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ABSTRACT Near-infrared spectroscopy (NIRS) has been widely used in many fields due to its advantages
with fast analysis speed, non-destructive testing, and on-site detection. However, NIRS has some short-
comings, such as low signal-to-noise ratio, weak absorption intensity, and overlapping peaks. The research
of near-infrared spectral modeling method becomes the core of analyzing NIRS. In order to improve the
accuracy of prediction model for NIRS, this paper proposes a novel sparse classification mechanism by
designing appropriate regularization factors. The existing supervised dictionary learning methods have been
proposed for classification aim and increasing its accuracy, the proposed method addresses some defects
existing in this area through designing the representation-constrained term and the coefficients incoherence
term, and the added two terms can get the reconstruction error of coding coefficients and correlations between
similar samples by sharing dictionary under more stable control. Then, based on the proposed model,
a supervised class-specific dictionary learning algorithm is developed by choosing appropriate samples
with class labels. Finally, a classification scheme integrating the novel sparse model is designed to exploit
such discriminative information. The proposed method is evaluated by conducting experiments on drug
and tobacco leaves NIRS datasets. The experimental results show that the proposed sparse classification
mechanism is promising for classifying NIRS and may be an alternative method to the traditional ones.

INDEX TERMS Near-infrared spectroscopy, sparse classification, regularization factors, representation-
constrained, coefficients incoherence.

I. INTRODUCTION
Spectroscopy is more and more widely used in various
fields of pattern recognition [1]. NIRS is an electromag-
netic wave with a wavelength of 780 ∼ 2526nm. NIRS has
many advantages, such as speed, accuracy, easy-use and non-
destructiveness, and hence it has been used to classify some
objects, especially with a large number of classes [2]. NIRS
usually involves multiple kinds of samples, there is a lot of
relationship between these features of samples. Therefore,
it makes sense to treat with this complex data with some
machine learning algorithms [3], [4].

NIRS has been widely used in the fields of food
detection, petroleum industry, pharmacy and so on.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huimin Lu.

Shen et al. [5] developed a model to rapidly discriminate
the waste oil and four normal edible vegetable oils through
combining NIRS with support vector machine (SVM) and
the result of which was proved better than that of K-means
and Linear Discriminant Analysis. Zhou et al. [6] employed
training dictionary and sparse representation to test the cetane
number, boiling point and total aromatics fast of diesel, but
the model was the combination of singular value decomposi-
tion algorithm (K-SVD) and the orthogonal matching pursuit
algorithm (OMP). Risoluti et al. [7] used NIRS coupled to
chemometrics calibration to detect new psychoactive sub-
stances in street samples. The capabilities of this approach in
forensic chemistry were assessed in the determination of new
molecules appeared in the illicit market and often claimed
to contain non-illegal compounds. Due to the differences
in production process, packaging, raw materials and other
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forms, the quality of the same kind of medicine produced
by different manufacturers also varies to some extent. The
identification of these differences is of great significance
in drug supervision. Yang et al. [8] employed dropout and
deep belief network to construct the Dropout-DBN classi-
fier to identify near-infrared spectroscopy of erythromycin
ethylsuccinate, which effectively alleviated the over-fitting
phenomenon caused by the lacking of training data.

The problem to be solved in our paper is how to accurately
predict the classes of spectral data from NIRS. Consider-
ing the scarcity of drug data, to verify the effectiveness of
our proposed model, we mainly conducted corresponding
research on the classification of drug and tobacco leaves
datasets. The identification of metformin tablets and other
drugs by near-infrared diffuse reflectance spectroscopy is
still limited because the multi-classification problem is more
complex than the two-category classification problem. On the
other hand, the most important properties of tobacco are
the flavor and aroma of the leaf. When tobacco leaves are
graded well, different grades of tobacco leaves are easier to
mix and meet numerous and strict specifications in terms of
chemical composition, smoking characteristics, flavor, aroma
and other aspects. Generally speaking, tobacco leaves are
graded mainly according to the place of origin and color.

