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ABSTRACT Due to their capacities and quick response, Electric Vehicle (EV) batteries can be used to
support a number of power grid services and form a Vehicle-to-Grid (V2G) system. When aggregated and
properly managed EV batteries can provide important ancillary services such as peak load levelling and
frequency regulation. EVs can also provide various demand response services and help in renewable energy
integration. The major challenge for having a wide-scale V2G system to effectively provide the above
services is the availability of power which is limited by the battery degradation and the battery cycle life. The
battery cycle life is inversely proportional to the charge/discharge cycles the battery goes through during its
operation. Therefore, the charge/discharge operation should be optimized to maximize the benefit for both
the EV owners and the grid operator. In this paper, we develop an EV charge/discharge optimization model
that incorporates frequency regulation and electricity prices from both real and forecasting models into the
objective function of the model. We develop a prediction and optimization model to reflect the effects of
dynamic and static electricity and regulation prices on the battery cycle life. We present a case study for the
charge/discharge scheduling problem utilizing real, predicted regulation and electricity hourly pricing.

INDEX TERMS Aggregator, battery degradation, charge scheduling, mixed integer linear programming,
Vehicle-to-Grid (V2G), frequency regulation.

I. INTRODUCTION
The state of the art in the electrified transportation system
is a standard shift from conventional Internal Combustion
Engine (ICE)-based vehicles to more reliable, efficient and
cleaner electrified vehicles [1]. Based on several feasibility
studies, Electric Vehicle (EV) batteries can be used to deliver
power back to the grid and provide support when the vehicles
are parked and connected to the grid [2], [3]. The power
from EV batteries can be aggregated and then fed back to
the grid to participate in demand-side management programs
and provide various ancillary services such as frequency
regulation, Volt-VAR control and renewable energy integra-
tion in a distributed Vehicle-to-Grid (V2G) infrastructure [4].
V2G is a technology that facilitates the interaction of EVs
with the power grid to allow charging or discharging based
on certain control algorithms to provide various important
grid services [5]. V2G involves algorithms and techniques
that can be implemented in the EVs, the charging stations,
user control systems, grid control centers, grid generation,
and distribution systems. These V2G sub-systems exchange
information and data required to implement the techniques
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and algorithms for the V2G applications. Other applications
of V2G include the provision of demand response and inte-
gration of renewable energy with the grid.

A typical scenario of a V2G service is the communication
of the power control commands from the grid operator to the
EV user and the charging station where the usage profile and
the preferences are obtained. Subsequently, EVs connect to
charging stations to either charge or discharge. Owing to the
fast charging rate of the EV batteries, in this paper, we focus
on frequency regulation service which is the most promis-
ing and practical service among other V2G applications.
Frequency regulation service is needed to maintain a stable
grid frequency when variations in the power generated and
loads take place [6]. This service is important to maintain the
power system security and avoid additional costs associated
with industrial production, equipment damage and market
distortion [7]. Frequency regulation is currently performed
by ramping up or down fast turning generators that bid into
the market. This is provided by generators that are contracted
to provide the nominal power with the ability to adjust their
power levels based on the regulation signal from the grid
operator [8]. However, the traditional generators may have
a slow response time and limited ramp rate, thus their per-
formance is not quite satisfactory [9]. On the other hand,
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EVs batteries can easily be controlled and respond faster
and thus can help support frequency regulation. This can be
done by charging or discharging EV batteries when the grid
frequency increases or decreases [10] respectively.

EVs participation in V2G services can be limited by a num-
ber of factors including energy constraints, users behaviours
and battery degradation. Other EV challenges include lim-
itations on the batteries’ energy density, the need for new
charging infrastructure and the time required for charging
or discharging the batteries [11]. In this paper, we focus
on battery degradation since batteries can undergo excessive
charge/discharge cycles. These excessive cycles can over time
impact the lifetime of the batteries. Based on that, the cost
of battery degradation is important to the EV owner since
the battery replacement cost can be very high compared
to the overall EV cost. The main aim of the paper is to study
the degradation of the EV batteries when providing frequency
regulation. The grid model, voltage and their impact on the
battery degradation are out of the scope of this paper.

