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ABSTRACT We consider a signal detection problem by using deep learning techniques in a multiple-input
multiple-output (MIMO) decode-forward (DF) relay channel. There exist some suboptimal detectors such
as the near maximum likelihood (NML) detector and the NML with two-level pair-wise error probability
(NMLw2PEP) detector in the channel. However, the NML detectors require an exponentially increasing
complexity as the number of transmit antennas increases. More seriously, without the channel state infor-
mation (CSI) of the source-relay (SR) link, there is no detector that can achieve good performance even at
high complexity. In this paper, we propose a deep learning approach to the NML (DL-NML) detector that
achieves good performance with low complexity regardless of whether the CSI of the SR link is known or not
at the destination. The DL-NML detector can detect signals in changing channels after a single training by
using randomly generated channels. Furthermore, we propose a linear detector and a semidefinite relaxation
approach to the NML detector to compare with the DL-NML detector in performance and complexity. The
complexity analysis and simulation results validate the superiority of the proposed DL-NML detector.

INDEX TERMS Channel state information, decode–forward, machine learning, maximum likelihood,
multiple-input multiple-output (MIMO), neural network, relay channel, TensorFlow.

I. INTRODUCTION
In wireless communications, deep fading often causes a
failure in reliable data transmission. Relays help increase
the transmission reliability between a source and a desti-
nation, and extend the network coverage by providing an
additional link. The relay channel model, introduced by van
der Meulen [1], is a basic channel model in network com-
munications. This relay channel has been studied extensively
in the literature [2]–[10]. Among various relaying operations,
amplify-forward (AF) and decode-forward (DF) are the two
most common methods [3]. Even though the AF relaying is
simple, the transceivers require expensive radio frequency
amplifiers [4]. Hence, we apply the DF relaying in this paper.

A. BACKGROUND ON SIGNAL DETECTION
IN THE MIMO DF RELAY CHANNEL
Unlike in a multiple-input multiple-output (MIMO) system,
a linear relationship does not exist between the input and the
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output in the DF relay channel due to the hard decision at
the relay. As the received signal of the relay is not known
at the destination, the maximum likelihood (ML) detection
in the DF relay system requires more steps than that in the
MIMO system [4]–[6]. Due to the complexity of the ML
detection and the difficulty in analysis, a near-ML (NML)
detector was proposed in [6], [7] under instantaneous channel
state informations (CSIs) of the source-relay (SR), source-
destination (SD), and relay-destination (RD) links. However,
forwarding the instantaneous CSI of the SR channel from the
relay to the destination requires additional work and reduces
the data rate. With the statistical CSI of the SR link at the
destination, an NML with two-level pair-wise error probabil-
ity (PEP) (NMLw2PEP) detection was proposed in [8] that
achieves good performance with relatively low complexity.
Without any knowledge of the SR channel at the destina-
tion, the minimum distance (MD) detection1 ignores detec-
tion error at the relay and shows poor performance [4], [6].

1This was called a maximum ratio combining (MRC) in a single-antenna
relay system in [4].
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The above mentioned detection algorithms detect signals
simultaneously by exhaustively searching all the possible
signal sets, thus their complexities increase exponentially as
the number of transmit antennas increases.

A method to reduce the detection complexity is to separate
the signals by a linear operation and detect them individually.
The typical linear detectors in theMIMO channel are the zero
forcing (ZF) and minimum mean square estimation (MMSE)
detectors [11]. Referring to the ZF detector, a linear detector
of ZF with maximum ratio combining (MRC) (ZFwMRC)
was proposed in the MIMO DF relay channel when the relay
detects signals correctly [9]. However, this algorithm cannot
achieve good performance for the relay with errors similar
to the MD detection. A new detection method should be
introduced, and a potential solution is to use the powerful
tools in machine learning.

B. MACHINE LEARNING AND SIGNAL DETECTION
Machine learning is a subset of artificial intelligence that
learns to solve a specific problem by themselves [12].
Supervised learning, a class of optimization problems, trains
an approximation function of a target function f such that
x = f (y) using the known training data samples including
the observation data y and reference data x. Meanwhile, tradi-
tional signal detection obtains an estimation of x̂ directly from
the observation y using a mathematical optimization method
without reference signals (training data). However, it is not
easy to find a detector with reasonable performance and com-
plexity theoretically in complicated communication systems.
Applying machine learning, a function g that approximates
the existing detection algorithm is trained to minimize a loss
function l(x̂, x) that measures the cost of estimating x̂ when
the actual answer is x. After training, the observation data y
undergoes the final function g∗, and subsequently, the desired
data x̂ is detected and the detection process is completed in
real time.

Advances in computer technology and big data process-
ing have significantly reduced the cost and time of training
deep learning algorithms. This has significantly improved the
development of computer vision [13] and natural language
processing [14]. In communication networks, deep learning
has begun to receive much attention [15]. To reduce complex-
ity, the detection and channel decoding problems have been
investigated using powerful deep learning tools in the chan-
nel decoding related to belief propagation [16], [17], signal
detection in MIMO systems [18], [19], and signal detection
in chemical communications [20], [21]. A deepMIMO detec-
tion network in the MIMO channel is noteworthy [19]. This
detection network applies a deep unfolding approach that
transforms a computationally intractable probabilistic model
into a deep neural network by unfolding iterative calcula-
tions into neural-network layers [22]. Embedding the existing
mathematical methods into black-box-like deep neural net-
works improves the accuracy and reduces complexity.

C. CONTRIBUTIONS
In this paper, a deep learning detector in the MIMO DF
relay channel is proposed by adopting the deep unfolding
approach [19], [22], under three scenarios related to the
knowledge of the SR channel at the destination: 1) with
instantaneous SR channel; 2) with statistical SR channel;
3) without SR channel.

Unlike in the MIMO channel, there does not exist much
research on the signal detection in the MIMO DF relay chan-
nel as introduced in Section I-A. To compare with the deep
learning detector in performance and complexity, a linear
detector and a semidefinite relaxation (SDR) detector are
also proposed. The reason for choosing the linear detector is
due to its low complexity, and choosing the SDR approach
is due to its good performance and reasonable complexity.
In detail, we list the three main reasons to choose the SDR
algorithm.
– The SDR algorithm solves a convex optimization prob-

lem, thus this method does not suffer from local
maxima [32], [31].

– The SDR algorithm guarantees a polynomial-time
worst-case computational complexity.

– The SDR detector in the MIMO chanel achieves maxi-
mum possible diversity order and near ML performance
in a wide SNR range [33], [31]. The derivation of the
relay error probability of the SDR detector makes it
possible to apply the SDR approach at both the relay and
the destination.

In summary, the main contributions of this paper are as
follows.
• A deep learning approach to the near-ML (DL-NML)
detector is proposed in the MIMO DF relay channel
under the three scenarios (Section III). A detailed train-
ing process for the DL-NML detector is introduced,
which gives a hint to how to train machine learn-
ing detectors in network communications (Section VI).
Unlike the MIMO channel, there exist some additional
factors to be considered in network communications
as well as DF relay channels. The advantages of the
proposed DL-NML detector are summarized as follows.
– Training process: The required training time of the

DL-NML detector is not very long; and once being
trained, the DL-NML detector can be implemented
without retraining or with a little retraining for var-
ious channel environments such as the one with a
different number of receive antennas or with differ-
ent statistical conditions.