Therefore, what we are facing is a classification problem.
The main work that we are interested in is to extract the
feature of tobacco leaves and design a robust classification
algorithm, which can recognize unknown samples. This pat-
tern recognition task [9], [10] is important because the clas-
sification of tobacco leaves is mainly depending on human
work, which is time-consuming. Therefore, it is necessary
to develop a robust classification algorithm using machine
learning algorithm. Recently proposed sparse representa-
tion classification (SRC) algorithms have obtained impres-
sive performance in image classification. [11]–[17]. A full
description of sparse representation classification (SRC) can
be seen in [18]–[20]. SRC algorithms can be adopted at
ascertaining the inherent similitude of objects embedded in
high-dimensional target data to obtain good performance.
Some researchers have shown great interests in this area, as a
result of the competitive performance of the SRC scheme in
face recognition [20], it triggers the interest of researchers in
sparsity-based classification. However, learning a discrimi-
native dictionary for a robust classification model is still very
difficult.

Sparse representation has received a lot of attention in
machine learning area, but most classification models mainly
consider the reconstruction and representation error, and lit-
tle attention is paid to the normalization of representation
term and the incoherence of samples. Based on the prede-
fined relationship between dictionary atoms and class labels,
we can divide these existing dictionary learning approaches
into three kinds: shared dictionary learning, class-specific
dictionary learning and hybrid dictionary learning [21]–[23].

Shared dictionary learning approaches aimed at get-
ting a shared dictionary from all classes [24]–[28].

Marial et al. [27] designed a novel sparse model through
training a linear classifier. Inspired by the KSVD [29],
Zhang and Li [25] proposed a joint learning framework
to learn a dictionary for face recognition, and named it as
discriminative KSVD (DKSVD). Following the work in [25],
Jiang et al. [26] constructed a label consistent term to enhance
the discriminative power of model. However, the shared dic-
tionary does not consider the relationship between the dictio-
nary atoms and the class labels, and the discriminant ability of
the model has not been fully exploited. Class-specific dictio-
nary learning approaches aimed at learning a dictionary that
corresponds to class labels [23], [30]–[34]. Mairal et al. [32]
proposed a novel dictionary learning approach by designing
a reconstruction penalty term. Yang et al. [31] constructed
a structural dictionary learning algorithm by adding non-
negative penalty terms. Castrodad and Sapiro [33] designed a
set of action-specific dictionaries to enhance the discriminant
ability of model. Ramirez et al. [30] improved the sparse
representation classification model by adding an incoher-
ence promotion term. Hybrid dictionary learning approaches
aimed at combining shared dictionary learning and class-
specific dictionary learning, such as the methods in [35], [36]
and [37]. These dictionary learning methods try to increase
the between-class difference, while the within-class variation
is not still accounted well.

In this paper, a novel sparse classification model and the
effective feature representation method for classifying NIRS
of drugs and tobacco leaves are proposed. First, considering
the NIRS classification task, a robust classification frame-
work is designed. Second, a modified sparse model has been
proposed to learn a discriminative dictionary for classifi-
cation. In the modified sparse model, the representation-
constrained term and the coefficient incoherence term have
been introduced to ensure the learned dictionary to obtain a
powerful discriminative ability. At last, based on the proposed
model, we have presented a corresponding classification
scheme.

Our main contributions in this paper are three-fold: 1) a
novel NIRS classification framework is designed; 2) a
modified sparse model that incorporates the representation-
constrained term and the coefficients incoherence term for
classification is proposed; 3) A classification loss function
is proposed to optimize class-specific dictionaries. The rest
of the paper is organized as follows. Sect. II briefly presents
the related work. Sect. III introduces our proposed algorithm.
Sect. IV describes the optimization procedure of modified
sparse model. Sect. V presents the modified sparse model
based classifier. Sect. VI presents experimental results to
demonstrates the robustness of our model. Sect. VII gives the
conclusion of this paper.

II. RELATED WORK
A. ORIGINAL SRC MODEL
A common sparse representation based classification (SRC)
scheme was presented in [20]. The whole class training
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samples were utilized to constitute a dictionary that repre-
sented the query face image. And the image was categorized
according to evaluation of which class caused the minimum
error to reconstruct it.

There are K classes of subjects, A = [A1,A2, · · · ,AK ] is
the dictionary formed by Ai, where Ai (i = 1, 2, · · · ,K ) is
the subset of training samples of class i, y is a test sample.
The conclusions of the SRC algorithm are as below.

