting the preprocessing system.
In part (a), the PMSE under ‘‘Reconstructed’’ is larger than
the other reconstruction methods (S-Rec, NDI and NV)
perhaps because the information of the damaged region
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TABLE 2. The prediction performance of different types of images using different prediction models: GLLiM, FGAM and SAM. In each entry, the first
number is the PMSE followed by the 10% and 90% quantiles of the prediction squared errors. (a) Results under Reconstrcuted, S-Rec, NDI and NV are
obtained from reconstructing corrupted images using the specified approach, respectively. (b) The results of the same methods as in (a) for reconstructing
Adv-corrupted images.

TABLE 3. The prediction mean squared errors (PMSE) under different
experimental settings. The Baseline column shows the original PMSE. The
rest of the columns present the PMSE using different classification
thresholds when the aberrant scores are calculated using HIV.

is unknown. NDI and PConv require damaged locations infor-
mation to conduct inpainting and perform well with the infor-
mation available. With the damaged location information
being known (S-Rec), we can obtain better PMSE compared
to NDI and PConv. Improvements are also obtained in part (b)
when the images are ‘‘adv-corrupted’’. Under this scenario,
the prior knowledge about the damaged locations may or may
not be helpful to our approach. Overall speaking, the pro-
posed approach without using the prior knowledge about
the damaged locations consistently well-perform. When the
GLLiM prediction model is considered, the method PConv
is also competitive. The 10% and 90% quantiles show that
the proposed method is competitive for almost all of the data
samples.

Note that the adversarial images are generated against the
GLLiM forward model. However, the prediction loss is still
large when the other two predictive methods are used, which
implies the transferability of the adversarial examples [23].

F. OVERALL SYSTEM PERFORMANCE
To evaluate the overall performance of the proposed pre-
processing system, we combine different types of images
together. The testing dataset contains 100 normal images,
100 corrupted images, 100 adversarial images and 100
adv-corrupted images. Prediction models described in
Section III-Ewould be used to conduct predictions.Weweigh
the normal and abnormal images equally. That is, when
calculating the PMSE, the normal images would be cal-
culated with weight fraction of 50%. As for the abnormal
images, the PMSE will be calculated with weight fraction
of 16.67% for each type of abnormal data. Table 3 shows
the prediction results with (threshold = 10, fpr = 0.05,
M = 2) and without (Baseline) the preprocessing system.
The results are summarized when the aberrant scores are

calculated using HIV. For each prediction method, the pre-
processing system effectively reduces the prediction errors,
which demonstrates that the proposed system is a general
approach that can appropriately handle normal and abnormal
testing entries.We can obtain the best prediction performance
using the DA approach since the DA approach can provide
better detection results. With a more accurate detection out-
come, we would obtain a better ‘‘amended’’ testing data and
thus the prediction performance is better.

IV. CONCLUSION AND FUTURE WORK
In this work, we proposed a preprocessing system that can
detect abnormal data and provide ‘‘amended’’ samples. The
proposed preprocessing system shows its ability to improve
prediction performance in a model-agnostic manner. With
the aberrant data detector and the aberrant data corrector,
users can adopt their preferred prediction methods and obtain
reliable outcomes even when the testing data are abnormal.
For detecting different types of testing data, we propose three
methods to determine the detection threshold. We suggest
starting with the FPR or the Fence method and using the
resulting detection threshold in the follow-up tuning process.
The data reconstruction process is devised for corrupted data.
Using the inverse regression learned by GLLiM, we can
reconstruct the damaged data effectively. The overall perfor-
mance of the proposed method is illustrated using three exist-
ing predictive models. We demonstrate the generality of the
system and elucidate the necessity of the system for obtain-
ing reliable prediction outcomes. For future work, we are
interested in extending the framework to a more generalized
scenario so that the proposed framework can identify and
amend more types of irregular patterns.

APPENDIX A
SENSITIVITY TEST OF CUTOFF
The sensitivity test is conducted to investigate the selection
of cutoff . Fig. 7 shows the detection accuracies against dif-
ferent settings of cutoff . The detection accuracies are calcu-
lated using 100 corrupted and 100 adversarial images. The
detection threshold is directly set to 10 when using the DA
method. We use fpr = 0.05 and M = 2 for the FPR and the
Fence method, respectively. From the results, we see that the
detection accuracy is insensitive to the choice of cutoff .
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FIGURE 7. The detection accuracy of 100 corrupted images and
100 adversarial images using different cutoff values. For three threshold
determination methods, we set threshold = 10 for the DA method,
fpr = 0.05 for the FPR method and M = 2 for the Fence method.

FIGURE 8. Examples of the corrupted image and their reconstructed
results using different methods. The Rec MSE for this example is 0.4002,
0.0034, 0.0034, 0.0528 and 0.0256 for Corrupted, Reconstructed, S-Rec,
NDI and PConv, respectively.

APPENDIX B
RECONSTRUCTION RESULTS
Figure 8 shows an example of the corrupted image and their
reconstructed images using different methods. We observe
that the proposed method (Reconstructed and S-Rec) can
generate more realistic results. Both NDI and PConv try to
fill the missing parts but lose the important information (eye).
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