– Detection process: The DL-NML detector with
a fixed L (< N ) detection layers requires rela-
tively low complexity that between O(L(4N )2) and
O((4N )3) and takes short detection time by using
batch signal detection and parallel computation
in the MIMO DF relay channel with N transmit
antennas.

99482 VOLUME 7, 2019



X. Jin, H.-N. Kim: Deep Learning Detection in MIMO Decode-Forward Relay Channels

– Performance: The DL-NML detector achieves
excellent error performance in the three scenarios of
the SR channel. In particular, in the scenario with-
out SR channel, this deep learning detector achieves
dramatically good performance through benefits of
the learning process, while existing detectors could
not obtain acceptable performance with technolo-
gies so far known.

• To evaluate the performance of the DL-NML detector,
an SDR approach to the NML (SDR-NML) detector
is proposed as the SDR version of the NML detec-
tors. The SDR-NML detector exhibits admirable per-
formance with polynomial complexity, and is thus a
suitable choice for the MIMO DF relay channel without
training.

• Additionally, a linear detector based on the zero gradient
(ZG) of the metric of the NML detector is proposed
(Definition 1). The ZG detector achieves much better
performance than the existing linear ZFwMRC detector.

• Equivalent SR channel matrices used in detectors at
the destination (DetD) are provided corresponding to
various detectors at the relay (DetR) so that the proposed
DetD such as the DL-NML, SDR-NML, and ZG detec-
tors can be implemented for any DetR.

• Applying various DetR and DetD, we present some
DetR:DetD methods according to the required error
probability and complexity, which provides a basic idea
and direction for the system configuration.

The remainder of the paper is organized as follows.
In the next section, we formally introduce the MIMO DF
relay channel and its equivalent real model. The main part of
this paper is presented in Section III. TheDL-NMLdetector is
proposed by applying the deep unfolding approach under var-
ious conditions of the knowledge of the SR channel when the
ML detection is applied at the relay. In Section IV, the SDR-
NML detector is proposed to compare with the DL-NML
detector in the case of the ML detector at the relay. Some
representative detectors at the relay (DetR) are introduced and
a deep learning approach to the ML detector in the MIMO
channel is proposed in Section V. In Section VI, the training
and detection details for the proposed DL-NML detector are
explained. In Section VII, various DetR:DetD methods are
presented by using TensorFlow and Matlab. Finally, the con-
clusions are given in Section VIII.

D. NOTATIONS
Throughout the paper, we use the following notations. The
superscript (·)T denotes the transpose of a matrix; tr(·)
denotes the trace of a matrix; Re(·) and Im(·) denote the real
and imaginary parts of a complex number, respectively; In
denotes the n × n identity matrix (where the subscript n is
omitted when it is irrelevant or clear from the context); Cn×m

andRn×m denote a set of n×m complex matrices and a set of
n × m real matrices, respectively; A ∼ CN (0, σ 2

AI ) denotes
that the elements ofA are i.i.d. circularly symmetric complex
Gaussian random variables with zero mean and variance σ 2

A,

and B ∼ N (0, σ 2
BI ) denotes that B is a real Gaussian random

matrix with zero mean and covariance matrix σ 2
BI ; diag(·)

denotes a block diagonal matrix with the entries on its main
diagonal; [·]i:j,k:l means a matrix consisting of the entries
from the ith row to the jth row, and from the kth column to
the lth column in the original matrix.

II. SYSTEM MODEL
A half-duplex DF relay channel with one source, one des-
tination, and one relay is considered. It is assumed that
the relay knows the CSI of the SR channel, and the des-
tination knows the CSIs of the SD and RD links. In the
first phase, the source with N transmit antennas broadcasts
N independently and uniformly distributed complex signals
xC = [xC1 , . . . , x

C
N ]

T to the relay and the destination, where
Re(xCj ) ∈ A, Im(xCj ) ∈ A, j = 1, . . . ,N , and A ∈ {+1,−1}.
Subsequently, the received signals at the relay with N receive
antennas can be written as

yCSR = HC
SRx

C
+ zCSR (1)

where HC
SR ∈ CN×N is the channel coefficient matrix of

the SR link and zCSR ∼ CN (0, σ 2I ) is the noise term at
the relay. Simultaneously, the destination receives the signal
transmitted from the source as

yCSD = HC
SDx

C
+ zCSD (2)

where HC
SD ∈ CND×N is the channel coefficient matrix of

the SD link and zCSD ∼ CN (0, σ 2I ) is the noise term at the
destination in the first phase. In the second phase, the relay
decodes the received signal and forwards the decoded signal
xCR = [xC1R, . . . , x

C
NR]

T , Re(xCjR) ∈ A, Im(xCjR) ∈ A, j =
1, . . . ,N to the destination. The received signal at the des-
tination with ND receive antennas in the second phase is

yCRD = HC
RDx

C
R + zCRD (3)

where HC
RD ∈ CND×N is the channel coefficient matrix of

the RD link and zCRD ∼ CN (0, σ 2I ) is the noise term at the
destination in the second phase.

To simplify the expressions, we convert the complex sys-

tem model to a real system model. Let x =
[
Re(xC )
Im(xC )

]
,

xR=
[
Re(xCR )
Im(xCR )

]
, yij=

[
Re(yCij )
Im(yCij )

]
, zij=

[
Re(zCij )
Im(zCij )

]
, and Hij =[

Re(HC
ij ) − Im(HC

ij )
Im(HC

ij ) Re(HC
ij )

]
for ij∈{SR,SD,RD}. Then an equiv-

alent real system model is written as

ySR = HSRx + zSR (4)
ySD = HSDx + zSD (5)
yRD = HRDxR + zRD (6)

where x, xR ∈ A2N , and zij ∼ N (0, 12σ
2I ) for ij ∈

{SR,SD,RD}. The signal-to-noise ratios (SNRs) at the relay
and the destination are linearly proportional to ρ = 2N

σ 2
. The

equivalent real system model is depicted in Fig. 1, where
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FIGURE 1. The equivalent real MIMO DF relay system model.

‘‘DetR’’ and ‘‘DetD’’ represent the detectors at the relay and
the destination, respectively. Various types of DetD and DetR
will be introduced in the following sections.

III. DEEP LEARNING APPROACH TO THE NML
DETECTOR AT DESTINATION
Consider the MIMO relay channel in Fig. 1. Due to the
probabilistic distribution of the noise terms zSR, zSD, and zRD,
the optimal detection method to minimize the frame error
probability is the ML detector that finds an x ∈ A2N that
maximizes p(ySD, yRD|x,HSD,HRD,HSR) for the uniformly
distributed x.

As detection errors may exist at the relay, the detection
method for the DF relay channel is different from that of
the MIMO channel. Both signals that are possibly to be
transmitted from the source and from the relay should be
considered in the DetD. This results in much higher detection
complexity in the MIMO DF relay channel, approximately
the square of the computational complexity of the point-
to-point MIMO channel detection. The exhaustive search
algorithms such as the ML and NML detectors cannot be
applied in the MIMO DF relay channel with large numbers
of antennas. Moreover, without the CSI of the SR link, there
is no existing optimal or suboptimal detection algorithm that
we can refer to.

To address these problems, this section explores a deep
learning detection for three scenarios related to the knowl-
edge of the SR channel at the destination: 1) with instanta-
neous SR channel; 2) with statistical SR channel; 3) without
SR channel.