(1) Normalize each training sample Ai, i = 1, 2, · · · ,K .
(2) Define and solve the l1-minimization problem:

x̂ = argminx{‖y− Ax‖22 + γ ‖x‖1}, where γ is a scalar
constant.

(3) Label the test sample y by: Label(y) = argmini{ei},
where ei =

∥∥y− Aiα̂i∥∥22, with α̂i representing the coefficient
vector associated with class i.

Apparently, this scheme is based on the potential assump-
tion that a weighted linear combination of training samples,
which are attached only to the same category, can stand for
a test sample. Wright et al. [20] reported that it achieved
impressive performance which indicates the sparse represen-
tation has natural distinctiveness.

B. CLASS-SPECIFIC DICTIONARY LEARNING
For the dictionary learning, the atoms we used are denoted
as D = [D1,D2, . . . ,DK ] have class label correspon-
dences to the subject classes, where Di is the sub-dictionary
corresponding to class i. Once the representation vector
α̂ = [α̂1; α̂2; . . . ; α̂K ] is computed, the class-specific rep-
resentation residual

∥∥y− Diα̂i∥∥2 could be used for classifi-
cation. The sub-dictionary Di could be learned class by class
algorithm [38]: argminDi,Zi{‖Ai − DiZi‖

2
F + λ ‖Zi‖1}, where

Zi is the representation matrix of Ai on Di.
We regard it to be the fundamental model of dictionary

learning in specific classes. It should be noted that the fun-
damental model mentioned above trains the class-specific
sub-dictionaries respectively, regardless of the relationship
between different sub-dictionaries. In order to ensure the
discontinuity among the sub-dictionaries and the distinction
of the entire class-specific dictionary, Ramirez et al. [30]
designed incoherent promotion terminology to prompt the
highly independence of the sub-dictionaries.

III. PROPOSED SPARSE CLASSIFICATION MODEL
Two terms are proposed in the model: the representation-
constrained term and coefficients incoherence term. The
representation-constrained term with good ability is to recon-
struct query data which use training samples with the same
class label by enforcing the class-specific sub-dictionary. The
coefficients incoherence term with poor ability are to recon-
struct query data that use training samples having different
class labels by enforcing the class-specific sub-dictionary.
In the class-specific dictionary learning, each dictionary

atom in the learned dictionary D = [D1,D2, . . . ,DK ] have
class label corresponding to the subject classes, where Di is
the sub-dictionary corresponding to class i. By representing a
test sample over the learned dictionary D, the representation

residual associated with each class can be naturally used to
classify it.
Given ai,j, i = 1, . . .K , j = 1, . . . , ni represents a training

sample in class i, where K is the sum of classes, and ni
is the number of samples with respect to class i. Let A =
[A1,A2, · · · ,Ai] ∈ Rn×N , where Ai = [ai1, ai2, · · · , ain],
i = 1, 2, · · · ,K and n is the achieved feature dimension.
We can learn the dictionary D from the following extended
sparse model:

< D,X > = argmin
D,X

K∑
i=1

{‖Ai − DXi‖2F + λ1‖Xi‖1

+λ2‖Ai − DiX ii ‖
2
F + ξ1

∑
j6=i

‖XTj Xi‖
2
F

+ξ2
∑
j 6=i

‖DjX
j
i ‖

2
F }

s.t.‖dn‖2 = 1,∀n (1)

where Xi is the sub-matrix containing the coding coefficients
ofAi overD.Xi can bewritten asXi = [X1

i ; . . . ;X
j
i ; . . . ;X

K
i ],

where X ji represents the coefficients of Ai over Dj. Xj is
Xj = [Xj,1,Xj,2, . . . ,Xj,nj ]. And λ1, λ2, ξ1, ξ2 are the scalars
controlling the relative contributions of the corresponding
terms.