In [4], we presented an optimization model which uses
the frequency regulation and real-time electricity prices to
minimize the batteries’ wear cost. In [12], we developed an
iterative algorithm to predict the effect of static and dynamic
electricity and frequency regulation prices on the battery
cycle life (CL).

Unlike [4] and [12], which only considered an optimization
model that can either use the frequency regulation or real-time
electricity prices to minimize the batteries’ wear cost, in this
paper, we present a holistic approach that combines effects
of [4], [12], long-term electricity price prediction on CL
and the battery degradation cost. We do this by introducing
an iterative algorithm that combines the current and pre-
dicted static and dynamic electricity prices with the frequency
regulation signals on CL and by integrating the forecasting
mechanism into the charging and discharging optimization
models described in [4] and [12]. Our new model shows that
long-term forecast price prediction helps in analyzing the
effect of electricity and frequency regulation prices on the EV
battery cycle life. We simulate the forecast and optimization
model to provide a realistic scenario and an insight into the
effect of the charging-discharging process on the EV battery.
In this paper, we show that EV owners can be made aware of
the long-term effects before participating in theV2G services.
In addition, we include the effect of CL when determining the
optimum charge/discharge processes, State of Charge (SOC)
profile over the charging/discharging periods and the impact
of the wear cost on the batteries. These important aspects are
new and have not been previously discussed in the literature
or in [4] and [12].

A. PAPER CONTRIBUTIONS
The major contributions of this paper can be summarized as
follows:

1) We present an Electric Vehicle Charge/Discharge
(EVCD) model that incorporates frequency regulation

signals, real-time and predicted prices into its
operation.

2) We present a realistic case-study for the charge/
discharge scheduling problem using hourly real fre-
quency regulation and hourly electricity prices.

3) We present a novel iterative algorithm that can predict
the effect of static and dynamic electricity and regula-
tion prices on the battery CL .

4) We propose a forecasting model and incorporate the
results (i.e. forecast prices) obtained into the EVCD
model using the developed case-study.

5) We present a comprehensive analysis to depict the
hourly SOC profile over the charging period in addition
to optimal charge/discharge schedule.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows, Section II
presents the related work. Section III presents the EV
charge/discharge model. Section IV presents the forecast
model and Section V presents the proposed iterative frame-
work with dynamic cycle life. Section VI presents the results
and analysis. Finally, in Section VII, this work is concluded.

Table I. shows the summary of notations used in this paper.

II. RELATED WORK
The use of EVs to support various power grid applications
in a V2G system has been widely discussed in the literature.
An early work by [13] introduced the idea of V2G, the
authors have focused mainly on how EV batteries can be
connected to the power grid. In a later study [14], the authors
have identified various feasible services that can be derived
from connecting EVs to the Grid. Tomić and Kempton [15]
have analyzed business models and potential profit based on
V2G support compared to existing grid regulation methods,
the economics of the V2G services and how to manage the
technology in the new market. The authors, however, did not
consider the degradation and cycle life loss associated with
EV batteries when participating in the V2G process.

Battery cycle life and degradation analysis have also been
considered in a number of studies in the past number of years.
Han et al. [16] have analyzed the probability of extending
the battery life cycle and optimizing the battery usage by
installing used battery packs in buildings’ microgrids. Yilmaz
and Krein [17] have formulated a multiobjective optimiza-
tion problem to minimize the energy storage system size
and maximizing the battery cycle life. In [18], the authors
have developed an approach to minimize the cost of vehicle
battery charging with variable electricity costs while consid-
ering the estimated battery degradation costs using a simpli-
fied lithium-ion battery lifetime model. A dynamic model
of Li-ion batteries incorporating electrothermal and ageing
aspects for V2G applications has been presented in [19].

In Luo et al. [20] have developed a stochastic frame-
work to enhance the predictability of wind power using
EVs through fuzzy c-means clustering. They have used
a genetic algorithm with a Monte Carlo simulation to
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TABLE 1. Summary of notations.

optimize charging and discharging, and minimize the sum
of the penalty cost associated with wind power imbalances
and EV expenses associated with purchased energy, battery
wear, and capital costs. In [21], a semi-empirical battery
wear model has been proposed for an EV charging based on
experimental cycle life data provided by the manufacturer.
An auction-based energy trading model among EVs with
consideration of practical battery wear has been proposed
in [22]. In Jónsson et al. [23] have identified the relationships
between customer and system operator interests by using an
augmented epsilon-constrain based technique to implement
multi-objective optimizations. A stochastic methodology for
smart charging of EVs has been presented in [24] by con-
sidering the impact of charging/discharging strategies on the
battery pack degradation. In [25], the authors have formulated
a problem for determining the aggregator’s bid to indicate its
available capacity for frequency regulation in the next day
using stochastic programming. Although the authors consider
a day ahead pricing for frequency regulation, they do not

consider the impact on the end user and the effects of this
process on the degradation cost.