A. WITH INSTANTANEOUS SR CHANNEL
With the full CSIs of the SR, SD, and RD links,
the ML detection that maximizes the likelihood function
p(ySD, yRD|x,HSD,HRD,HSR) for the real system model in
(4)-(6) can be written as

x̂= arg max
x∈A2N

p(ySD, yRD|x,HSD,HRD,HSR)

= arg max
x∈A2N

p (ySD|x,HSD)

·

∑
xR∈A2N

p (yRD|xR,HRD)PSR(xR|x,HSR)

= arg max
x∈A2N

{
−
∥∥ySD − HSDx∥∥2

+σ 2ln
∑

xR∈A2N

exp
(
−
‖yRD−HRDxR‖2−σ 2lnPSR(xR|x,HSR)

σ 2

)}
(7)

where PSR(xR|x,HSR) is the probability that the relay detects
the received signal to xR when the source transmits x. Since
it is highly difficult to derive PSR(xR|x,HSR) in MIMO sys-
tems [23], the pair-wise error probability (PEP) between x
and xR, PSR(x→ xR|HSR) is used instead. Moreover, apply-
ing the widely-used max-log approximation ln

∑
i exp(xi) ≈

maxi xi [24]- [26], the near-ML (NML) detector [6] is writ-
ten as

x̂ = arg min
x∈A2N

min
xR∈A2N

{∥∥ySD−HSDx∥∥2
+
∥∥yRD−HRDxR∥∥2 − σ 2lnPSR(x→ xR|HSR)

}
(8)

where PSR(x → xR|HSR) = 1 for xR = x; otherwise,
PSR(x → xR|HSR) is the PEP between x and xR for the ML
detector at the relay (MLaR) [6]:

PSR(x→ xR|HSR) = Q
(√ 1

2σ 2 ‖HSR(x− xR)‖2
)

(9)

and Q(x) = 1
√
2π

∫
∞

x e−
y2
2 dy.

To detect signals, the NML detector requires |A|4N times
of the calculation for the metric in (8). This exhaustive search
detection algorithm cannot be used for large numbers of
antennas. Hence, we reflect this mathematical relationship
in deep learning networks to get both advantages of the
mathematical method and training method simultaneously.
By unfolding the iterations of the projected gradient descent
method based on theNMLdetector, a deep learning algorithm
is derived. This is described in detail in the following steps.

1) PROJECTED GRADIENT DESCENT METHOD
The projected gradient descent method is based on the gradi-
ent of the metric in the original exhaustive search detection
algorithm. However, the metric in (8) itself is unsuitable for
the gradient descent method due to the complicated Q(x)
function. Instead, we use an approximation given in [6] as

− lim
σ 2→0

σ 2lnQ
(√ 1

2σ 2 ‖HSR(x−xR)‖
2
)
=

1
4
‖HSR(x−xR)‖2.

(10)

Then the detection metric in (8) becomes a quadratic function

of x =
[
x
xR

]
as

m(x)=‖ySD−HSDx‖2+‖yRD−HRDxR
∥∥2+ 1

4
‖HSR(x−xR)‖2

(11)
=‖y− HDx‖2 + ‖HRx‖2 (12)

where y =
[
ySD
yRD

]
, HD = diag

(
HSD, HRD

)
, and HR =

1
2

[
HSR −HSR

]
. An optimization problem is established as

minimize m(x)

subject to x ∈ A4N . (13)
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Applying the projected gradient descent method to the
nonconvex optimization problem in (13), an update in the kth
iteration is written as

x̂k = φ
(
x̂k−1− δk∇m(x)

∣∣
x=x̂k−1

)
= φ

(
x̂k−1+δ

′
kH

T
D y−δ

′
kH

T
D HDx̂k−1−δ

′
kH

T
R HRx̂k−1

)
(14)

where φ(·) is a nonlinear projection operator, e.g., φ(x) =
sgn(x) for x ∈ A = {+1,−1}, x̂k−1 is the estimate in the
(k − 1)th iteration, δ′k is a step size in the kth iteration for
k = 1, . . . ,L,

∇m(x) = −2HT
D y+ 2HT

D HDx+ 2HT
R HRx,

HT
D y =

[
HT
SDySD

HT
RDyRD

]
, HT

D HDx̂k−1 =
[
HT
SDHSDx̂k−1
HT
RDHRDx̂R,k−1

]
,

and

HT
R HRx̂k−1=

1
4

[
HT
SRHSR(x̂k−1−x̂R,k−1)

−HT
SRHSR(x̂k−1−x̂R,k−1)

]
.

The use of HT
ij Hijx and H

T
ij yij, ij ∈ {SR,SD,RD} reduces the

complexity since their sizes are only dependent on the number
of transmit antennas N , not the number of receive antennas.

2) UNFOLDING ITERATIONS
The L iterations are unfolded to the L layers, i.e., a combina-
tion of the elements in (14) enters each single detection layer
as the input, where xk−1 is set to a separate input to improve
performance. In addition to speed up training convergence,
an auxiliary vk can be added in the input and the output of
each layer. By adding vk , the training time is shorten and the
performance is improved.

Then the input vector of the kth layer is

ik

=


vk−1
x̂k−1
x̂R,k−1

HT
SDHSDx̂k−1 +α1kH

T
SRHSR(x̂k−1−x̂R,k−1)−α2kH

T
SDySD

HT
RDHRDx̂R,k−1−α1kH

T
SRHSR(x̂k−1−x̂R,k−1)−α2kH

T
RDyRD


(15)

with the dimension of 10N . In detail, the main parts in the
kth layer include

vk = W1k ik
x̂k = ψtk (W2k ik )

x̂R,k = ψtk (W3k ik )

where ψtk (x) = −1 +
max(x+tk ,0)
|tk |

−
max(x−tk ,0)
|tk |

∈ [−1, 1]
is an element-wise soft decision operator [19] and acts as an
activation function in this neural network. As shown in Fig. 3,
the entire detection network includes L layers, where the
outputs of the previous layer, v, x, and xR, combined with the
observation and side information HT

SDySD,H
T
RDyRD, H

T
SDHSD,

HT
RDHRD, and H

T
SRHSR, enter the next layer. In the last layer,

the final decision is made as x̂ = φ(x̂L). To improve perfor-
mance, we adopt the residual learning [27], [19], i.e., setting
a weighted average of the previous output and the current
output as a new current output.

3) LEARNING FUNCTION
The learning function of the detection network at the
destination in Fig. 3 is denoted as

x̂ = gθ (ySD, yRD,HSD,HRD,HSR) (16)

where

θ={α1k , α2k ,W1k ,W2k ,W3k , tk , k = 1, . . . ,L} (17)

is a set of parameters that is trained during the training phase.

FIGURE 2. A single detection layer in the DL-NML detector.

FIGURE 3. The DL-NML detector in the MIMO DF relay channel.

