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ABSTRACT The tremendous number of sensors and smart objects deployed in the Internet of Things (IoT)
pose a huge potential for the IoT real-time monitoring applications to detect and react to the real world.
The insufficient capacity of the IoT data real-time processing has hampered the growth of the IoT real-time
monitoring applications. We focus on two issues of the IoT data real-time processing: 1) how to efficiently
transform a large number of raw sensing data into meaningful complex event, and 2) how to adapt to
the complexity and changeability of monitoring business logic. This paper proposes a universal complex
event processing (CEP) mechanism for the IoT real-time monitoring. We propose a formalized hierarchical
complex event model including raw event, simple event, and complex event, which reduces the complexity
of event modeling. The model supports complex time and space semantics to define flexible complex events
by a programming way. Based on this model, we propose a CEP system architecture, in which the system
is deployed on the network edge between sensing devices in terminal and applications in the cloud. The
complex event definition can be mapped to the CEP rule logic script to detect the potential abnormal event
timely. The proposed CEP mechanism is universal and suitable to any heterogeneous sensing devices and
CEP engine. We demonstrate the efficacy of the mechanism with two application case studies that highlight
our proposed complex event model and evaluate the performance improvement with experiments.

INDEX TERMS Real-time monitoring, Internet of things, complex event processing, complex event
definition, edge computing.

I. INTRODUCTION
With the rapid development of sensors, GPS position sensors,
RFID tags and readers, smart objects and other IoT sens-
ing technologies, the IoT real-time monitoring business is
growing rapidly in many IoT innovative applications such
as smart logistics, smart farm, environmental monitoring,
intelligent transportation and smart power grid, etc [1]–[7].
A recent report predicted that 50 billion devices will be
connected to Internet by year 2025 [8]. These IoT sensing
devices are data generators which generate new perception
data every moment, and provide huge potential for real-time
monitoring and intelligent application in various industries.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chi-Yuan Chen.

For example, smart logistics application based on temper-
ature and humidity sensors can monitor the logistics and
storage status to grasp the storage situation of goods more
comprehensively and accurately. Based on RFID electronic
tag and reader, the whole process of transportation and stor-
age can be timely tracked. Based on the camera’s real-time
image and video, the abnormal events can be detected timely.
Therefore, the wide deployment of sensing devices makes
all kinds of monitored objects becoming ‘‘real-time visible’’.
Then, through data collection, processing and analysis, trig-
gering specific response operations or business processes,
the monitoring system can achieve various real-time moni-
toring goals.

The monitoring data volume of IoT is growing rapidly
and has obvious big data characteristics [7], [9]. The IoT
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monitoring system needs to process the data continuously in
time when the data flow arrives to support real-time perfor-
mance, and it should enhance its insight and decision ability
to support complex business logic.

The data processing of traditional monitoring system is
generally based on relational database. Before data process-
ing, data needs to be stored and indexed, which causes great
delay and lacks the ability to collect, process and analyze
big data in real time. IoT monitoring data processing is
facing new challenges. The architecture of the monitoring
system needs to be redesigned for real-time data processing
and responsiveness. The traditional B/S and C/S cloud-based
architecture should change to be based on edge comput-
ing [4], [11]. Most of computing should be carried out on the
edge device of intelligent monitoring equipment to improve
the response speed [10]–[12]. The success of IoT monitoring
applications largely depends on the ability to access, absorb
and analyze heterogeneous data in a timely manner and
to provide operators with advanced intelligent information.
Real-time data processing technology based on data stream
has become the key technology for monitoring IoT big data.

Complex Event Processing (CEP) is the main technology
for extracting information [9]. CEP is a technique of data pro-
cessing based on a set of predefined rules that dictate how data
flows should be processed and what new event flows should
be generated as output. Events can be a number of individual
events of interest (e.g. higher than normal temperature) or
complex events (e.g. continuous high temperature) that cor-
respond to specific situations or patterns to the business.

CEP engine is a software system composed of a set of
data processing algorithms and knowledge representation
sets [13]. CEP engines for data flow processing typically have
state management, fault tolerance, and high performance
characteristics. IoT monitoring requires CEP engine to track
the system status including event arrival and processing. CEP
engine needs to process a large amount of continuous data
with low latency, and needs to be able to recover quicklywhen
system failure occurs.

At present, CEP is widely used in many fields such as
industrial production monitoring [3], environmental monitor-
ing [1], [2], [4], building safety monitoring [5], telemedicine
monitoring [6], etc. Previous researches focus on data flow
processing of CEP [9], [13], [14], architecture of CEP based
on edge computing [6], [15], [16], high performance of par-
allel processing and system scalability [17], [18] of CEP.
These studies have contributed to improve CEP performance
in different ways.

However, focusing on real-timemonitoring services, refac-
toring and computational performance are still unresolved
issues for large-scale CEP system. How to efficiently trans-
form a large number of raw sensing data into meaningful
complex event is a challenge of high computational perfor-
mance. On the other hand, how to adapt to the complexity and
changeability of monitoring business logic of various fields
is a challenge of the event refactoring capability. These chal-
lenges seriously restrict the development of IoT large-scale

real-time monitoring applications. Existing research does not
address these challenges well. Focusing on these two prob-
lems, this paper proposes a hierarchical event model and a
general event processing system architecture to provide a
solution for efficient real-time monitoring data processing.
The event model supports flexible monitoring logic seman-
tics, and be able to quickly reconstruct to adapt to monitoring
requirements or changes in software and hardware environ-
ment. Meanwhile, the efficiency of event processing meets
real-time requirements.