Zhou et al. [26] have developed charging control strategies
while varying the regulation price, charging cost and the
desired SOC. Winters [27] have simulated about 250 EVs
in the New England regulation services market. Based on
their calculations, an EV owner can earn between $1250 and
$1400 per year by providing regulation up and down ser-
vices which result in 9-11% reduction in ownership costs.
Taylor [28] have developed a predictive model for charging
and regulation to schedule the charging and regulation by
using different experiments to support regulation. The authors
have considered the problem of an aggregator in minimizing
the cost of EVs participating in the regulation process as well
as the battery level at plug out. The problem of the aggregator
is that it does not know when a new vehicle will arrive for
regulation service provision.

Han et al. [29] have modelled the regulation data to deter-
mine the battery degradation due to V2G participation. They
have estimated the power transferred and compared the profit
to the cost of degradation. They have used regulation data
to determine the cost of degradation while providing the
V2G service in comparison to the normal driving situation.
However, the authors have not presented or discussed the
cycle life profile after each V2G operation. Luo et al. [30]
have presented a model to estimate the battery degradation
based on the results obtained from simulation models while
comparing normal driving instances to V2G scenarios. The
authors, however, did not show an illustration of the cycle life
degradation for EVs providing the V2G operation. They have
presented a cost-benefit analysis, but there was no emphasis
on the EVs’ battery SOC or charge/discharge pattern.

David and Al-Anbagi [3] have presented degradation
analysis using a semi-logarithmic model and then compared
the results with the battery’s CL experimental results. The
authors have estimated the cost of degradation, battery CL ,
the amount of power an EV can contribute to the grid while
considering daily driving as well as the revenue generated
based on the contracted power capacity. The results pre-
sented show that EVs can provide the needed frequency
regulation service and still make a profit from the activity.
However, the analysis did not show the battery cycle life
pattern after each V2G operation. In addition, the authors
did not discuss the SOC profile and charge/discharge
patterns of the EVs participating in the regulation
service.

Farzin et al. [31] have modelled the degradation cost of EV
batteries to calculate the wear price. They have also consid-
ered the degradation of the EVs’ batteries in V2G programs
and developed an optimization model to minimize the bat-
tery wear cost of EV batteries participating in the operation.
The authors considered only the electricity prices in their
optimization, unlike electricity and regulation prices that are
considered in this paper to obtain the results and perform the
analysis of the SOC profile, charge/discharge patterns for the
EVs.

130390 VOLUME 7, 2019



O. Kolawole, I. Al-Anbagi: Electric Vehicles Battery Wear Cost Optimization

Lepojevic and Andelkovic-Pesic [32] have used Holt Win-
ter (HW) forecasting model to predict electricity consump-
tion while Jónsson et al. [33] have predicted the expected
imbalance cost in the real-time market using the HW
method with daily seasonal cycle. Lepojevic and Andelkovic-
Pesic [32], Jónsson et al. [33] have not implemented the
model to predict frequency regulation prices nor discussed
the model for the V2G environment. In this paper, the double
seasonal data is considered, unlike the daily seasonal cycle in
the HWmodel. In this paper, the modified HWmodel is used
to fit the specific V2G environment.

It is evident that previous work does not consider the
impact of predicted electricity prices and frequency regula-
tion signals on the battery cycle life and on the long-term
EV charge/discharge scheduling and planning. In contrast
with previous work, in this paper, we present an optimization
model based on [4] that incorporates the predicted prices from
a forecast model and the charge scheduling problem with the
application of the wear cost of the EV batteries. We present
the impact of the predicted prices on the optimization model
after continuous charge/discharge cycles.We also analyze the
hourly SOC profile over the charging period of the EVs and
the optimal charge/discharge schedule in the base case with
the predicted values.