4) LOSS FUNCTION
To train gθ , we can use the reference signal x and the obser-
vation (ySD, yRD) with the side information (HSD,HRD,HSR)
as the training data. From the projected gradient descent
method in (14) and the deep learning detection network
in Fig. 2, we can find that x and xR affect each other in
each iteration or layer. Thus, setting xR as another reference
signal helps improve accuracy. Since the training phase is a
preprocessing step, xR can be known as a reference signal
before training. Combining outputs of L layers, two types of
loss functions are proposed.
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• When both x and xR are known as the reference signal,
the loss function l1 can be employed as

l1(x; x̂θ ) =
L∑
k=1

log(k + 1)
(
‖x−x̂k‖2

‖x−x̃‖2
+
‖x−x̂R,k‖2

‖x−x̃R‖2

)
(18)

where x̃ = [ x̃ ]1:2N , x̃R = [ x̃ ]2N+1:4N , and x̃ =
(HT

D HD + HT
R HR)

−1HT
D y, which will be defined in

Definition 1.
• When only x is known as the reference signal,
the transmitted signal from the relay, xR, cannot
be used for training, and the loss function l2 is
performed as

l2(x; x̂θ ) =
L∑
k=1

log(k + 1)
‖x− x̂k‖2

‖x− x̃‖2
(19)

where x̃ = [ x̃ ]1:2N .
This detection method is called a deep learning approach to
the NML (DL-NML) detector.
Definition 1 (ZG Detector): Deriving the zero gradient

point of the convex function in (12), i.e., the solution
of

∇m(x) = −2HT
D y+ 2HT

D HDx+ 2HT
R HRx = 0,

a linear receiver can be obtained as

x̃ = (HT
D HD + H

T
R HR)

−1
[
HT
SDySD

HT
RDyRD

]
(20)

where HT
D HD = diag

(
HT
SDHSD, H

T
RDHRD

)
and HT

R HR =
1
4

[
HT
SRHSR −H

T
SRHSR

−HT
SRHSR HT

SRHSR

]
. Then a new linear detector in

the MIMO DF relay channel is obtained as

x̂ = φ
(
[ x̃ ]1:2N

)
. (21)

This is called a zero gradient (ZG) detector.

B. WITH STATISTICAL SR CHANNEL
In this section, we handle the case where only the statistical
CSI of the SR link is known at the destination. Since the
instantaneous CSI of the SR link, HSR, is unknown at the
destination, the exact PEP, PSR(x → xR|HSR), could not be
applied in (8). Instead, the average PEP, P̄SR, can be used.
Subsequently, an NML with two-level-PEP (NMLw2PEP)
detector [8] is written as

x̂ = arg min
x∈A2N

min
xR∈A2N

{∥∥ySD − HSDx∥∥2
+
∥∥yRD − HRDxR∥∥2 − σ 2 ln P̄SR

}
= arg min

x∈A2N
min

xR∈A2N

{∥∥ySD − HSDx∥∥2
+
∥∥yRD − HRDxR∥∥2 + σ 2 lnP−1e · 1xR 6=x

}
(22)

where

P̄SR =
{
1 for xR = x
Pe for xR 6= x,

1xR 6=x =
{
0 for xR = x
1 for xR 6= x,

Pe ∈ (0, 1] can be expressed as Pe = γ
−dR
SR , γSR = 2N

σ 2
is

the average SNR, and dR = N is the diversity order when the
ML is used at the relay in the Rayleigh fading SR channel
HC
SR ∼ CN (0, I ) [8, Lemma 1].
To apply the projected gradient descent method, we need

to take a gradient for the metric in (22), but 1xR 6=x is inappro-
priate for taking the gradient. When only two nearest points
x and x′ (satisfying ‖x − x′‖ = 2) exist, i.e., x, xR ∈ {x, x′},
we have 1xR 6=x =

1
4‖x− xR‖2. Hence, we apply 1

4‖x− xR‖2

instead of 1xR 6=x as an approximation. Then the metric for the
NMLw2PEP can be rewritten as a similar form of (11):

m(x) =
∥∥ySD − HSDx∥∥2 + ∥∥yRD − HRDxR∥∥2

+
1
4
σ 2lnP−1e · ‖x− xR‖2 (23)

where x =
[
xT xTR

]T .
SubstitutingHT

SRHSR = σ
2lnP−1e ·I into Fig. 2 and training

the detection network in Fig. 3 with the loss function in
(18) or (19), the DL-NMLdetector with statistical SR channel
is achieved. The loss functions are normalized using the ZG
receiver in Definition 1 by plugging HT

SRHSR = σ
2lnP−1e · I

into Definition 1.

C. WITHOUT SR CHANNEL
Without the CSI of the SR link, the minimum distance (MD)
detector [6] can be considered first. The MD detector ignores
the detection errors at the relay although the error may occur.
Setting xR = x in (8), the MD detection algorithm is
written as

x̂ = argmin
x∈A2N

{∥∥ySD − HSDx∥∥2 + ∥∥yRD − HRDx∥∥2} (24)

and its linear detection version is

x̂ = φ
((
HT
SDHSD + H

T
RDHRD

)−1(HT
SDySD + H

T
RDyRD)

)
(25)

which was called a ZF with MRC (ZFwMRC) detector [9].
Since the error probability at the relay is not considered

in the MD and the ZFwMRC detectors, they exhibit poor
performance [6]. From the metrics in (11) and (23), we can
find that the influence of the SR link in the metrics exists
only when xR 6= x. Due to the similar reason explained in
Section III-B, 1

4‖x − xR‖2 can represent the influence of the
SR link well regardless of the CSI of the SR link. Mean-
while, adding 1

4‖x−xR‖2 can be regarded as a regularization
method in convex optimization problems [28]. Subsequently,
we propose a suboptimal detection algorithm in the following
definition.
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Definition 2 (NMLwoSRC Detector): Without the SR chan-
nel, a new suboptimal detector called an NML without SR
channel (NMLwoSRC) detector is defined as

x̂ = arg min
x∈A2N

min
xR∈A2N

{∥∥ySD − HSDx∥∥2
+
∥∥yRD − HRDxR∥∥2 + 1

4
‖x− xR‖2

}
. (26)

This NMLwoSRC detector will achieve improved per-
formance by considering the influence of the SR channel,
however, it requires exhaustive search for all possible signal
sets.

Substituting HT
SRHSR = I into Fig. 3 and Definition 1,

we have the DL-NML detector and ZG detector, respectively,
without SR channel.

IV. SDR APPROACH TO THE NML DETECTOR
AT THE DESTINATION
In this section, the SDR approach [32]–[34] with polynomial
complexity is applied in the MIMO DF relay channels as a
performance comparison to the proposed DL-NML detector
due to the reasons in Section I-C.
We start from the optimization problem in (13) that is a

revised version of the NML detector in (8). The optimization
problem for A = {1,−1} can equivalently be rewritten as

minimize tr(LX)

subject to [X]ii = 1, i = 1, . . . , 4N + 1

X = ssT (27)

where

L =
[
HT
D HD + H

T
R HR −HT

D y
−yTHD yT y

]
, (28)

s=
[
x̂
1

]
, x̂=

[
x̂
x̂R

]
, y=

[
ySD
yRD

]
, HD = diag

(
HSD, HRD

)
, and

HT
R HR =

1
4

[
HT
SRHSR −H

T
SRHSR

−HT
SRHSR HT

SRHSR

]
. By replacing the last

constraintX = ssT withX � 0 in the nonconvex optimization
problem in (27), an semidefinite programming is obtained as

minimize tr(LX)

subject to [X]ii = 1, i = 1, . . . , 4N

X � 0 (29)

which can be solved by standard convex optimization tech-
niques [28] or the CVX packages in MATLAB, e.g., [35].
Subsequently, the desired signal can be detected as

x̂ = sgn([X]1:2N ,4N+1). (30)

Replacing the rank-1 constraint X = ssT with a positive
semi-definite constraint X � 0, SDR leads to an increase in
problem dimension. Hence, a randomizationmethod has been
introduced to this SDR algorithm [32]. Doing the Cholesky
factorization to X = VTV and generating K i.i.d. zero-
mean unit-variance Gaussian random vectors u1, . . . ,uK of

dimension 4N + 1, we have the candidate solutions as

x̂k = sgn
(
[VT ]1:4N ,: uk
[VT ]4N+1,: uk

)
, k = 1, 2, . . . ,K .