The main contributions of this paper are as follows:
1) It proposes a hierarchical model of IoT perceived event.

The IoT event can be divided into original raw event,
reusable simple event and customizable complex event
according to the event granularity from small to large.
The monitoring task is deconstructed, and complex
event is defined by means of event modeling language.

2) It proposes a universal CEP system architecture based
edge computing to support fast responsive applica-
tion. The CEP system is deployed on the network
edge between the sensing devices in terminal and the
IoT applications in the cloud. The defined complex
events can be mapped to business logic scripts. The
complex event parsing and reasoning are implemented
based on efficient CEP engine to support business event
real-time monitoring efficiently.

3) Two application case studies of IoTmonitoring for fruit
transportation and city road manhole cover status are
implemented based on the CEP system to highlight our
proposed complex event model. And the performance
evaluation is carried out to verify the efficiency of our
CEP system.

The remainder of this paper is organized as follows: In
Section II, we describe the related work. In Section III,
we present the IoT event model, including raw event, sim-
ple event and complex event, and we describe two typical
IoT monitoring instances for IoT complex event definition.
In Section IV, we propose the universal complex event pro-
cessing system architecture, and discuss the advantage char-
acteristics of the system. In Section V, we introduce the
performance evaluation of the system. Finally, we conclude
the paper in Section VI.

II. RELATED WORK
In recent years, IoT monitoring system based on CEP has
been applied in industrial production, environmental moni-
toring, water quality monitoring, public safety monitoring,
telemedicine monitoring and many other fields.

Huang et al. [3] proposes a reactive model-based moni-
toring in RFID-enabled manufacturing, which applies CEP
to RFID-assisted real-time production monitoring. Wong and
Kerkez [1] presents a water quality monitoring application
using web services based on real-time environment sensor
data. Sun et al. [4] presents intelligent environmental moni-
toring system architecture based CEP engine to detect anoma-
lies in real time, and demonstrates the system using a series of
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real monitoring data from the geological carbon sequestration
domain.Mongiello et al. [5] presents an IoT-based framework
aiming at monitoring public building environmental parame-
ters in order to support rescuers during emergencies such as
a fire.

All the above studies basically use some kind of sensor
equipment, such as RFID tags or sensors, to realize the moni-
toring in a certain field. The proposed scheme has limitations.
So far, there is no general CEP system suitable for various IoT
monitoring applications.

In recent years, previous researches focus on high perfor-
mance technology of data flow processing of CEP, architec-
ture of CEP based on edge computing, high performance of
parallel processing and system scalability of CEP.

Flouris et al. [9] studies issues such as query optimization
aspect to try to apply CEP techniques over big data, and
expands on the synergies among predictive analytics and
CEP. Akbar et al. [13] proposes a proactive architecture
which exploits historical data using machine learning for
prediction in conjunction with CEP, and evaluates it using
a real-world use case of intelligent transportation system.
da Silva et al. [14] introduces an approach for CEP query
shipping to support distributed IoT environments to achieve
the high efficiency for the emerging IoT paradigm.

Assuncao et al. [15] presents that more recently architec-
ture has been proposed to use edge computing for data stream
processing. Vrbaski et al. [16] proposes a micro-service
based notification methodology that uses complex event
recognition to handle the IoT system uncertainty.

Dhillon et al. [6] introduces an IoT-based CEP approach
that uses a mobile device on the edge and a remote IoT
Hospital Server (IHS) deployed on the cloud. In this archi-
tecture, complex event detection is performed on the edge to
avoid queuing delays, and reduce the cost for data transfer
between the mobile device and the hospital server. It is a
seminal work by introducing CEP into edge computing for
IoT. But there are some limitations of the CEP approach.
1) The CEP runs on mobile device (e.g. mobile phone) and
it is small to be used for individuals. CEP shares mobile
computing resources with other applications on the mobile
phone, and the performance is affected. The storage space
of mobile phone is small, and it is difficult to save more
historical data. So it needs to cooperate with remote IHS
to support the analysis of long-term historical data. The
CEP is not suitable for large-scale telemedicine monitoring.
2) There are few types of monitoring sensors supported
for the CEP. The method of how to support new sensors
is not described in detail, so the scalability of the CEP is
uncertain.

Mayeret al. [17] proposes a pattern-sensitive partitioning
model for data streams to achieve a high degree of par-
allelism in detecting event patterns, which formerly could
only consistently be detected in a sequential manner or at a
low parallelization degree. Xiao et al. [18] propose a new
parallelization model and parallel processing strategies for
distributed complex event processing systems to enable the

processing load for the overlap to be shared by the down-
stream machines to avoid wrong events decision.

These studies have contributed to improve CEP perfor-
mance in different ways. But the event model of them is
basically defined as an abstract way like e(s,t), without hierar-
chical or specific description mechanism, which cannot meet
the complex event description of comprehensive monitoring
business. Therefore, focusing on the event model, the event
refactoring and computing performance remain the unsolved
technical issues which are CEP system currently addressing.

III. IOT EVENT MODEL
IoT perceived event can be divided into raw event, simple
event and complex event according to the granularity.

Raw event is a sensing data read event, which means that
a sensing device detects a certain data at a certain time. Even
a small IoT monitoring system will generate a large number
of fragmentary, repeated and redundant raw events in a short
time. For example, a RFID tag is repeatedly read in a certain
period of time, but the application only cares about whether
the RFID tag exists in a certain period of time. Therefore, raw
events should be filtered and combined to instantly distil them
into meaningful simple events that describe the important
status of a single device or a group of devices.