III. THE EV CHARGE/DISCHARGE MODEL
A. OPTIMAL EV CHARGE/DISCHARGE SCHEDULING
MODEL FORMULATION
We develop the optimization model based on [31] and then
integrate the battery degradation cost in the charge/discharge
scheduling of the EVs. In this paper, we include the frequency
regulation price signals and consider several factors in battery
degradation to formulate our model. We consider the charge
and discharge rates, operational temperature, depth of dis-
charge (D), SOC, end of charge voltage (EOCV ) and the cycle
number.

Based on these additional factors, the loss of cycle life is
obtained using the following equation [31]:

1εi = εi − εi+1 = κD(2εiD) (1)

εi represents the battery’s available energy at the beginning
of ith charge/discharge cycle. We introduce κD to account for
the variable loss of cycle life at different SOCs.

The available energy at an arbitrary cycle (εn), is rep-
resented in terms of the initial rated energy ε0 using the
following equation [31]:

εn = ε0(1− 2κDD)n (2)

After going through certain cycles, the available battery
energy will decrease to 80% of ε0 based on the achiev-
able cycle count (AC) and D characteristic [34]. Therefore,
the value of κD can be found using the following relation:

κD =
1
2D

(1− 0.8

1
NAC(D) ) (3)

We can obtain the loss of available energy caused by
charging or discharging processes between two given SOCs
by using the following equation:

1ε = ε|DinκDin − DfnκDfn| (4)

whereDin is is the initial depth of discharge. Equation (4) can
be approximated as follows:

1ε = κwε|Dfn − Din| = κwε|Din − Dfn| (5)

where,Df n represents the initial and final depth of discharges
respectively.

We calculate the mean daily battery wear (Mw) using the
following equation:

Mw = κw((1+ sf )εDV + 2εVG) (6)

As a result of more rapid cycling, sf accounts for the scaling
factor of battery wear during driving (i.e. the higher capacity
loss during the driving mode operation compared to that of
the V2G).

The battery cycle life can be evaluated using the following
equation:

CL =
0.2ε0
Mw

(7)

We calculate the daily wear cost (Mc) by modelling the
degradation cost as a series of equal payments during the esti-
mated cycle life. We do this based on engineering economic
principles and is given by:

Mc =
Rdr (Cc(1+ Rdr )CL − SLV )

(1+ Rdr )CL − 1
(8)

The wear price (wpr ) is defined as the cost of battery
degradation associated with 1 kWh of processed energy and
can be calculated using the following equation:

wpr =
Mc

(Mw/κw)
(9)

It is important to note that the battery specifications are
obtained from [34], a ratio of 60 is considered for SLV/Cc,
and the annual discount rate is 5%.

B. FREQUENCY REGULATION PRICE ANALYSIS
Frequency regulation price can be defined as the market price
for regulation services which is provided by the ancillary
market. It includes the price for regulation up or down and
is influenced by several factors including the load demand in
response to automated signals at a specific time.

In this paper, we consider the New York Independent
System Operator (NYISO) [35] which determines regulation
prices based on the demand for the regulation service. In the
NYISO regulation market, resources may submit bids for
regulation reserves until the real-time market closes. Sev-
eral suppliers include different response rates that can be
achieved after which NYISO sets the regulation prices [36].
The hourly tariff considered is the Locational Marginal Pric-
ing (LMP) [35] while the New York Control Area (NYCA)
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regulation capacity is used for the regulation price [35].
We only use the NYISO LMP and NYCA regulation price for
our optimization model. We use hourly time step because the
jurisdiction considered in this paper (NYISO) has electricity
and frequency regulation prices in hourly timestamps. Other
jurisdictions with lower time steps can also be considered as
well. It is imperative to note that the charging/discharging
power of the EV batteries is dependent on the combination
of the electricity and frequency regulation prices in the opti-
mization model.