Unlike the traditional sparse model SRC in [20],
the representation-constrained term ‖Ai − DiX ii ‖

2
F +∑

j 6=i ‖X
T
j Xi‖

2
F and coefficients incoherence term∑

j 6=i ‖DjX
j
i ‖

2
F are introduced in Eq.(1).

A. REPRESENTATION-CONSTRAINED TERM
Xi represents the sparse coefficients of Ai over dictionary D,
so Ai ≈ DXi. Xi can be well represented by only Ai in class i
because Xi is related to class i, which is in natural expectation.
Therefore, there should exist a X ii such that ‖Ai − DiX ii ‖

2
F is

small. This term is able to keep the reconstruction error of
coefficients Xi. On the other hand, Xi is the similarity adapter
that gives different freedom for each basis vector proportional
to its similarity to the input signal Ai, so

∑
j 6=i ‖X

T
j Xi‖

2
F

represents the classification error, and minimizing this term
is to minimize the classification error.

Therefore, minimizing the representation-constrained term
defined by ‖Ai − DiX ii ‖

2
F +

∑
j 6=i ‖X

T
j Xi‖

2
F can control both

the reconstruction error and classification error.

B. COEFFICIENTS INCOHERENCE TERM
The test sample given in the SRC scheme proposed by
Wright et al. [20] can be classified accurately in accor-
dance with the maximum coefficients related to the training
samples, which fall into the same class as the test sample.
This means when the test sample is sparsely represented by
its own training samples, the reconstruction error is min-
imized. Likewise, in the class-specific dictionary learning,
it is expected that the largest coefficients of Ai are associ-
ated with the sub-dictionary Di. In Eq. (1), minimizing the
coefficients incoherence term

∑
j 6=i ‖DjX

j
i ‖

2
F encourages that
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for the Ai and Aj, the largest coefficients are associated with
the corresponding different sub-dictionary Di and Dj. This
means that similar samples over dictionary D have similar
coefficients and samples belonging to different classes over
dictionary D have absolutely different coefficients. Thus,
when a sample is sparsely represented by a dictionary atom in
its own sub-dictionary, the value of the object function Eq.(1)
is minimized. Minimizing the coefficients incoherence term∑

j 6=i ‖DjX
j
i ‖

2
F encourages samples from different classes are

reconstructed by different sub-dictionaries
Overall, minimizing the representation-constrained term

ensures that learned sub-dictionary has the powerful rep-
resentation ability to the training samples from the corre-
sponding class and minimizing the coefficients incoherence
term encourages that maximum coefficients are related to the
corresponding different sub-dictionary. It shows that similar
samples have similar coefficients and samples belonging to
different classes have completely different coefficients. Thus,
when a sample is sparsely represented by a dictionary atom in
its own sub-dictionary, the value of the object function Eq.(1)
is minimized. By combining the representation-constrained
term and coefficients incoherence term, this sparse represen-
tation model will be more effective for classification.

IV. OPTIMIZATION OF PROPOSED SPARSE MODEL
Although the objective function in Eq.(1) is not jointly convex
to (D,X ). it is convex with respect to each of D and X when
the other one parameter is fixed.

A. UPDATE OF X
When the dictionary D is fixed, the objective function in
Eq.(1) can be regarded as sparse coding problem for handling
X = [X1,X2, . . . ,XK ]. When Xi changes, all Xj(j 6= i)
are also fixed. Thus, the objective function in Eq.(1) can be
rewritten by:

min
Xi
{‖Ai − DXi‖2F + λ1‖Xi‖1 + λ2‖Ai − DiX

i
i ‖

2
F

+ξ1
∑
j6=i

‖XTj Xi‖
2
F + ξ2

∑
j 6=i

‖DjX
j
i ‖

2
F } (2)

It can be proved that ϕi(Xi) = ‖Ai − DXi‖2F + λ2‖Ai −
DiX ii ‖

2
F + ξ1

∑
j 6=i ‖X

T
j Xi‖

2
F + ξ2

∑
j 6=i ‖DjX

j
i ‖

2
F is convex

with Lipschitz continuous gradient. In this paper, a novel fast
iterative projection method (IPM) [39] is used to solve Eq.(2),
which is introduced in Algorithm 1.