Simple event only reflect simple fact, and the application
system is more concerned with the space and time corre-
lation between a group of simple events, namely complex
event. Through the analysis of the relationship between sim-
ple events, such as membership, time relationship, causality,
inclusion relationship, etc., and the data processing of filter-
ing, aggregation, etc., the complex events are finally gener-
ated by simple events. CEP is the primary way to recognize
whether simple events meet a business rule.

The process of IoT perceived event processing is shown
in Figure 1.

FIGURE 1. IoT perceived event processing process.

Figure 1 shows the entire process from event producing
to event consuming. Raw events are generated by the sensor
devices. Raw events are filtering and composing to generate
simple events. Complex events are generated by event pattern
matching from simple events. Complex events are sent to
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applications for event consuming. The complex event pro-
cessing is located between sensing devices and applications.

Both simple events and complex events are inferred from
small-grained events. The difference between them is: the
inference rules of simple events are universal, the granularity
of simple events is moderate, and the reusability of simple
events is high, while the inference rules of complex events
are customized and determined by the actual business require-
ments.

A. RAW EVENT
Raw event is every piece of data detected and transferred by
IoT sensor, also namely atomic (non-decomposable) event.
Atomic event e is expressed as follows:

e = (ID,DeviceID,DeviceType,Location,StartTime,

EndTime,KeyValueList) (1)

In (1), ID is the unique identifier of an atomic event which
is a sequence number.

DeviceID is the unique ID of the sensing device.
DeviceType stands for the type of sensing device.
Location means the location of the sensing device.
KeyValue List is a list of key-value pairs of <Key,Value>,

representing multiple attributes and their values. It is
extensible. For example, <Temperature,TemValue> rep-
resents the temperature value of temperature sensor,
<Humidity,HumValue> represents the humidity value of
humidity sensor, <Tag,TagValue> represents the tag value
scanned by RFID reader.

StartTime and EndTime are the start time and end time of
an event. The point time event satisfy StartTime= EndTime.
A raw event, for example, ‘‘A temperature and humidity

sensor of ‘DS000580’ locates in ‘building 815’ detects that
temperature is 20◦C, humidity is 35% at 9:30 in Oct. 14,
2018’’, can be represented as:

e = (‘‘0001’’,‘‘DS000580’’,‘‘building 815’’,2018-10-14
9:30,2018-10-14 9:30, <Temperature, 20>, <Humidity,
35%>).

If StartTime 6=EndTime, the event is not a point time event,
but a duration time event. The duration time event may not be
the original event, which can be obtained from the analysis
of the original events, like the stay event of RFID tag. The
duration time event can also be original event, such as camera
video data event that record video for a duration time, thus
Starttime is the start time of video and Endtime is the end
time of video.

For complex event, Starttime is the minimum start time of
all atomic events constituting the complex event, and Endtime
is the maximum end time of all atomic events constituting the
complex event.

The raw event of the various devices are shown in Table 1.
The different item in the raw event of various devices is the

KeyValue List. The different perceived data can be uploaded
through <Key,Value>.

TABLE 1. Raw event of devices.

For the convenience of description, the Raw Event can be
simply denoted as RAE(d,l,t) to represent the instantaneous
time and space state of a specific device, where d refers to the
sensing device, l refers to the location space of the sensing
device, and t refers to the time when the event occurs.

B. SIMPLE EVENT
A Simple Event is extracted from the Raw Event. The pro-
cessing is listed as follows:

1) Filtering irrelevant events. For example, the raw sensing
events not interested by applications can be ignored.

2) Filtering repeated event. Spatial repeated events gen-
erated by multiple sensing devices covering the same area
can be filtered. For example, an event OE(d,l,t) describing
the real-time spatial state of the sensing device d in the
monitoring area l at time t. Most of the OE may be useless
information for some moveable device such as RFID tag.

3) Filtering to get important events. For example, for an
RFID tag, if it stays in a certain area for a long time, there
will be a set of RAE(d,l,t), but the application usually only
cares about the two moments when the tag enters to the area
and leaves from the area, so the entry event AE(d,l,t) and exit
event DE(d,l,t) can be filtered to be the important event from
a set of RAE(d,l,t).

AE(d,l,t) describes that the sensing device d appears in the
monitoring area l at time t. DE(d,l,t) describes that the device
d disappears in the monitoring area l at time t.

SE(d,l,ts,te) describes device d stays in the monitoring area
l from ts time to te time. SE(d,l,ts,te) is detected by matching
the adjacent AE(d,l,t) and DE(d,l,t). SE(d,l,ts,te) is frequently
used, and time reasoning with CEP wastes unnecessary com-
puting cost, so SE(d,l,ts,te) is classified as a simple event.

As the same, the reappear event RPE(d,l,ts,te) describes
device d reappears in regional l, ts and te refers to the moment
of disappear time and reappear time. RPE(d,l,ts,te) is detected
by matching the adjacent DE(d,l,t) and AE(d,l,t).

OE(d,l,t), AE(d,l,t) and DE(d,l,t) are Point Time events.
SE(d,l,ts,te) and RPE(d,l,ts,te) are Duration Time events.
4) Collection events are obtained by combination. Many

applications focus on the number or collection of a certain
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type of sensing data events in a specific region at a spe-
cific moment, while ignoring each individual data event.
For example, the number of RFID tags that arrive at a
certain area at a certain time, and the collection of RFID
tags can be extracted by combination. The collection event
CE(E,l,t)(E.Devicetype=‘‘RFIDTag′′), where E refers to the device
set, E.size refers to the number of devices in the set, l refers
to the area, t refers to the event time, and subscript expression
defines the attribute constraint, such as (E.Devicetype =
‘‘RFID Tag’’) defines the constraint condition: the device
category is RFID Tag.