Finally, the optimal one which minimizes the metric in (12)
is selected as

x̂ = argmin
k
m(x̂k ). (31)

Taking the desired part x̂ = [x̂]1:2N , we have an
SDR approach to the NML detector (SDR-NML) detector.
Although this SDR-NML detector cannot achieve the same
performance as the one in (13) and (27), we can expect a
fine performance similar to the case of the MIMO chan-
nel [33], [34], where the SDR algorithm achieves the same
diversity order with the ML detector. Replacing HT

SRHSR =
σ 2 lnP−1e · I and HT

SRHSR = I instead of the exact value,
we achieve the SDR-NML detector with statistical SR chan-
nel and without SR channel, respectively.

V. DETECTORS AT THE RELAY
In previous sections, we proposed several detectors at the des-
tination (DetD) when the ML detector is applied at the relay.
In practical systems, various detectors could be used at the
relay. In this section, we briefly introduce some representative
detectors at the relay (DetR) such as the ML, ZF, and SDR
approach to theML (SDR-ML) [32] detectors, propose a deep
learning approach to the ML (DL-ML) detector, and handle
the corresponding equivalent SR channel HSR applied for the
DetD in Section III and IV. While the ML detector achieves
optimal performance, the ZF detector has the simplest com-
plexity, and the SDR-ML detector is a suboptimal one with
near-ML performance and polynomial complexity. The three
detectors have been theoretically well analyzed.

A. THE ML DETECTOR AT THE RELAY
The ML detector at the relay (MLaR) is written as

x̂ = argmin
x∈A2N

∥∥ySR − HSRx∥∥2. (32)

The original channel coefficient HSR and the corresponding
relay error probability Pe are used in the DetD for the sce-
narios with instantaneous SR channel and with statistical SR
channel, respectively, in Section III and IV.

B. THE ZF DETECTOR AT THE RELAY
The ZF detector at the relay (ZFaR)2 [11] is written as

x̂ = φ
(
x̃
)

where

x̃ = (HT
SRHSR)

−1HT
SRySR. (33)

The SNR for xi is SNRi = 1
1
2σ

2[(HT
SRHSR)−1]ii

, i = 1, . . . ,N .

Thus, an equivalent channel model can be written as

ỹ = HZF
SR x+ z̃ (34)

2The MMSE detector is also widely used in the MIMO channel. When
σ 2 → 0, the MMSE detector is the same as the ZF detector.
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where z̃ ∼ N
(
0, 12σ

2 I
)
and HZF

SR = diag
(

1√
[(HT

SRHSR)−1]11
,

. . . , 1√
[(HT

SRHSR)−1]2N ,2N

)
. Applying HZF

SR instead of HSR in

(9), we obtain the PEP for the ZFaR. Thus, we use HSR =
HZF
SR for the NML, DL-NML, ZG and SDR-NML detectors

with instantaneous SR channel. Since 2
[(HT

SRHSR)−1]ii
∼ χ2

2 ,

i.e., a chi-squared distribution with 2 degree of freedom,
the diversity order of the ZFaR is dR = 1 [36]. Subsequently,
dR = 1 is used to determine the average error probability, Pe,
for the NMLw2PEP, DL-NML, ZG, and SDR-NML detectors
with statistical SR channel.

C. THE SDR APPROACH TO THE ML DETECTOR
AT THE RELAY
The SDR problem [32] - [34] for the ML detector in (32) can
be written as

minimize tr(LX)

subject to [X]ii = 1, i = 1, . . . , 2N + 1

X � 0, (35)

where

L =
[
HT
SRHSR −HT

SRySR
−yTSRHSR yTSR ySR

]
.

Taking the desired signal, we have the SDR detector as

x̂ = sgn([X]1:2N ,2N+1). (36)

Similar to Section IV, the SDR approach to the ML (SDR-
ML) detector [32] is written as

x̂ = argmin
k

∥∥ySR − HSRx̂k∥∥2 (37)

where x̂k = sgn
(

[VT ]1:2N ,: uk
[VT ]2N+1,: uk

)
, V is the result of Cholesky

factorization X = VTV, and u1, . . . ,uK are the i.i.d. zero-
mean unit-variance Gaussian random vectors of dimension
2N + 1. Since the SDR detector achieves the same diversity
order as the ML detector [33], we use the original parameter
HSR and the corresponding relay error probability Pe in the
DetD for the scenarios with instantaneous SR channel and
with statistical SR channel, respectively, when the SDR-ML
detector is used at the relay.

D. THE DEEP LEARNING APPROACH TO THE
ML DETECTOR AT THE RELAY
We design a new deep learning detector called a deep learning
approach to the ML (DL-ML) detector in MIMO channels.
The DL-ML detector contains L layers, and each single layer
is similar to the one in Fig. 2 except that the part related to
the helping signal x̂R,k does not exist. The input vector in the
kth layer is

ik =

 vk−1
x̂k−1

HT
SRHSRx̂k−1 − αkH

T
SRySR

 (38)

and the parameters

θ = {αk ,W1k ,W2k , tk , k = 1, . . . ,L}

are trained to minimize a loss function

l(x; x̂θ ) =
L∑
k=1

log(k + 1)
‖x− x̂k‖2

‖x− x̃‖2
(39)

where x̃ = (HT
SRHSR)

−1HT
SRySR is the ZF receiver in (33).

Note that each single layer includes only one neural network
layer unlike the deep MIMO detector in [19].

As shown in Fig. 4 of Section VII-C, this DL-ML detec-
tor shows similar performance compared to the SDR-ML
detector in the MIMO channel with N = 20, 30, 50; thus
we use the original parameter HSR and its correspond-
ing error probability Pe in the NML, DL-NML, ZG, and
SDR-NML detectors for the case of DL-ML detector at the
relay (DL-MLaR). The detailed comparisonwill be dealt with
in Section VII-C.

VI. TRAINING AND DETECTION DETAILS
OF THE DL-NML DETECTOR
The training is implemented on the TensorFlow frame-
works [29] by applying the Adam optimizer, a variation of
the stochastic gradient descent method [30].

To train the DL-NML detector, data samples of
x, xR, ySD, yRD,HSR,HSD, and HRD are required at the des-
tination. After randomly generating x,HSD, zSD,HRD, and
zRD, ySD can be directly derived from (5). Alternatively, yRD
requires xR, and xR is an output of a specific detector at the
relay as show in Fig. 1. As explained in Section V, there are
various candidates for the detector at the relay. Among them,
we apply the DL-MLaR in Section V-D during training since
the DL-MLaR is trained on TensorFlow frameworks which
leads to two advantages: 1) being easy to be embedded in
the training model and 2) shortening the training time due
to much less time of parallel computation and batch signal
detection. After training, the deep learning detector can also
be applied for the MLaR, SDR-MLaR, and ZFaR with their
corresponding equivalent HSR explained in Section V.