C. EV CHARGE/DISCHARGE SCHEDULING PROBLEM
WITH WEAR COST AND REGULATION SIGNAL
We briefly describe the development of the modified model,
the interested reader is referred to [31] for more details.
The modifications include the incorporation of the actual
regulation signals in the objective function. We do this and
show the impact of these signals on the optimal SOC profile
and charge/discharge cycle while considering the wear cost
as follows:

Minimize
te∑
t=tb

1t
((
Pchgt (et + ft )− P

dchg
t rt

)
+
(
Pchgt ηchg + Pdchgt /ηdchg

)
wpr

)
(10)

subject to: 0 ≤ Pchgt ≤ σ
chg
t Pchg.maxt ,

σ
chg
t ∈ (0, 1), ∀t ∈ T (11)

0 ≤ Pdchgt ≤ σ
dchg
t Pdchg.maxt ,

σ
dchg
t ∈ (0, 1), ∀t ∈ T (12)

Smin ≤ St ≤ Smax , ∀t ∈ T (13)

σ
chg
t + σ

dchg
t = 1, ∀t ∈ T (14)

St+1 = St
+ (Pchgt ηchg−Pdchgt /ηdchg)1t, ∀t ∈ T (15)

Stb = S ini (16)

Ste = Sdes (17)

The objective function in (10) is a Mixed Integer
Linear Programming (MILP) problem. The first term of
equation (10) represents the LMP (electricity and frequency
regulation price) for the battery charging and ancillary service
provision. The second term represents the discharging power
reward paid to the customers according to the feed-in-tariff
policy. The third and fourth terms represent the degradation
cost. We reemphasize that both charge and discharge pro-
cesses lead to battery wear. Therefore, after considering the
charging and discharging efficiencies, the wear contributions
are represented in (10). To do that, we use a constant wear
price value. Both terms of equation (10) are multiplied by
a single time slot duration (e.g. 1 hour) and then integrated
over the entire charging time T to obtain the total charging
cost. The values of (Pchgt , Pdchgt , σ chg, σ dchg and St ) in the
optimization model are obtained for different time slots so
that the total charging cost and frequency regulation price
specified in equation (10) are minimized.

The allowable charging and discharging power limits
(representing the constraints) of the EVs are specified in
equations (11) and (12) respectively. Equation (13) defines
the allowable SOC operational range limit. Equation (14)
is used to prevent simultaneous charging and discharging.
Equation (15) represents the relationship between the charg-
ing/discharging power and SOC. Equations (16) and (17)
represent the SOC at the beginning of the charging period
and the desired value (100%) after completing the charging
process.

IV. DOUBLE SEASONAL HOLT WINTER MODEL
The HW model is also known as triple exponential smooth-
ing. It is a way to model and predict the behavior of a
sequence of values over time (time series). HW is one of
the most popular forecasting techniques for time series.
HW model is a way to model three aspects of the time series:
level (average), trend (slope) and seasonality (pattern). It uses
exponential smoothing to encode many values from the past
and use them to predict or forecast values for the present
and future. The model predicts a current or future value by
computing the combined effects of the aspects of the model.

The Double Seasonal Holt Winter (DSHW) model is a
modification of the standard HW model described in [37]
and [38] . In this paper, we consider the standard HW model
to compare its accuracy with the DSHW model. We use the
DSHWmodel because the historical prices data from NYISO
(August 1st, 2017 to August 31st, 2017) has a double seasonal
pattern. We apply this method to a series of hourly demand
where we set p1 = 24 and p2 = 168. The DSHWmodel with
double seasonality pattern is described as follows, [38]:

γt = α
(
Xt/(St−p1 It−p2 )

)
+ (1− α)(γt−1 + Tt−1) (18)

Tt = β(γt − γt−1)+ (1− β)Tt−1 (19)

St = δ
(
Xt/(γt It−p2 )

)
+ (1− δ)St−p1 (20)

It = ω
(
Xt/(γtSt−p1 )

)
+ (1− ω)It−p2 (21)

X̂t (k) = (γt + kTt )St−p1+k It−p2+k (22)

We implement the DSHW model to predict the elec-
tricity and frequency regulation prices for one month in
NYISO.We compare the actual (i.e. real) NYISO and the pre-
dicted electricity and frequency regulation prices. Fig. 1 and
Fig. 2 show the implementation results of the DSHW model
for the period fromAugust 1st to August 31st, 2017.We show
that the predicted electricity and frequency regulation prices
are close during the simulation period. We perform a more
detailed analysis by testing the accuracy of the DSHWmodel.
MAE is the mean absolute error between the actual (real)
prices and the predicted prices. The values show that the
accuracy of the forecast model is high as the predicted elec-
tricity and regulation prices are close to the real prices.MAPE
is related to MAE but in this case, it is the mean absolute
percentage error. The values show a good agreement between
the actual values and the forecast values obtained from the
DSHW model. MASE, on the other hand, is the mean abso-
lute scaled error, where the DSHW gives MASE values for
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FIGURE 1. One month NYISO DSHW model predicted and real electricity
prices.