The above RFID events are used as an example to describe
the possible events in the whole process of device movement.
These simple events can represent a wider range of sensor
events while the event properties are extended and the data
properties are added in the KeyValue List as shown in Table 1.
Therefore, the simple event definition is generic to most
sensing devices.

The simple event processing algorithm is as follows:

Algorithm 1 Simple Event Processing
Input Raw event set: RAE(d,l,t)
Output Simple event, OE(d,l,t), AE(d,l,t), DE(d,l,t),

SE(d,l,ts,te),RPE(d,l,ts,te), CE(E,l,t)
1: if d is unmovable device then // sensor, camera,

etc.
2: OE(d,l,t)←RAE(d,l,t);
3: output OE(d,l,t);
4: exit;
5: end if
6: // RFID tag, mobile device, etc.
7: if RAE(d,l,t) is a new AE(d,l,t) then // new AE
8: output AE(d,l,t);
9: match adjacent DE(d,l,t),AE(d,l,t);
10: if math success then
11: output RPE(d,l,ts,te);
12: end if
13: CE(E,l,t)←d; // add the new device into CE
14: end if
15: if RAE(d,l,t) is a new DE(d,l,t) then // new DE
16: output DE(d,l,t);
17: match adjacent AE(d,l,t),DE(d,l,t);
18: if math success then
19: output SE(d,l,ts,te);
20: end if
21: CE(E,l,t)-d; //delete the disappeared device from

CE
22: end if

In Algorithm 1, the repeated RAE that is repeated AE or
DE can be filtered not to be sent to CEP, which can lighten
unnecessary burdens of CEP.

C. COMPLEX EVENT
Complex event is related to a group of events that reflect a
particular rule. The events in the group are called sub-event.

Sub-event can be simple event or complex event. Rules are
defined by event operators.

E is the event set as follows:

E = {e|e is an event defined as(1).} (2)

So, the complex event C is:

C = f(E1,E2 . . . ,En), (En ∈ E, n > 0) (3)

In (3), f is the event constructor function. The f function
contains the various event operators. A complex event is
usually defined by applying event constructors to constituent
events, which are either simple events or other complex
events.

The event operators are proposed as follows:
1) E1∧E2, defines E1 and E2 occurred without time con-

straint. (E1∧E2)T denotes that both E1 and E2 occurred in
T time.

2) E1∨E2, defines E1 and E2 happen either.
3) ¬ E, means E is not happened. ¬ E is often used in

conjunction with time window operator like (¬ E)T.
4) EC, defines attribute constraints. C is composed of

relational and logical operation expressions. The operators
include: ∧, ∨, ¬, etc. For example, E(e.DeviceID‘‘DS000580’’)∧

(e.DeviceType=‘‘TemperatureSensor’’)∧(e.Location=’’L1’’)∧(T>30s)∧

(e.TemValue>80◦C) means the complex event of that the tem-
perature sensor ‘‘DS000580’’ in the area of ‘‘L1’’ detects
temperature over 80 ◦ C, and the duration is more than 30s.
5) Aggregation, define the statistics information of a

group of event instances or the attribute values of instances,
including count(E), sum(E,key), max(E,key), min(E,key),
avg(E,key),etc. It respectively count the number of instances,
sum, maximum, minimum and average value of the key
attribute of each instance.

6) ET, defines the effective time range of complex event
E, where T represents the time window duration in units of s
(seconds), m (minutes), h (hours), etc.

7) Time constraint operators, define the time relation-
ship of the events, which are combined with the time
length semantics based on the operators proposed by
Allen et al. [19]–[21]. The time operators of events are
shown in Table 2. (E.ts refers to E.StartTime, E.te refers to
E.EndTime)

D. COMPLEX EVENT DEFINITION INSTANCE
We define the complex event using the event modeling lan-
guage for IoT real-time monitoring applications.
Instance 1: IoT monitoring system for fruit transportation

and storage. The monitoring application scenario is shown
in Figure 2.

Assuming that the best storage condition of fruit is in tem-
perature 5-10◦ C, humidity 85%-90%. Fruit supermarket are
supplied by van. Two temperature and humidity sensor nodes
DS000560 and DS000570 are respectively deployed in the
fruit supermarket and the supplier van to detect temperature
and humidity. Two RFID Reader A and B are respectively
placed at the entrance of the supermarket and supplier’s van
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TABLE 2. Time constraint operator.

FIGURE 2. The monitoring application scenario for Instance 1.

door. Each box of fruit in the supplier’s van is tagged with an
RFID tag with a unique ID.

The requirements to transport the fruit successfully from
the van to the supermarket are as follows: (1) Fruit super-
market is in temperature 5-10◦ C, and humidity 85%-90%.
(2) Van is in temperature 5-10◦ C, and humidity 85%-90%.
(3) It should take less than 10 minutes for the fruit to be
transported from the van to the supermarket. If the above

conditions are met, the fruit can be carried into the supermar-
ket, otherwise alarm processing is performed.

The complex event definition for Instance 1 is in Figure 3.

FIGURE 3. Complex event definition for Instance 1.

Instance 2: IoT monitoring system for city road manhole
cover status.

The inclination sensor and speed sensor are deployed at
the bottom of the road cover to perceive the change in the
position of the cover. If there are any abnormal events such
as inclination, turnover or movement, an alarmwill be issued.
Such as when the tilt angle is more than 30◦, the tilt event will
occur. If the speed exceeds 0.5m/s, a cover movement event
will occur.