Although deep learning detectors have many advantages,
such as low dependence on mathematical methods, relatively
low complexity, and batch signal detection, it is not easy to be
applied in practical communication systems due to require-
ment of large training data and long training time caused by
pre-training. Our goal is to train a DL-NML detector off-
line and apply it in various channel environments directly
without retraining or with a little retraining. To accomplish
the purpose, we apply following threemethods in the training.
i) Training the detector by using samples of uniformly dis-

tributed signal x and channel matrices HC
ij ∼ CN (0, I ),

ij ∈ {SR,SD,RD}. The reason for choosing the channel
model is that Rayleigh fading channel is a reasonable
channel model in urban environments and its random-
ness makes it possible to apply the trained DL-NML
detector in a wide variety of channels rather than some
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Algorithm 1 The Training Process of the DL-NML Detector
Using the Loss Function l1 in (18)
1: Initialize x̂0, x̂R,0, v0, the parameter set θ0 in (17), and
Pmin

2: for iteration n = 1, 2, . . . ,Niteration do
3: Generate Nbatch data samples of x, ySR, ySD, yRD,

HSD,HRD,HSR randomly according to (1)-(6) and
obtain xR from ySR and HSR applying the DL-MLaR

4: Compute HT
SDySD,H

T
RDyRD,H

T
SDHSD,H

T
RDHRD, and

HT
SRHSR

5: for Layer k = 1, 2, . . . ,L do
6: Compute ik using x̂k−1, x̂R,k−1, vk−1,

HT
SDySD,H

T
RDyRD,H

T
SDHSD,H

T
RDHRD,H

T
SRHSR

and parameters α1k , α2k in θn−1
7: Compute x̂k , x̂R,k , and vk using ik and parameters

W1k ,W2k ,W3k , tk in θn−1
8: end for
9: Update θn−1 to θn with Adam optimizer [30] to

minimize lave = 1
Nbatch

∑Nbatch
m=1 l1(xm; x̂

m
θ ) where

l1(xm; x̂
m
θ ) is the one in (18) for mth batch

10: Determine x̂m = [x̂m1 , . . . , x̂
m
2N ]

T
= φ(x̂mL ) for m =

1, . . . ,Nbatch

11: Calculate Pb = 1
2NNbatch

∑Nbatch
m=1

∑2N
i=1 1xmi 6=x̂mi

12: if Pb < Pmin then
13: Pmin = Pb
14: Save parameters θn to θ∗

15: end if
16: end for
17: return θ∗

deterministic channels. The DL-NML detector trained
under this channel model achieves acceptable perfor-
mance under other channel environments.

ii) Training the detector under uniformly distributed SNR
in a reasonable range so that the detector can be applied
to various SNRs.

iii) Training the detector using normalized input, i.e., apply-

ing
HT
ij Hij

1
N tr(HT

ij Hij)
and

HT
ij yij

1
N tr(HT

ij Hij)
, ij ∈ {SR,SD,RD}

in Figs 2 and 3. By doing so, pretty good performance
can be obtained without retraining or with a little retrain-
ing when the channel conditions change. For example,
in an unbalanced relay channel of HC

ij ∼ CN (0, σ 2
ij I ),

ij ∈ {SR,SD,RD}, the normalization makes it possible
to apply the deep learning detector withoutmodification.

In the training phase, Nbatch data samples of x, xR, ySD,
yRD,HSR,HSD, andHRD are generated according to their rela-
tionship in each iteration, and Niteration iterations are imple-
mented to L = 10 (L < N ) layers. The training process
of the detection networks with the loss function l1 in (18) is
shown in Algorithm 1, where vk is a 2N × 1 vector, v0 = 1,
x̂0 = 0, x̂R,0 = 0, HSR is the equivalent SR channel matrix
depending on the scenarios described in Section III, and
Pb = 1

2NNbatch

∑Nbatch
m=1

∑2N
i=1 1xmi 6=x̂mi is the average bit error

Algorithm 2TheDetection Process of the DL-NMLDetector
1: Set x̂0, x̂R,0, and v0 as the same as the ones in Algorithm 1
2: Compute HT

SDySD,H
T
RDyRD,H

T
SDHSD,H

T
RDHRD, and

HT
SRHSR

3: for Layer k = 1, 2, . . . ,L do
4: Compute ik using x̂k−1, x̂R,k−1, vk−1,

HT
SDySD,H

T
RDyRD,H

T
SDHSD,H

T
RDHRD,H

T
SRHSR

and parameters α1k , α2k in the final parameter
set θ∗ trained in Algorithm 1

5: Compute x̂k , x̂R,k , and vk using ik and parameters
W1k ,W2k ,W3k , tk in θ∗

6: end for
7: return x̂ = φ(x̂L)

rate (BER) for one batch data. If Pb < Pmin, the parameters
in θn are saved in θ∗ and Pmin is set to Pb. After Niteration
iterations, we have the final parameter set θ∗. The training
for the loss function l2 in (19) can be done similarly.

Once θ∗ is determined, the transmitted signal x can be
detected in real time using Algorithm 2.

VII. PERFORMANCE EVALUATION
In the previous sections, we proposed various detectors at
the destination (DetD) such as the DL-NML, SDR-NML, ZG
and introduced some DetR. In this section, we discuss com-
plexities of these DetD and DetR, present various DetR:DetD
methods according to the error performance and detection
complexity, and finally compare their simulation results.

A. DETECTION COMPLEXITY
For the complexity measure of the detection algorithms,
we apply the naive calculation method, i.e., the complexity
is O(nmp) for the multiplication of matrices of n × m and
m×p, andO(n3) for the n×nmatrix inversion. The detection
complexities for the DetR and DetD are discussed for a
constant βD =

ND
N .

Based on the above rules of computational complexity,
the following results are obtained.
• The complexities of the NML detectors are at least
O((4N )2·|A|4N ) since

∥∥ySD−HSDx∥∥2, ∥∥yRD−HRDxR∥∥2,
and ‖HSR(x−xR)‖2 require the complexity of O((4N )2)
for each x =

[
xT xTR

]T
∈ A4N .

• The ZG detector requires the complexity of O((4N )3)
due to thematrixmultiplication and thematrix inversion.
For a quasi-static fading channel (fixed CSI), the com-
plexity is O((4N )2) since the ZG detector only needs to
do a multiplication of a 4N × 4ND matrix, (HT

D HD +
HT
R HR)

−1HT
D , and a 4ND × 1 vector, y.

• For the DL-NML detector, the complexity order is
O
(
(4N )3

)
. In detail, the computation of HT

SDHSD,
HT
RDHRD, and H

T
SRHSR requires (βD4 +

1
8 )(4N )3 times of

multiplications, and calculation of HT
SDySD and HT

RDyRD
requires 1

2 (4N )2 multiplications. Calculation of ik in
(15) requires 8N multiplications, and the multipli-
cation of ik and W1k , W2k , W3k requires 15

4 (4N )2
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multiplications in each layer (see Fig. 2), thus we have
a complexity of O(L(4N )2) in L (< N ) detection layers.
Hence, the overall detection complexity of the DL-NML
detector is O((4N )3). For quasi-static fading channels,
the channel terms of HT

SDHSD, H
T
RDHRD, and HT

SRHSR
do not need to be computed again; therefore, the com-
plexity of O(L(4N )2) is required. The complexity of the
DL-NML detector can be lowered by reducing L appro-
priately according to the required BER.