B. UPDATE OF D
Then we will give the detail of updating D = [D1,

D2, . . . ,DK ]. When updating Di, all Dj, j 6= i, are fixed and
Di = [d1, d2, . . . , dpi ] is updated class by class. Objective
function in Eq.(1) can be modified as:

min
Di
{‖Ā− DiX i‖2F + λ2‖Ai − DiX

i
i ‖

2
F

+ξ2
∑
j 6=i

‖DjX
j
i ‖

2
F } s.t. ‖dl‖2 = 1, l = 1, . . . , pi (3)

Algorithm 1 Learning Sparse Code Xi.
Require:

A training subset Ai from class i; the dictionary D; the
parameters ρ, τ > 0.

Initialize:
X̂ (1)
i = 0 and t = 1;

while convergence or the maximal iteration step is not
reached do
t = t + 1; ut−1 = X̂ (t−1)

i − 1/2ρ∇ϕi(X̂
(t−1)
i ),

where ∇ϕi(X̂
(t−1)
i ) is the derivative of ϕi(X̂

(t−1)
i ) w.r.t.

X̂ (t−1)
i ;
X̂ (t)
i = soft(u(t−1), τ/ρ), where soft(u, τ/ρ) is defined

by:
soft(u, τ/ρ) = 0, if ‖uj| ≤ τ/ρ; soft(u, τ/ρ) = uj −
sign(uj)τ/ρ, otherwise

end while
Ensure:
X̂i = X̂ (t)

i .

where Ā = A −
∑K

j=1,j 6=i DjX
j; X i denotes the coefficient

matrix of A over Di. Eq.(3) can be further rewritten as:

min
Di
‖3i − DiZi‖2F s.t. ‖dl‖2 = 1, l = 1, . . . , pi (4)

where 3i = [ĀAi0 . . . 0], Zi = [X iX iiX
i
1 . . .X

i
i−1 . . .X

i
k ]. 0 is

a zero matrix. Eq.(4) can be efficiently solved by updating
each dictionary atom one by one by the algorithm in [38],
as is shown in Algorithm 2.

Algorithm 2 Learning Dictionary Di.
Require:

A training subset Ai from class i; the coefficients Xi.
Let Zi = [z1; z2; . . . ; zpi ] and Di = [d1; d2; . . . ; dpi ],
where zj, j = 1, 2, . . . , pi,
is the row vector of Zi and dj is the jth column vector ofDi;
for j = 1 to pi do
Fix all dl, l 6= j and update dj. Let Y = 3i −

∑
l 6=j dlzl .

The minimization of Eq.(4) becomes: mindj ‖Y −djzj‖
2
F

s.t.‖dj‖2 = 1
By solving this objective function, we could get the
solution
dj = XzTj /‖Yz

T
j ‖2.

end for
Ensure:

Update all di, and hence the whole dictionary D will
change.

C. COMPLETE DICTIONARY D LEARNING ALGORITHM
Algorithm 3 gives the complete learning flow. Due to the cost
function in Eq.(1) has a lower bound and can merely reduce
in the following two alternating minimization phases (i.e.,
updating X and updating D).
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Algorithm 3 The Complete Algorithm of Dictionary D
Learning.
Initialize D.

We initialize the atoms of Di as the eigenvectors of A.
Update coefficients X .

Fix D and solve Xi, i = 1, 2, . . . ,K , one by one by solving
Eq.(2) via Algorithm 1.

Update coefficients D.
Fix Z and update each Di, i = 1, 2, . . . ,K , by solving
Eq.(3) via Algorithm 2.
return
Update D and X until the objective function values in
adjacent iterations are close enough or the
maximum number of iterations is reached.

Ensure:
X and D

V. PROPOSED SPARSE MODEL-BASED CLASSIFIER
When the training process has finished, the dictionary D
can be used to denote the query sample y and complete the
classification task. On the basis of different ways to learn the
dictionary D, we can use different information to carry out
the classification task.