The complex event E1∨E2 with E1 of manhole cover tilt
event and E2 of manhole cover movement event are defined
in Figure 4.

FIGURE 4. Complex event definition for Instance 2.

IV. COMPLEX EVENT PROCESSING SYSTEM
A. SYSTEM OVERVIEW
The architecture of IoT complex event processing system is
shown in Figure 5.

The CEP system of IoT deployed on edge is located
between the sensing devices in terminal and the upper appli-
cation system in the cloud, which forms the high-efficiency
computing model of ‘‘terminal - edge computing - cloud
computing’’.

The CEP system is deployed on the network edge nearly to
the place where the raw data generated. The amounts of raw
data are processed by CEP to generate complex event, and
then transfer complex event to the monitoring applications in
the cloud. Due to the complex event data quantity is far less
than the original raw data, thus the amount of data transferred
to the cloud can greatly reduce. Reducing the amount of data
transmitted through the network can effectively improve the
real-time processing performance of the whole system.
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FIGURE 5. Architecture of IoT complex event processing system.

CEP on edge can process the raw data in time when the
raw data generated and transferred to edge. The real-time
performance of raw data processing on edge is better than
transfer raw data to the cloud to process.

The simple event is introduced into the CEP model. The
simple event processing such as filtering out repeated events,
combining to get set events, etc. are carried out before the
CEP engine can reduce the processing burden of the CEP
engine and effectively improve the overall system processing
performance.

The CEP system on edge can run on the IoT gateway or on
a separate computer in the same LAN with the IoT gateway.

The sensing data/event of raw data can be transferred to
the CEP system through various wireless communication net-
work, such as Zigbee, Bluetooth, RFID, NB-IoT, Lora, WiFi,
4G/5G/LTE, etc. The CEP system transfers the complex
events to the publish/subscribe message delivery network
(e.g. Kafka) through WiFi, 4G/5G/LTE mobile communica-
tion network or Internet. The IoT monitoring applications
run in the cloud (e.g. data center). The publish/subscribe
system provides publish and subscribe of messages for CEP
and applications to complete the delivery of complex events
through Internet.

The CEP system consists of two modules: 1) Raw Event
Processing module. Firstly, the sensing data uploaded by

the sensing devices are preprocessed to generate the raw
event and stored in the database. Then, the simple events are
generated by refining from raw events. 2) Complex Event
Processing module. It reasons complex events according to
simple events.

The advantages of CEP system deployed on the network
edge are as follows:

1) The storage and processing of original sensing data
run on the CEP system of IoT, which is located at the edge
of the network, can reduce the communication overhead of
network transmission, and improve the monitoring service
response speed and improve the performance of the whole
IoT real-time monitoring system.

2) The original data carries a variety of sensitive infor-
mation, such as time and location. After processing of CEP,
the business data or complex event not containing sensitive
information will be sent to the application in the form of
complex events, which is conducive to the realization of
privacy protection.

For example, for smart city real-time monitoring service,
the local area data analysis can be carried out in the CEP
system located on the edge, while the global data analysis
task can be carried out in the cloud. The edge computing
can realize rapid analysis and response of local data, and
reduce unnecessary data transmission to the cloud. Also, it is
conducive to the privacy protection of users.

B. RAW EVENT PROCESSING MODULE
Raw Event Processing module includes Data Preprocess-
ing module and Event Resolver module. Data Preprocess-
ing module collects data from Sensing Devices data source
according to interval time, filters the repeated and irrelevant
data, forms Raw Event and writes it to Raw Event database.

If the Raw Event is Point Time Event, Event Resolver
will send it immediately to the Complex Event Processing
module to ensure the real-time processing performance. For
the Duration Time Event, Event Resolver will process the
correlated Raw Events from the raw event database to gen-
erate the Duration Time Event to send to the Complex Event
Processing module.

Event Resolver reads Raw Events from the database in real
time, filters and combines them according Algorithm 1 to
obtain Simple Events including: 1) Point time event, such
as entry event AE, leaving event DE and existing event OE.
2) Duration time event. According to match AE and DE, stop
event SE and reappear event RPE are obtained. 3) Collection
event CE are obtained according to statistics of AE and DE.

The Event Resolver outputs all simple events as Java
objects to the Complex Event Processing module. The simple
event class definition of IoT is shown in Figure 6.

C. COMPLEX EVENT PROCESSING MODULE
1) CEP ENGINE
The Complex Event Processing module is implemented
based on CEP rule engine. The original event stream facts
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FIGURE 6. Class of IoT simple event.

performs pattern matching with rules in the rule library.
If the matching is successful, complex events will be inferred
and generated to send to the upper application. The gener-
ated complex event can be sent to CEP engine as a fact if
needed.

The definition of a rule is the basis for complex event
discovery. Different application systems define different rule
libraries and get different high-level events.

The rule base is pre-defined according to the application
requirements, and a large number of rules are stored in the
rule base. Use rules to describe the judgment of complex
events. Such as ‘‘If a RFID tag entered a region, but the video
have more than two faces recognition, the abnormal event
should occur and the system should alarm’’, ‘‘If temperature
C2-C1 >10◦ C and C2 occurred after C1 in 10 seconds,
the temperature rises too fast, the system should alarm’’.
It can be seen that the rule is composed of two parts. The first
part is the condition, which represents the event pattern and
describes the relationship among original events. The second
part is the inference result, which is the specific processing
of complex event occurs.

2) WHY SELECT DROOLS
The Complex Event Processing module is implemented on
JBoss Drools [21] which is a popular CEP engine. Drools has
some advantages compared with another popular CEP Esper
as follows:

(1) Esper receives the event stream and regards each type
of event as the event stream. Drools can receive event stream
and store different types of events, and can record the source
of the event which facilitates the causal tracing of the event.