• The SDR-NML detector has the complexity of
O((4N )3.5 log(1/ε)) given a solution accuracy ε > 0,
where 4N is from the dimension in (29) [34], [37].

We summarize the detection complexity for the DetD as
follows.

– NML: O((4N )2 · |A|4N )
– ZG: O((4N )3)→O((4N )2) quasi-static fading
– DL-NML: O((4N )3)→O(L(4N )2) quasi-static fading
– SDR-NML: O((4N )3.5 log(1/ε))

As can be seen, the ZG detector has lowest complexity and the
DL-NML detector has second lowest complexity for a large
number ofN . Similarly, the detection complexity for theDetR
mentioned in Section V is also derived.

– MLaR: O((2N )2 · |A|2N )
– ZFaR: O((2N )3)→ O((2N )2) quasi-static fading
– DL-MLaR: O((2N )3)→O(L(2N )2) quasi-static fading
– SDR-MLaR:O((2N )3.5 log(1/ε))

B. SYSTEM CONFIGURATION
Using various DetR and DetD, the DF relay channel in Fig. 1
exhibits different characteristics in error performance and
detection complexity. We introduce and compare several
types of system methods depending on the applied DetR
and DetD. The complexity is based on the discussion in
Section VII-A, and the error performance will be demon-
strated in Section VII-C.

• MLaR:NML
Exhaustive search detection algorithms are implemented
at the relay and the destination, i.e., the ML detector
is used at the relay, and the suboptimal NML detec-
tors including the NML, NMLw2PEP, and NMLwoSRC
are applied at the destination. This system achieves
excellent performance, but cannot be used in large-scale
antenna systems due to their high complexity.

• ZFaR:ZG
A ZF detector is used at the relay, and the ZG detector in
Definition 1 is applied at the destination under various
knowledge of SR channel. This method has a simple
detection complexity at both the relay and the destina-
tion, but exhibits poor performance.

• SDR-MLaR:SDR-NML
The SDR-ML and SDR-NML detectors in Section V-C
and IV are implemented at the relay and the destination,
respectively. This method exhibits a fair performance
with a polynomial complexity.

• DL-MLaR:DL-NML

The deep learning algorithms, DL-ML and DL-NML,
are employed at the relay and the destination, respec-
tively. This method achieves nice performance with low
complexity through a pre-process of training. Especially,
in the scenario without SR channel at the destination,
this method obtains excellent error performance com-
pared to other methods.

C. SIMULATION RESULTS
We evaluate the error performance of various system meth-
ods and compare the proposed detection algorithms. Since
the MLaR:NML method could not be implemented in real
time due to its high complexity, we compare the DL-MLaR :
DL-NML and SDR-MLaR:SDR-NML methods for large
numbers of antennas. For the best-performance NML detec-
tors and the poorest-performance ZG detector, we evaluate
later with a smaller number of antennas.

We compare the BERs of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods under the independent and
identically distributed (i.i.d.) Rayleigh fading channel of
ND = N , i.e., HC

ij ∼ CN (0, I ), ij ∈ {SR,SD,RD}.
Asmentioned in SectionVI, we implement theDL-MLdetec-
tor at the relay and the DL-NML detector at the destination,
both of which are trained on the channel of HC

ij ∼ CN (0, I ),
ij ∈ {SR,SD,RD}.

FIGURE 4. BER comparisons of various DetR over the Rayleigh fading
MIMO channel. The DL-MLaR applies L = 20 layers for all of
N = 20,30,50, and SDR-MLaR-K applies K = 20 for N = 20, K = 60 for
N = 30, and K = 300 for N = 50.

We begin with the BERs of the DetR in Section V in
the MIMO channel with N = 20, 30, 50. The DL-MLaR
in Fig. 4 has undergone the structure in Session V-D with
L = 20 layers and has been trained by Niteration = 50000
iterations with Nbatch = 1000 batches in each iteration.
As shown in Fig. 4, the ZFaR exhibits the worst per-
formance and SDR-MLaR-0 (the original SDR detector
in (36)) follows it. The DL-MLaR and the SDR-MLaR-K
(the K -randomization method in (37)) achieve the simi-
lar performance in the MIMO channel for all cases of
N = 20, 30, 50. This makes it possible to make
a fair comparison between the DL-NML detector and the
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SDR-NML detector in the MIMO DF relay channel and
also supports the explanation in Session V-D well. The
DL-MLaR and SDR-MLaR detectors with the parameters
mentioned above and the performance in Fig. 4 will be used
in the following comparisons of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods.

FIGURE 5. BER comparisons of the DL-MLaR:DL-NML method with loss
function in (18) trained by various batch sizes over the Rayleigh fading
MIMO DF relay channel of ND = N .

TABLE 1. Training time of the DL-NML detector for various batch sizes
when ND = N . The units of time are hour and minute denoted by ‘h’ and
‘m’, respectively.

In oder to determine an appropriate batch size, we com-
pare the performance and the training time of the DL-NML
detector with L = 10 for various batch sizes in Niteration =

50000 iterations when ND = N in the computer environ-
ment with Intel Core i7-8700K CPU 3.7GHz and NVIDIA
GeForce GTX 1080 Ti. As shown in Fig. 5 and Table 1,
the BER trained with Nbatch = 1000 is very close to that
trained with Nbatch = 2000, while the required training time
is only half the time for all the cases of N = 20, 30, 50.
Hence, we will train the DL-NML detector with the batch
size of Nbatch = 1000 in the following performance com-
parisons. Obviously, we can use less batch sizes if we want
shorter training time with reasonable performance. On the
other hand, we are wondering how long it will take to detect
signals by using this deep learning detector. Table 2 shows the
required detection time for a single signal vector x depending
on the size of Nbatch and computation with GPU or with CPU
only. The results show that the required training time is not
very long, the detection time is short, and the application of
larger batch size can further shorten the detection time.

Now we are ready to compare the performance of the
DL-MLaR:DL-NML and SDR-MLaR:SDR-NML methods.

TABLE 2. Detection time for a single signal vector, x, in the DL-NML
detector with various Nbatch for ND = N . The unit is second.

FIGURE 6. BER comparison of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods in the MIMO DF relay channel of
ND = N = 20 in the scenario with instantaneous SR channel. Although the
SDRaR-NMLSDR method will achieve better performance by comparing
more candidate solutions in (31), we stop comparisons at a moderate K
due to high complexity.

Figs. 6 and 7 show the BERs in the Rayleigh fading MIMO
DF relay channel of ND = N = 20, 30, 50 under various
scenarios. Fig. 6 compares BERs of both methods in the
case of ND = N = 20 with instantaneous SR channel
(SRC) and shows the convergence of SDR-NML depending
on the numbers of candidate K (indicated by SDR-NML-K ).
In Fig. 7, the results with only one K of moderate size are
evaluated for ND = N = 20, 30, 50. From the curves, one
can observe as follows.
• The DL-MLaR:DL-NML method that is trained using
the loss function l1 achieves better performance than that
trained by the loss function l2.

