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ABSTRACT When using traditional methods tomeasure themicrowave/millimeter-wave emissivity of small
targets, errors arise due to that the antenna’s main lobe and side lobe cannot be completely covered by the
target. To eliminate the errors exist in traditional measurement methods, this paper first analyzes the main
sources of errors and gives the analytical expression of the errors. On this basis, an improved method named
voltage method is proposed. To test the effectiveness of the improved method, the horizontal polarization
emissivity and the vertical polarization emissivity of a metal plate coat with stealthy nano-materials were
measured at different observation angles by voltage method and traditional method, respectively. A dick
radiometer working in 35 GHz is used in the experiments. Simultaneously, the accurate emissivities of
the target are obtained by standard arch method. The results show that the voltage method improves the
measurement accuracy largely compared to the traditional method.

INDEX TERMS Microwave/millimeter-wave, emissivity measurement, radiometer, error correction.

I. INTRODUCTION
Passive microwave/millimeter-wave (PMW/PMMW) tech-
nology has been widely used in many applications since it
can penetrate smoke, fog, clothing, and can work day and
night [1]–[6]. Accurate measurement of surface emissivity
is essential in diverse fields such as remote sensing, mate-
rials classification and noncontact measurement of tempera-
ture [7]–[10]. Compared to radar, the PMW technology that
uses a radiometer to measure (surface) emissivity has shown
its superiority in price and operability. Currently, the emissiv-
ity of the targets’ surface is generally derived by measuring
the brightness temperature (BT) and the physical temperature
of the target. In addition, the BT emitted from the environ-
mental background must be measured individually [11], [12].

With the application of PMW detection in terminal guid-
ance and security inspection, more attention has been paid to
the measurement of PMW emissivity of coated materials for
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military targets, skin, and clothes. Therefore, the emissivity
measurement for small targets becomes significant. However,
the traditional method cannot eliminate the errors brought
by the antenna side beam, and the errors rate of this method
become intolerable especially when the foot print of the main
beam exceeds the target area.

This paper first analyzes sources of the errors in the tra-
ditional measurement method from a theoretical perspective.
Then an improved method named the voltage method basing
on the radiometer measurement is proposed to eliminate the
errors brought by the traditional method. Finally, experiments
are conducted to compare the voltage method with the tradi-
tional method using a 35GHz Dick radiometer.

II. THEORY
A blackbody is an idealized body that represents a prefect
absorber and a perfect radiator [13]. However, the real bodies
in the nature cannot absorb all the incident power and they
also radiate less power than the blackbody. These bodies are
called gray body.
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FIGURE 1. Sketch map of the traditional method and voltage method.

Since the BT of a gray body is smaller than that of a
blackbody, the BT is smaller than physical temperature Tph.
The parameter relating both magnitudes is called the
emissivity e(θ ,ϕ)

e(θ, φ) =
TB(θ, ϕ)
Tph

(1)

where, TB is the directional emission BT, which depends on
the direction (θ ,ϕ).
Thermal radiation may be absorbed, reflected and trans-

mitted through a surface. According to the conservation of
energy, the following relationship exists among the three.

α + ρ + τ = 1 (2)

Assuming that the target is in thermal equilibrium state,
in this limit, the effective emissivity of a metal-coated dielec-
tric surface is given by

e = α = 1− ρ (3)

Ignoring sensor effects and transmission, the apparent tem-
perature is formed by two parts, with one coming from the
target and the other coming from the radiation of the back-
ground reflected by the target.

TAP = e · Tph + (1− e) · Tbg (4)

where, TAP is the apparent temperature, Tbg is the radiation
from the background, Tph is the physical temperature of the
target.

III. ERROR ANALYSIS OF TRADITIONAL METHOD
As shown in Fig.1, considering the antenna pattern, the mea-
sured BT T ’Atg of the target can be expressed as

T ′Atg =

∫∫
�1

TAPtgFn(θ, ϕ)d�+
∫∫

4π−�1

TN (θ, ϕ)Fn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(5)

where, TAPtg is the apparent temperature of the target, TN is
the radiometric temperature of the non-target area covered by

the antenna beam, Fn(θ ,ϕ) represents the normalized pattern
of radiometer antenna,�1 is the solid angle of the target area.