(2) Esper does not provide application time model, but
only provides engine time. Drools provides application time
model, but it requires events to arrive at the engine in the
correct order.

(3) Drools is better than Esper in supporting temporal
relation. For example, Esper supports point time events,
while Drools can define the duration of events to support
duration time events. Drools support richer time opera-
tions to define complex event with complex time-dependent
semantics.

For IoT monitoring scenario, it is necessary to record
events including point time events and duration time events.

TABLE 3. Drools logic script (PART).

The time processing requirements of events are relatively
high. Drools time operators can meet the requirements.
Therefore Drools CEP is selected in this paper.

3) DROOLS RULE LOGIC SCRIPT
Drools supports for programmatic customization of complex
event logic. Each complex event corresponds to a logic script.
The logic script is parsed at runtime to process the receiving
simple events.

In Figure 5, Complex Event Processing module includes
Event Dispatcher module, CEP engine and Business Logic
Script module.

The Event Dispatcher module gets the received simple
Event Java objects as Fact objects, and put them into the
event processing channel corresponding to CEP Engine. Each
event processing channel represents a set of internally related
and externally independent complex event logic, which is
implemented by a logical script. CEPEngine conducts pattern
matching between Facts and rules, calculates and deduces
complex events, and then stores complex events into the
complex event database, and sends the complex events to
the upper application system through the message delivery
system like Kafka.

The key to realize CEP is to realize the mapping between
complex event semantics description and the rule logical
script. The complex event modeling language proposed in
this paper can be fully mapped to Drools logical scripts.
Table 3 lists the logical script fragments of some event oper-
ators.

The Drools complex event logic script for Instance 1 is
defined in Figure 7. The rule ‘‘rule_fruit_transportation’’
includes when section and then section, the when section is
the complex event pattern that is the complex event logic
script.

The Drools complex event logic script for Instance 2
is defined in Figure 8. The when section of the rule
‘‘rule_road_manhole_cover_1’’ is the complex event pattern
that is the complex event logic script.
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FIGURE 7. Drools logic script of complex event for Instance 1.

FIGURE 8. Drools logic script of complex event for Instance 2.

D. DISCUSS OF SYSTEM CHARACTERISTICS
The system has some advantage characteristics as follows:

1) The event model is formalized and readable. The for-
malized modeling language to define the complex event has
better readability. It defines the complex event in the pro-
grammatic way supporting space and time semantics of IoT
application, and can be completely mapped to the Drools
rules logic script definition, so as to realize efficient definition
and adapt to the complex and changeable business events in
the IoT monitoring system.

2) The event model is universal which is independent of
CEP engine. The complex event modeling language does
not rely on specific implementation techniques, and can map
to complex event definition scripts of other CEP engines to
realize complex event processing.

3) The CEP system has high scalability. The division of
event processing channel in the CEP module is distributed
according to the characteristics of the monitoring system
business. The monitor tasks can be assigned to different
event processing channel to run the corresponding com-
plex event. It promotes the scalability of the large-scale
complex event processing through distributed software and
hardware technology.

V. EXPERIMENTAL EVALUATION
The performance of CEP is the key to IoT real-time moni-
toring. The experimental setup of the CEP system is shown
in Figure 9.

In Figure 9, the Sensing Data Generator is a simulator
program to produce the sensing data/event according to the

FIGURE 9. Experimental setup.

parameter M, T, and Tmax. T is the time interval. Tmax is
the maximum time window. M is the number of sensing
data/event generated in each T interval to send to CEP system.

The CEP system is the real system. It receives the sensing
data and processes to generate complex event. There are some
parameters of the CEP system. The input parameter N is the
complex event definition number, and Tmax is the maximum
time window. The output parameter T1 and TM are used to
compute the processing time Tc.T1 is the system time when
the first event received in a T interval. TM is system time at
the end of processing the last event M in a T interval.

Processing time Tc is the system running time to handle the
M events in a T interval. The value of Tc is the average time
of 5 consecutive runs under stable operation. The computing
method of Tc is Formula (4) as follows. In (4), i is the number
of CEP system runs.

Tc =
1
5

∑5

i=1
(TM − T1) (4)

The experiments are carried out on an Intel
Core i5-6300HQ CPU 2.30GHz PC, with 8GB of RAM
running on Windows 10.

Since complex event of time-dependent semantics need
to deal with all historical events within the effective period,
which has a great impact on performance, we divide the com-
plex events into 2 kinds of events to evaluate the performance:

1) Complex event with time-independent semantics refer-
ring to complex event definition without time operators,
e.g. the complex event ‘‘rule_road_manhole_cover_1’’ of
Instance 2 in Figure 8.

2) Complex event with time-dependent semantics referring
to the definition of complex event containing time operators
including time constraints and time window, e.g. the complex
event ‘‘rule_fruit_transportation_1’’ of Instance 1 in Figure 7.

A. PERFORMANCE COMPARISON OF
TIME-INDEPENDENT SEMANTICS CEP and
TIME-DEPENDENT SEMANTICS CEP
Experiment 1: performance comparison of time-independent
semantics CEP and time-dependent semantics CEP.