FIGURE 2. One month NYISO DSHW model predicted and real frequency
regulation prices.

TABLE 2. Statistical parameters for evaluating forecast accuracy of DSHW
model.

electricity and regulation prices to be less than 1 which means
the model is more accurate when compared to a simple
forecast. MSE and RMSE are the mean squared error and
root mean squared error respectively. The low values for both
electricity and regulation prices show the DSHW has a high
degree of accuracy. Table 2 shows the statistical parameters
for evaluating the forecast accuracy of the DSHW model.

Table 3 shows the statistical parameters for evaluating the
forecast accuracy of the HWmodel. We see from Table 3 that
the model does not have a good accuracy because the data
considered is double seasonal and the HW model cannot
predict well under these conditions. This is because the HW
model uses the same seasonality for the entire month while
the DSHW model uses daily and weekly seasonality to pre-
dict the prices for the next month. Due to these inaccuracies,

TABLE 3. Statistical parameters for evaluating forecast accuracy of HW
model.

in the reminder of this paper we follow the DSHW model to
obtain the results.

V. EVCD OPTIMIZATION WITH DYNAMIC CYCLE LIFE
A. CYCLE LIFE
CL is dependent on battery degradation which is the amount
and rate of energy used up in a battery. It is also a function
of the D and cycle frequency which indicates the number of
charge-discharge cycles an EV battery can undergo before it
drops below a certain level. Typically, the nominal level for
degradation is said to be 80% D which is the recommended
regime to be utilized for a Li-ion battery [3]. According to [3],
the CL of the battery is given by:

CL = (L100)eφ(1−D) (23)

where CL is the cycle life of a battery, L100 is the value of
the CL at 100% D and φ is the decay coefficient. Decay
coefficient is the exponential decrease in the value of the
cycle count and its value falls between 3 and 6 for different
batteries [3].

B. THE ITERATIVE FRAMEWORK WITH
DYNAMIC CYCLE LIFE
Algorithm 1 shows the proposed iterative algorithm for esti-
mating the CL . The initial battery CL is initialized with
the corresponding value of D. We obtain the electricity
and regulation prices from the NYISO website. We simu-
late the EVCD optimization model to obtain the optimal
charge/discharge patterns.

After one iteration, we obtain the charge/discharge patterns
and the SOC profile are based on the optimization model
and the cycle loss after the operation is recorded. We then
verify the corresponding D for the obtained cycle loss with
the values preset by the EV owner. We do that to maintain
the CL within operational range. Therefore, as long as the
set D limit is not reached, the iterations continue for the next
charge/discharge cycles. The charge/discharge process stops
and the operation is terminated when the CL is below the
operational level. As stated above, we use the historical data
from NYISO to set the maximum and minimum price ranges
for our model. We also set the value of EV2G according to
the total discharged energy in the optimal solution. The cycle
life count obtained from the iterative algorithm gives the EV
owner an insight on the loss count of the EV battery, decision
whether or not to participate in future frequency regulation
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Algorithm 1 Iterative Algorithm for EVCDOptimization
With Dynamic Cycle Life

Initialize: εVG, εDV , ε0, Kadr , Kw, sf , Cin, Rdr , Cd
Input: ε0
sf = 128 * ε0
Output: sf
Input: sf
SLV = 0.60 * sf
Output: SLV
for D = 100% to 0% do

Initialize j = 0, Cnew = 0, CL = Cin
while % Change in C ≥ D do

Input: Kw, sf , εDV , εVG
Mw← equation (6)
Output:Mw
Input: Rdr , Cc, SLV, CL
Mc← equation (8)
Output:Mc
Input:Mc, Mw, Kw
wpr ← equation (9)
Output: wpr
Input: wpr , et , ft
Minimize wear cost from← equation (10)
subject to← from equations (11) to (17)
% Change in D = (Cj - Cnew) / Cin
Increment j,
εVGj = εVGnew
et ,ft = (etj ,ftj ) + Gaussian normal (µ = 0, σ =
0.01)

end
Output j

end
Output D

service provision and the EV battery depth of discharge after
each charge/discharge operation.