In our constructed classification model, considering both
the representation-constrained term and coefficients incoher-
ence term are discriminative, so we incorporate them into the
classification mode to achieve more accurate classification
results. As is described in the following equation:

α̂ = argmin
α
{‖y− Dα‖22 + γ ‖α‖1} (5)

where, γ constant.
Let α̂ = [α̂1, α̂2, . . . , α̂K ], where α̂i is the coefficient sub-

vector associatedwith sub-dictionaryDi. In the training stage,
we have enforced the representation residual to be discrimi-
native. Therefore, if y is from class i, the residual ‖y−Diα̂i‖22
should be small while ‖y − Djα̂j‖22, j 6= i, should be large.
In addition, the representation sub-vector α̂j should be far
different from the representation vector of other classes. Once
we get Xi, the mean coefficient vector of class Ai, denoted by
mi, could be calculated. The mean vectormi can be viewed as
the center of class Ai in the transformed space spanned by the
dictionary D. Taking into account the discriminative ability
of the representation-constrained term and the coefficients
incoherence term, the following metric can be defined to
classify:

ei = ‖y− Diα̂i‖22 + β1
∑
j 6=i

‖XTj α̂‖/nj

+β2‖α̂i − mi‖22 (6)

where β1 and β2 are preset weight to balance the contribution
of the two terms for classification. The classification rule can
be defined as identity(y) = argmini{ei}.

TABLE 1. Details of the pharmaceutical samples.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASETS AND EXPERIMENTS SETTINGS
In our paper, considering the scarcity of drug data, to verify
the effectiveness of our proposed model, we also conducted
more experiments on some tobacco leaves datasets.

Drug data were collected by the National Institutes for
Food and Drug Control, including non-aluminum-plastic
packaged metformin tablets produced by Shanghai xinyi
pharmaceutical company and other pharmaceutical com-
panies. The spectral curve of each sample at different
wavelengths was determined by the Bruker spectrom-
eter. The wavelength range of each spectral data was
4000-11995 cm−1, with an interval of 4cm−1. There are
2074 absorption points at one complete spectrum. The drug
is metformin hydrochloride tablets, non-aluminum-plastic
packaging. Four manufacturers are selected, namely Shang-
hai xinyi pharmaceutical co., LTD., shenzhen zhonglian
pharmaceutical co., LTD., Tianjin Pacific pharmaceutical co.,
LTD., and Bristol-Myers Squibb Pharmaceutical co., LTD.
See the table1 below for the specific information.

While for the tobacco leaves dataset, tobacco leaves con-
tain three kinds: Lugs, cutters and leaves. Based on the
color difference, tobacco leaves can be also divided into
three kinds: lemon, orange and red-brown. In reference [2],
the authors combined the position and color feature and
forming more categories, such as lemon lugs group, orange
lugs group, lemon cutters group, orange cutters group, lemon
leaves group, orange leaves group and redbrown leaves
group. Each group also contains 3 or 4 levels. In our proposed
sparse representation model, there are two stages: Dictionary
learning stage and classification stage. In dictionary learning
stage we set weight coefficients by experiment: λ1 = 0.005,
λ2 = 0.01, ξ1 = 0.01, ξ2 = 0.02; In classification stage
we set γ = 0.001, β1 = 0.05, β2 = 0.005. In the
proposed model, the number of atoms in Di, denoted by pi,
is important and it is set as the number of training samples by
default. All of the experiments are executed on a workstation
with 2.8GHz CPU and 16GB RAM. In this paper, we have
constructed two experimental data sets. One group contains
207 tobacco leaf samples: It contains three different types of
tobacco leaves, such as orange lugs grade 2, orange cutters
grade 3 and orange leaves grade 2. The other group includes
200 tobacco leaf samples: it contains four categories, such as
orange lugs grade 2, orange cutters grade 3, orange leaves
grade 2 and red-brown leaves grade 2. The spectra in the
near-infrared range of 1000∼2500 nm are saved in three
parts using a Nicolet Nexus Fourier transform spectrometer.
Through averaging the spectra of three parts, then we can
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FIGURE 1. NIR spectra of phamaceutical samples.

FIGURE 2. Normalized NIR spectra of pharmaceutical samples

get a mean spectrum for each sample. we adopt the same
pre-processingmethod in [1] to process near-infrared spectral
data.

B. EXPERIMENTS ON DRUG DATASET
In order to verify the proposed model in the identification
of NIR of drugs, this model is used to carry out two and
multiple classification experiments on the same drug with
different packaging forms produced by different manufac-
turers, and is compared and evaluated with other methods.
To verify the effectiveness of our proposed sparse model for
drug data classification, we make comparisons with other
classifiers, such as SRC [20], SVM, label consistent KSVD
(LCKSVD) [26], FDDL approach [34], and our proposed
algorithm.