1) THE PROCESSING TIME PERFORMANCE
The number of complex event definitions N is 1, 2, 5, 10, 20,
the input simple event flow M is increased from 1 × 10 4 to
10× 10 4, the processing time Tc are shown in Figure 10.
Only time-independent semantics events such as ‘‘rule_

road_manhole_cover_1’’ are defined in Figure 10(a)
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FIGURE 10. Processing time performance comparison. (a) Performance of
time-independent semantics complex event processing. (b) Performance
of time-dependent semantics complex event processing.

experiment, while only time-dependent semantics events
such as ‘‘rule_fruit_transportation_1’’ are defined in
Figure 10(b) experiment.

The experimental results show that:
(1) The processing time Tc increases as the number of

complex event definitions N increases for all of the two kinds
of complex events.

(2) For time-independent semantics complex event pro-
cessing, the number of complex event definitions N has little
effect on the processing time Tc. For time-dependent seman-
tics complex event processing, the number of definitions of
complex events N has a greater impact on the processing
time Tc than the time-independent semantics complex event
processing.

In Figure 10(a), when M = 10 × 10 4, the processing
time Tc is about 1553ms when N = 10, and Tc is about
1700ms when N = 20. Though the number of complex event
definitions N is doubled, the processing time Tc increases
only 147ms, a 9.5% increase.

FIGURE 11. Throughput performance comparison.

In Figure 10(b), when M = 10× 10 4, the processing time
Tc is about 2731ms when N = 10, and Tc is about 3100ms
when N = 20. The number of complex event definitions N
is doubled, and the processing time Tc increases by 369ms,
a 13.5% increase. Tc increases by 4% compared to 9.5% for
time-independent semantics complex event processing.

(3) The processing time Tc of CEP without time operators
is far greater than that with time operators, and the larger the
N value is, the more obvious the performance is. The larger
N is, the more complex event processing overhead is, and the
larger Tc is.

In Figure 10(a), the processing time Tc of time-
independent semantics CEP is about 1700ms when N = 20,
M = 10 × 10 4. In Figure 10(b), Tc of time-dependent
semantics CEP is about 3100ms when N = 20, M =

10 × 10 4, which is about 1.82 times more than 1700ms for
time-independent semantics CEP.

2) THE THROUGHPUT PERFORMANCE
The number of complex event definitions N is 1, 2, 5, 10,
20, the input simple event flow M is 10 × 10 4, the through-
put of processing raw event number per second of the
time-independent semantics CEP and time-dependent seman-
tics CEP are shown in Figure 11.

The experimental results show that:
(1) The throughput decreases as the number of complex

event definitions N increases for all of the two kinds of
complex events.

For time-independent semantics CEP, when N = 1, the
throughput is 1.27 × 10 4 raw events per second, and when
N = 20, the throughput is 5.88× 10 4 raw events per second,
a 54% decrease. For time-dependent semantics CEP, when
N = 1, the throughput is 4.83× 10 4 raw events per second,
and when N = 20, the throughput is 3.22 × 10 4 raw events
per second, a 33% decrease. The throughput degradation
of time-independent semantic CEP is more significant than
time-dependent semantic CEP.
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FIGURE 12. Computing resource usage. (a) CPU usage. (b) RAM usage.

(2) The throughput of time-independent semantics CEP is
higher than time-dependent semantics CEP.

When N = 20, the throughput of time-independent seman-
tics CEP is 5.88 × 10 4 raw events per second, while the
throughput of time-dependent semantics CEP is 3.22 × 104

raw events per second. The throughput of the former is
1.82 times than the latter which is consistent with the previous
multiple of processing time Tc.

3) THE CPU AND RAM USAGE
We evaluate the computing resource usage of CEP. When N
is 20, the input simple event flow M is 200 × 10 4, the CPU
and RAM usage of the time-independent semantics CEP and
time-dependent semantics CEP are shown in Figure 12.

The experimental results show that the computing resource
of CPU and RAM usage of time-independent semantics CEP
is higher than time-dependent semantics CEP. The former
takes less processing time than the latter because the former
has larger throughput than the latter.

For time-independent semantics CEP, the maximum CPU
usge is 80%, and the average CPU usage is about 62%. For
time-dependent semantics CEP, the maximum CPU usage is
48%, and the average CPU usage is about 26%.

For time-independent semantics CEP, the maximum RAM
usage is 1.3GB, and the average RAM usage is about 1GB.
For time-dependent semantics CEP, the maximum RAM
usage is 0.3GB, and the average RAM usage is about 0.1GB.

4) THE PERFORMANCE METRICS SUMMARY
In summary, the performance metrics of the CEP system in
the experimental environment are shown in Table 4.

TABLE 4. Performance metrics of the CEP system.

If the required throughput of CEP is thousands level such
as 1000-9000 events/second, or tens of thousands level but
less than 3× 10 4 events/second, the hardware infrastructure
of a PC of Intel Core i5 with 8GB RAM (our experiment
environment hardware) is enough to support the CEP system
running.

In practice, the choice of hardware of CEP system running
depends on the requirements for throughput of CEP.

B. PERFORMANCE ANALYSIS OF TIME-DEPENDENT
SEMANTICS CEP
Experiment 2: performance analysis of time-dependent
semantics CEP.

Time-dependent semantics need to consider historical
events within the effective period, and the main parameter
affecting performance is K = Tmax/T, where Tmax is the
maximum time window, representing the maximum effective
duration in the definition of complex events, which is deter-
mined by event failure time, time constraint duration and time
window value. T is the sampling interval. K represents the
number of event groups uploaded to complex event process-
ing in the range of maximum effective time.

In Figure 13(a), K is fixed at 10, indicating the number of
input event groups is 10. Let Tmax = 10s, T = 1s, K =
Tmax/T = 10, the number of complex event definitions N
increases from 1 to 10, and M takes 100, 200, 500, 1000,
2000 simple events in every 1 second, the processing time
Tc are shown in Figure 10(a).