In the traditional method, Tph is usually obtained by mea-
suring the physical temperature of the target surface, and the
results can be equated with the BT of blackbody at the same
temperature. The relation can be expressed as

Tph =

∫∫
4π
TAPbbFn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(6)

where, TAPbb is the apparent temperature of the blackbody.
In the traditional method, the emission BT of the back-

ground reflected by the target needs direct measurement, and
the result can be expressed as

T ′Abg =

∫∫
�1

TAPbgFn(θ, ϕ)d�+
∫∫

4π−�1

T ′N (θ, ϕ)Fn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(7)

where, TAPbg is the apparent temperature of the background.
Since background measurements and target measurements

are not in the same area, the T ’N (θ ,ϕ) and the TN (θ ,ϕ) are
different. Connect (4)-(7), the emissivity can be expressed as

e = (
T ′Atg − T

′
Abg

Tph − T ′Abg
) · A− B (8)

A and B can be expressed as

A =
Tph − T ′Abg

(Tph − T ′Abg)−
∫∫

4π−�1

(Tph − T ′N (θ, ϕ))Fn(θ, ϕ)d�

(9)

B =

∫∫
4π−�1

(TN (θ, ϕ)− T ′N (θ, ϕ))Fn(θ, ϕ)d�

(Tph − T ′Abg)−
∫∫

4π−�1

(Tph − T ′N (θ, ϕ))Fn(θ, ϕ)d�

(10)
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But, in the traditional method, the emissivity e is given
as [11], [14]

e =
T ′Atg − T

′
Abg

Tph − T ′Abg
(11)

Compare (8) with (11), the errors of traditional method
relate to physical temperature, antenna pattern and ambient
radiation,

IV. VOLTAGE METHOD
For isotropic targets, the effectiveness of the voltage method
is based on the following three hypotheses:

1) The radiometer is a linear system;
2) The background environment remains unchanged dur-

ing the measurement;
3) The calibratedmetal plate has the same scattering spatial

distribution with the target to be measured.
The above hypotheses are reasonable and can be real-

ized. In voltage method, the unknown target, the metal plate
and the blackbody are measured by radiometer respectively.
Supposing that the sizes of these targets are consistent, and
the targets are placed in the same position with the same
observation angle, the measurement scene is shown in Fig.1.
Then, the radiometric temperature of these targets can be
expressed as

T ′Atg=

∫∫
�1

TAPtgFn(θ, ϕ)d�+
∫∫

4π−�1

TN (θ, ϕ)Fn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(12)

T ′Amt =

∫∫
�1

TAPbgFn(θ, ϕ)d�+
∫∫

4π−�1

TN (θ, ϕ)Fn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(13)

T ′Abb=

∫∫
�1

TAPbbFn(θ, ϕ)d�+
∫∫

4π−�1

TN (θ, ϕ)Fn(θ, ϕ)d�∫∫
4π
Fn(θ, ϕ)d�

(14)

where, the scripts tg,mt, bb represent target, metal and black-
body respectively.

The emissivity of metal plate is approximated to 0, and
the emissivity of artificial blackbody approximated to 1.
Connecting (4) and (12)-(14), supposing that the blackbody
surface and the target surface have the same physical temper-
ature, then the emissivity of the unknown target can be given
as

e = (T ′Atg − T
′
Amt )

/
(T ′Abb − T

′
Amt )

(15)

According to two-point calibration theory [15], (15) can be
rewritten as

e = (V ′tg − V
′
mt )

/
(V ′bb − V ′mt )

(16)

where, V ’is the output voltage of radiometer.

FIGURE 2. Experimental scene map of voltage method.

Compared with traditional method, the voltage method
does not need to measure the radiation of background and
the physical temperature of the targets’ surface directly, and
the errors arose due to that the antenna’s main lobe and
side lobe cannot be completely covered by the target can be
eliminated in this method by measuring the blackbody and
metal plate of the same size as the target sample. Furthermore,
the traditional method needs to convert the measured voltage
values to the BT through the calibration, and then calculate
the emissivity, however, the voltage values can be used to
calculate the emissivity directly in voltage method.

V. EXPERIMENTS
In order to verify the voltage method, measurement experi-
ments are designed and conducted. Both voltage method and
traditional method are tested. The experimental scene map is
shown in Fig. 2.