First, the spectral deviation caused by drift and shift is
eliminated by OPUS software, and 367 consistent drug spec-
tra are obtained. As shown in Fig. 1, the spectra have high
similarity and severe overlap, making it difficult to analyze
the information. By means of spectral normalization pro-
cessing, eliminate the order of magnitude difference between
spectral data, and it can avoid the large difference between
input and output data, normalized drug spectra are shown
in Fig. 2.

TABLE 2. Size configuration of training sample set for two-category
discrimination.

1) EXPERIMENTS ON TWO-CATEGORY
First, rough classification (typed two-category recognition)
of the same drug in the same packaged form produced by
the designated manufacturer and the other three manufactur-
ers are used to verify the predictive power of our proposed
model. As shown in table 1,a total of 367 spectral samples
of drugs are collected. In this experiment, the data set is
designed as bellows: 90 spectral samples in the form of
aluminum-plastic packaging produced by the Shanghai xinyi
pharmaceutical manufacturer are taken as the negative sample
set; A total of 277 non-aluminum-plastic packaged spectral
samples produced by the other three manufacturers are taken
as the positive sample set. Also 10 training sets and test
sets are constructed independently, and they were configured
separately. Finally, we take average based on the running
results of ten times.

In order to verify the performance of all algorithms under
datasets, the positive and negative samples are randomly
extracted according to the size of data in table2 and the
proportion of positive and negative samples.

The SVM parameters are estimated by 5-fold cross-
validation on each training data. The result is shown
in Table 3. Through analyzing the experimental results, it is
observed that the accuracy of our proposed model is higher
than LCKSVD and FDDL.With the increase of training sam-
ples, the classification accuracy of our algorithm can reach
100%. Because the introduction of similarity constrained
improves the degree of linear discrimination of data and
the practical application ability of classification model, our
algorithm can effectively improve the classification accuracy
of the model. LCKSVD outperforms FDDL, which shows
that representing the query sample on the whole dictionary is
more effective than representing it on each class-specific sub-
dictionary in the application. SRC and SVM are worse than
other three algorithms, which implies that the ability of non-
linear modeling is poor. Therefore, it proves that the proposed
supervised sparse model is more discriminative, and by incor-
porating the representation-constrained term and coefficients
incoherence term, our proposed sparse representation model
is more effective for classification. The stability of our model
is better than that of LCKSVD and FDDL, especially when
the training sample is small. With the increase of training
samples, our model achieves optimal stability. As is shown
in Fig 3.
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TABLE 3. The performance comparison on drug dataset (Testing
accuracy:%).

FIGURE 3. Standard deviations of accuracy for different binary
classification models.

TABLE 4. Size configuration of training samples for multi-category
discrimination.

2) EXPERIMENTS ON MULTI-CATEGORY
Secondly, fine classification (typed multi-category recogni-
tion) of the same drug in the same packaged form produced
by four different manufacturers is used to verify the predic-
tive power of our proposed model. As shown in table 4,a
total of 367 spectral samples of drugs are collected. In this
experiment, the data set is divided into four categories. Also
10 training sets and test sets are constructed independently,
and they are configured separately. Finally, we take an aver-
age based on the running results of ten times.

LCKSVDoutperforms FDDL,which shows that represent-
ing the query sample on thewhole dictionary ismore effective
than representing it on each class-specific sub-dictionary in
the application. Compared with SRC, SVM, LCKSVD and
FDDL, in the application of multi-classification of the drug,
our proposed model shows stronger classification ability due
to the introduction of proposed two additional terms, which
improves the linear separability of data, while the accuracy of
other algorithms own poor performance. When the number

TABLE 5. Multi-classification accuracy on different ratios of training
samples (Testing accuracy:%).