In Figure 13(b), the input simple event flow M is fixed.
M is 500 in every 1 second, the number of complex event
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FIGURE 13. Time-dependent semantics complex event processing
performance. (a) Processing time when fixed K = 10. (b) Processing time
when fixed M = 500 per 1s.

definitions N increases from 1 to 10, K is 5, 10, 20, 50, 100,
the processing time Tc are shown in Figure 13(b).

The experimental results show that:
(1) The processing time Tc increases with the growth of M,

N and K. Tc is proportional to M, N, and K.
Figure 13(a) shows that when K is fixed, the larger N is,

the larger M is, and the faster Tc increases.
Figure 13(b) shows that when M is fixed, the performance

time Tc is mainly affected by Tmax and very little by N. The
Tc value of each K value is basically unchanged, showing a
horizontal trend with a small rise. For example, when K =
100, T = 1s, Tmax = 100s, at this time, when M = 500,
N = 1, Tc = 99.013s, andN = 10, Tc = 104.808s, with little
change. It can be seen that Tc value is close to Tmax value.
With the increase of N, Tc increases very little, indicating that
Tc is mainly affected by Tmax and very little by N.
(2) To better define time-dependent semantics complex

events, the parameters need to be carefully considered
as follows: i) The time interval T should be set valid

FIGURE 14. Performance improvement of do simple event processing
before complex event processing of CEP engine.

and reasonable. ii) The maximum time window Tmax should
be minimized as far as possible, so as to avoid affecting the
event processing performance and reducing the efficiency of
real-time monitoring.

For Instance 1, Tmax should be set 10 minutes, because
the fruit must arrive within 10 minutes from the van to the
supermarket. The T collection interval can be set 1 minute.
K = Tmax/T = 10.
For Instance 2, complex events are time-independent

semantics. There is no time operator in a complex event
definition, and the processing time is independent of the Tmax
parameter.

C. PERFORMANCE COMPARISON OF HAVING SIMPLE
EVENT PROCCESSING AND NO SIMPLE EVENT
PROCESSING
Experiment 3: performance comparison of having simple
event processing and no simple event processing.

The complex event processing with time-dependent
semantics complex event costs much more time than
time-independent semantics complex event. The simple event
processing Algorithm 1 included in the system executing
before complex event processing by CEP engine can reduce
the computing cost and improve performance.

In Figure 14 experiment, the number of the time-dependent
semantics complex event definitions N is 6, the input raw
event flow M is from 100 to 1000. The number of repeated
event of each raw event is 5. The processing time Tc of the
two cases: 1) no simple processing, and 2) do simple event
processing are shown in Figure 14.

The ‘‘no simple event processing’’ means that the function
of Algorithm 1 simple event processing need to be imple-
mented in CEP engine rules. So it need much more pro-
cessing time. The ‘‘do simple event processing’’ means that
the function of Algorithm 1 is implemented in simple event
processing module running before the CEP engine which
reduces the complexity and burden of CEP engine. So the
processing time Tc of the system in case of ‘‘do simple event
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processing’’ is smaller than Tc in case of ‘‘no simple event
processing’’.

In Figure 14, when raw event number M is 100, the perfor-
mance time Tc of ‘‘no simple processing’’ case is 238.2 ms,
and Tc of ‘‘do simple processing’’ case is reduced to 120.4ms.
When raw event number M is 1000, the performance time
Tc of ‘‘no simple processing’’ case is 602.4 ms, and Tc of
‘‘do simple processing’’ case is reduced to 268.2ms. With
M increases, the performance time Tc reduces even much
more. The larger M is, the more significant performance
improvement is.

The experimental result shows the system performance is
obviously improved by having ‘‘do simple event processing’’.
Therefore, the simple event processing is necessary to do
before complex event processing for large amount of data
real-time processing. It can effectively improve the overall
performance of CEP system. The system architecture pro-
posed in this paper is high efficiency.

VI. CONCLUSIONS
This paper proposes a universal complex event processing
mechanism for Internet of things real-time monitoring. The
CEP mechanism is suitable to any heterogeneous sensing
devices and CEP engine. The proposed system architecture
is based on the edge computing which deployed between the
sensing devices in terminal and IoT applications in the cloud
to process the data flow timely.

In this paper, a formalized complex event model is pro-
posed to analyze IoT sensing events to establish hierarchical
events as raw event, simple event and complex event, so as to
reduce the complexity of event modeling. Themodel supports
to define complex and changeable IoT monitoring business
logic effectively. We demonstrate two typical IoT monitoring
application case studies highlight the proposed event model.

Moreover, based on the complex event model, a complex
event processing system architecture is proposed. The highly
efficient CEP engine is adopted to construct the system. The
complex event definitions are mapped to the CEP rule logic
scripts, and the system extracts important status or abnormal
information from a large amount of collected data in a timely
manner.

Finally, the experimental evaluation demonstrates the per-
formance of the CEP system. The performance metrics of
the CEP system are evaluated, including processing time,
throughput, CPU and RAM usage, etc. The configuration
of CEP system to improve performance is suggested. The
mechanism of IoT event model with do simple event pro-
cessing before CEP engine improves the whole CEP system
performance. The mechanism is efficiency to suffice the high
requirements of IoT real-time data processing, and adapt
to the complexity and changeability of monitoring business
logic.

The future work will focus on the following: 1) Study the
system performance and application scenarios of the CEP
system running on edge smart devices, such as mobile phone

and Raspberry Pi, etc. 2) Research on service collaboration
of Internet of things application services based on CEP.
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