• The DL-MLaR:DL-NML method achieves better or
similar performance compared to the SDR-MLaR:SDR-
NML method with the instantaneous SRC.

• The DL-MLaR:DL-NML method achieves much better
performance (about 1.5∼2.3 dB SNR improvement at
BER = 10−2) than the SDR-MLaR:SDR-NML method
with statistical SRC or without SRC at the destination.

• The DL-MLaR:DL-NML method is relatively less
impacted by the knowledge of the CSI of the
SR link than the SDR-MLaR:SDR-NML method on
performance.

From above simulations, it can be seen that the
DL-MLaR:DL-NML method works well in the channel
when being trained under the same channel environments.
We apply this method with parameters in θ∗ which is trained
in i.i.d. Rayleigh fading channels with ND = N = 20
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FIGURE 7. BER comparison of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods over the Rayleigh fading MIMO DF relay
channel. K = 80, K = 120, and K = 200 are applied for the SDR-NML
detector in the cases of N = 20, N = 30, and N = 50, respectively.

to other channel environments to see how it works in a
different channel. As introduced in Section III-A, the input
and output dimensions of each detection layer in Fig. 2 only
depend on the number of the transmit antennas. The trained
DL-NML detector can also be applied for different num-
bers of receive antennas when the same number of transmit
antennas is used. Hence, the first channel we would like to
consider is an i.i.d. Rayleigh fading channel with ND = 30

FIGURE 8. BER comparison of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods over Rayleigh fading MIMO DF relay
channels of ND = 30 and N = 20. θ∗ means the parameter set trained for
ND = N = 20.

andN = 20 shown in Fig. 8. The�markers denote the BERs
for the DL-MLaR:DL-NML method trained for ND = 30,
the 4 markers denote the one with θ∗ (trained for ND = 20);
the© markers represent the method initialized with θ∗ and
retrained for ND = 30 in Niteration = 1000 iterations; and
the x markers denote the results of the SDR-MLaR:SDR-
NML method with K = 20 at the relay and K = 80 at
the destination. The second one is a Rician fading channel

of HC
ij =

√
K

1+KH
LOS
ij +

√
1

1+K H̃
C
ij , H̃

C
ij ∼ CN (0, I ), ij ∈

{SR,SD,RD} with a strong line-of-sight (LOS) component
of K = 10 [39] in Fig. 9. The � markers denote the BERs
for the DL-MLaR:DL-NMLmethod trained under the Rician
fading; the4 ones arewith the parameter set θ∗ (trained under
Rayleigh fading); the©markers represent the method that is
initialized with θ∗ and retrained under the Rician fading in
Niteration = 1000 iterations; and the x markers denote the
results of the SDR-MLaR:SDR-NML method with K = 20
at the relay and K = 80 at the destination. From curves, one
can observe that

1) the DL-NML detector with θ∗ achieves acceptable
performance in both channel conditions (4 markers
in Figs 8 and 9);
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2) the DL-NML detectors that are retrained with
Niteration = 1000 iterations3 under the i.i.d. Rayleigh
fading channel of ND = 30 (© markers in Fig. 8)
and under Rician fading channel (© markers in Fig. 9)
achieve excellent performance compared to the
SDR-NML detector.

FIGURE 9. BER comparison of the DL-MLaR:DL-NML and
SDR-MLaR:SDR-NML methods over Rician fading MIMO DF relay channels
of ND=N=20.

Additionally, we evaluate the MLaR:NML, SDR-MLaR:
SDR-NML, and ZFaR:ZG methods in the i.i.d. Rayleigh
fading MIMO DF relay channel with ND = N = 2. The
DL-MLaR:DL-NML method is not compared in this case
since the deep learning detection does not have any advan-
tages in both performance and complexity for small-number-
antenna systems. Fig. 10 shows that the MLaR:NML method
obtains the best performance, and the ZFaR:ZG method
exhibits the worst performance, while the SDR-MLaR:
SDR-NML method shows a nice performance with slopes
similar to the corresponding MLaR:NML method. Here,
we would like to mention that the proposed NMLwoSRC
detector in Definition 2 (�markers with dotted line) exhibits
much better performance than the existing MD detector
(x markers with dotted line) when the CSI of the SR link is

3With Niteration = 1000, the retraining takes about 1.5 minutes.

FIGURE 10. BER comparison of various DetR and DetD methods over the
MIMO DF relay channel with ND = N = 2. The SDR-MLaR:SDR-NML
method is applied with K = 6 at the relay and K = 8 at the destination.

unknown at the destination. This makes it possible for the
DL-NML detector to achieve excellent performance with-
out SR channel. Moreover, the ZG detector in Definition 1
exhibits good performance compared to the existing
ZFwMRC detector under various scenarios related to the
knowledge of SR channel. In detail, theNMLwoSRCdetector
and its semi-definite relaxation approach, SDR-NML detec-
tor, obtain approximately 4.1 dB and 3.5 dB SNR improve-
ments compared to the MD method at BER = 10−3 without
CSI of the SR link. The ZG detector yields approximately
9.6 dB, 9 dB, and 6.8 dB SNR improvements under three
different scenarios compared to the ZFwMRC detector at
BER = 10−3 when the ZF detector is used at the relay.

D. A BRIEF INTRODUCTION TO GENERAL M2-QAM
For M2 quadrature amplitude modulation (QAM), we have
the signal set A = {−(2m − 1),−(2m − 3), . . . ,−1,
1, . . . , (2m−3), (2m−1)}, wherem = log2 M . The equivalent
real signals x and xR are expressed as

x =
m∑
i=1

2i−1si = Bs

xR =
m∑
i=1

2i−1siR = BsR (40)

where B =
[
I , 2I , . . . , 2m−1I

]
, s = [sT1 , . . . , s

T
m]

T , sR =
[sT1R, . . . , s

T
mR]

T , and si, siR ∈ {−1, 1}2N for i = 1, . . . ,m.
We use ŝ and ŝR instead of x̂ and x̂R, respectively, in both

the input and the output of each layer in Fig. 3. Using the
relationship in (40), the input vector for the kth layer becomes

ik =
[
vTk−1 ŝTk−1 ŝTR,k−1 ATk−1 BTk−1

]T
where Ak−1 = HT

SDHSDBŝk−1 + α1kHT
SRHSRB(ŝk−1 −

ŝR,k−1) − α2kHT
SDySD and Bk−1 = HT

RDHRDBŝR,k−1 −
α1kHT

SRHSRB(ŝk−1 − ŝR,k−1) − α2kHT
RDyRD. Similarly, the

DL-MLaR for M2-QAM can also be obtained. For the
SDR-MLaR and SDR-NML detectors, three equivalent SDR
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basedmethods such as a polynomial-inspired SDR (PI-SDR),
a bound-constrained SDR (BC-SDR), and a virtually-
antipodal SDR (VA-SDR) can be applied [38].

VIII. CONCLUSION
In this paper, we proposed a deep learning detector so called
DL-NML in the MIMO DF relay channel. This DL-NML
detector achieves excellent error performance in three scenar-
ios of the knowledge of the SR channel. To evaluate the deep
learning detector, we also proposed the high-performance
polynomial-complexity SDR-NML detector and the low-
complexity ZG detector. Furthermore, we presented and com-
pared various DetR:DetD methods according to the error
performance and detection complexity, which provides a
basic idea and direction for the system configuration.
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