In the experiment, the receiver is a Dick radiometer which
works at 35 GHz with 400MHz bandwidth, 1.0 s integra-
tion time, and the radiometric sensitivity is 0.6 K. Two
polarizations are measured by rotating radiometer. The tar-
get in this experiment is a metal plate coated with stealthy
nano-materials and its surface can be considered as specu-
lar surface. Unknown target, metal plate and blackbody are
measured at different angles successively in the experiment.
The observation angles range from 20◦ to 60◦, with 10◦ as an
interval. All samples have a size of 50 cm × 50 cm. In order
to verify the beam coverage problem mentioned in section 3,
the radiation pattern of the radiometer antenna is simulated.
Results show that the half power beam width of surface E
(phi = 0) and surface H (phi = π /2) are 4.6◦ and 7.4◦

respectively.
The emissivity of the target was also measured in Shan-

dong non-metallic Materials Research Institute by arch
method [16]. Arch method is the most widely used method
in reflectivity measurement, and the method was invented by
the US Naval Research Laboratory. This method can reduce
stray reflection outside the sample area using the time gate
function of vector network analyzer (VNA).
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FIGURE 3. Radiation pattern of radiometer antenna.

TABLE 1. Measurement uncertainty (Uncertainty of blackbody emissivity, plate emissivity and temperature control are 0.01, 0.01 and 0.5K).

FIGURE 4. Experimental scene map of arch method.

The experiment scene of the arch method is shown
in Fig. 4. The gate 1 works at 80 GHz ∼ 100 GHz, gate 2
works at 30 GHz ∼ 40 GHz, and the gate 3 works at 8 GHz
∼ 12 GHz. In this paper, we conduct the experiment with
gate 2. Reflectivity of the target in different incident angles
are measured by changing the position of the transmitting
antennas and the receiving antennas on the bow frame, and
then the corresponding emissivity is calculated using (3).

VI. RESULTS
The results are plotted in Fig. 5 and Fig. 6. As can be seen
from Fig. 5, the voltage method has a higher precision than
the traditional method. The results of arch method are used as
the standard results. Fig. 6 plots the absolute errors of voltage

method and traditional method. Experimental results demon-
strate that the average absolute errors of voltage method
are 0.00997 under horizontal polarization and 0.00845 under
vertical polarization. The results are better than the traditional
method which has a mean relative error of 0.06275 under hor-
izontal polarization and 0.07428 under vertical polarization.

In theory, the errors of traditional method come from two
aspects: one is that the main beam is not covered by the target
fully, and the other is that there is stray power released by the
side beam. Specifically, with the increase of the observation
angle, the projection area of the target on themain beam of the
radiometer antenna becomes smaller, and the beam receives
more energy from the area beyond the target, so the errors of
the emissivity become bigger.

VII. MEASUREMENT UNCERTAINTY
In voltage method, the blackbody is approximated to an ideal
radiator, the metal plate is approximated to an ideal reflector,
and the physical temperature of the blackbody is the same
as that of the target to be measured. The target emissivity
is obtained by measuring the target, the blackbody and the
metal plate respectively. The uncertainty of the emissivity
measurement is caused by such components as radiometer,
temperatures of the sample and blackbody, ambient temper-
ature, emissivity of the blackbody and the metal plate and
so forth.

In this paper, the uncertainty of measurement due to
temperature inconsistency and emissivity of blackbody and
metal plate are analyzed. Assuming that the measurement is
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FIGURE 5. Comparison of the results between the three methods.

FIGURE 6. Comparison of the absolute errors.

TABLE 2. Measurement uncertainty (Uncertainty of blackbody emissivity, plate emissivity and temperature control are 0.001, 0.001 and 0.5K).

operated at room temperature of 300K, three sample emis-
sivities have been taken into account: 0.2, 0.5 and 0.9. The
uncertainty is calculated when the emissivity of the black-
body is 0.99 and 0.999, the emissivity of the metal plate is
0.01 and 0.001, and the temperature difference is 0.5K. The
results are shown in Tab.1 and Tab.2.

VIII. CONCLUSION
This paper investigates the methods that use radiometer
to measure emissivity of targets. The errors of traditional

measurement method are discussed and appropriate formulas
for error calculation are presented. On this basis, an improved
method named voltage method for measuring the emissivity
of flat targets’ surface at microwave/ millimeter-wave bands
is devoloped.

The improvedmethod aims at eliminating the errors caused
by the antenna pattern in traditional method. Contrast exper-
iments are conducted, and the experimental results indicate
that the voltage method performs well and improves the
measurement accuracy greatly than the traditional method.
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Therefore, the voltage method is potential in measuring emis-
sivity of the target surface.
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