FIGURE 4. Standard deviations of accuracy for different multi-class
classification.

of training samples is small, our algorithm achieves high
classification accuracy.With the increase of training samples,
the classification accuracy of our model is stable at 100%.
FDDL and LCKSVD are worse than our proposed algorithm,
which implies that the similarity constrained ismore powerful
than the representation residual in this dataset. It proves that
the proposed supervised sparse model is more discriminative,
and by incorporating the representation-constrained term and
coefficients incoherence term, our proposed sparse represen-
tation model is more effective for classification.

As shown in Fig 4, our model delivers good stability and is
superior to the other four methods in the case of small training
samples and increased training samples. With the increase of
training samples, our model obtains the optimal stability.

C. EXPERIMENTS ON TOBACCO LEAVES: DATASET 1
To verify the effectiveness of our proposed sparse model
for tobacco leaves classification, we make comparisons with
other classifiers. We use the same features exacted from
NIRS as the input of SRC [20], SVM, label consistent KSVD
(LCKSVD) [26], FDDL approach [34], and our proposed
algorithm.

We evaluate our algorithm on data set 1 with cross-
validation: 10∼39 random samples are used for training, and
the remaining ones are selected for testing. For each size of
training images, we process 10 times with our method and
the results are averaged. The SVM parameters are estimated
by 5-fold cross-validation on each training data. The result is
shown in Table 6.

VOLUME 7, 2019 100929



L. Li et al.: Supervised Dictionary Learning With Regularization for NIRS Classification

FIGURE 5. Performance comparisons of existing methods on all datasets.

TABLE 6. The performance comparison on data set 1(Accuracy:%).

TABLE 7. The performance comparison on data set 2 (Accuracy:%).

Through the above experiments, it is observed that the
accuracy of SVM is higher than that of SRC which only
uses the original training samples as dictionary. LCKSVD
outperforms FDDL, which shows that representing the query
sample on the whole dictionary is more effective than rep-
resenting it on each class-specific sub-dictionary in the
application. FDDL and LCKSVD are worse than our pro-
posed algorithm, which implies that the similarity con-
strained is more powerful than the representation residual in

this dataset. It proves that the proposed supervised sparse
model is more discriminative, and by incorporating the
representation-constrained term and coefficients incoherence
term, our proposed sparse representationmodel is more effec-
tive for classification.

D. EXPERIMENTS ON TOBACCO LEAVES: DATASET 2
To further verify the effectiveness of our algorithm, we make
experiments on data set 2. In this dataset, 25 samples of
each class are used for training and remaining samples are
selected for testing. We compare our model with the state-
of-art methods, includingmulti-label classification [40], mid-
level image representations [41], SRC [20], FDDL [34] and
the convolutional network models in [42]. The experimental
results are shown in Table 7. The overall accuracy we obtain
on this dataset is 97%. For most of the categories, the results
reach more than 95%. Our proposed method outperforms
others with similar CNN features in most of the categories.

To demonstrate statistical significance, the classification
performance is evaluated in terms of average accuracy and
standard deviation (acc ± std), as is shown in Table 8 and
Table 9. The corresponding test precision comparisons of
experimental results are given in Fig 5. Comparing with
the existing approaches, our proposed model can effectively
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TABLE 8. Comparisons of classification results on drug dataset
(Accuracy:%).

TABLE 9. Comparisons of classification results on tobacco dataset
(Accuracy:%).

improve the classification performance on the two bench-
mark datasets. In most cases, the precision of our constructed
model is at least 3% better than the others, except LCKSVD
and FDDL. To give more statistical analysis, we perform
t − test for the precision obtained by LCKSVD and FDDL
and by the proposed method on the four datasets, under the
null hypothesis using a significance level of 0.05. p − value
is found as 0.0016, 0.00052, 0.0018, 0.00021, respectively,
indicating that accuracy rates achieved by the proposedmodel
are indeed significantly better than LCKSVD and FDDL.

VII. CONCLUSION
In this paper, we have presented a novel method for drug
and tobacco leaves classification based on NIRS and class-
specific sparse model. Our proposed scheme incorporates
NIRS information which represents samples more accurately.
We have also introduced a supervised classification model
with the dictionary learning method and designed a classi-
fication loss function. Our framework achieves comparable
performance on the datasets above. The experiments have
validated that our proposed framework works very well, and
the proposed sparse model incorporating NIRS information
is effective for classification.
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