VI. RESULTS AND ANALYSIS
As previously discussed, we focus on the impact of frequency
regulation signals on the cost of providing V2G services.
We briefly describe how we obtained different frequency reg-
ulation price signals for the EV charge scheduling optimiza-
tion model and how the frequency regulation signals interact
with the optimizationmodel.We focus on theminimization of
the battery degradation cost to obtain our results and perform
our analysis. We present a charge scheduling scenario of
EVs considering an electricity pricing model (hourly pricing)
using the case study in [4]. The charging period of the EV
starts at 18:00 and the vehicle remains connected to the power
grid for a period of 14 consecutive hours (until 6:00). The
battery capacity is 29.07 kWh [31] and the average daily
energy used in driving is 8. 72 kWh [31] which corresponds
to an average value of 70% for SOC at the beginning of the
charging period.We assume that the charging and discharging

TABLE 4. Simulation parameters.

efficiencies are 93% [31].We use the hourly electricity prices,
frequency regulation prices for NYISO, and the predicted
electricity and frequency regulation price from the DSHW
model to show the comparison between the SOC profile and
charge/discharge patterns. We assume that the reward for the
feed-in-tariff policy of the discharged energy by the EVs is
0.3 US$/kWh [31]. We assume that the final desired SOC
for the base case is equal to 100%. We analyze the effect
of static and dynamic electricity and regulation prices on
the cycle life of the battery. We consider three cases for the
maximum charge and discharge powers (level 1 charging:
2.3 kW, level 2 charging: 7.4 kW, and fast charging: 22 kW)
and discuss how these powers affects the results.

We assume that the number of EVs used in our case
study is one because the idea is to see how an EV charging/
discharging can be optimized to perform frequency reg-
ulation with minimal wear cost and battery degradation.
Multiple EVs can be considered as well although the
impact/assessment is still for each individual EV. Studying
the impact of multiples EVs is however beyond the scope of
this paper.

Our case study focuses on the impacts of frequency reg-
ulation prices, the SOC profile, and the charge/discharge
pattern on battery degradation. We assume that the type
of frequency regulation does not impact the optimization
model since the aggregators manage the charging/discharging
through an aggregated power (independent of primary or
secondary regulation). EVs charge/discharge optimization to
achieve primary or secondary regulation is out of the scope
of this paper. Table IV. shows the simulation parameters used
to obtain our results.

Fig. 3. shows the NYISO hourly real and DSHW pre-
dicted tariff and regulation price which is fed into the EVCD
optimization model. The frequency regulation price is the
impact of the frequency regulation signals which shows the
behavioural pattern of the EVs. We show that the regulation
price is low between 1:00 to 2:00 thus EVs prefer to charge
or remain idle over performing regulation. From 3:00 to
6:00 when the prices are high, the EVs would likely discharge
power to provide regulation. When prices drop again from
7:00 to 9:00, EVs can decide to charge again. From about
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FIGURE 3. NYISO (Real and DSHW predicted price).

FIGURE 4. SOC profile for 2.3 kW power and NYISO hourly pricing.

10:00 to 22:00, the regulation price is low for a period of time,
EVs might continue to either charge or discharge their bat-
teries or remain idle for the next ancillary service provision.
Finally, the EVs would charge from about 23:00 to 24:00 to
satisfy the desired final SOC regardless of the regulation price
(although high in this case). We next simulate a combina-
tion of both electricity and regulation prices into the EVCD
model.

Fig. 4. shows the hourly SOC profile for both the real
and predicted prices for 2.3 kW charging and discharging
power. For the real price, it is seen that from 18:00 to 19:00,
the EVs discharge due to the slight increase in the prices
(combined electricity and regulation price) compared to the
previous hours. The EVs charge from 19:00 to 20:00 when
the price is low but discharge again from 20:00 to 21:00 due
to a change in the prices. From 21:00 to 1:00, the EVs charge
their batteries and are available to provide regulation down
requests from the grid operator. A drop in the tariff from
1:00 to 3:00, allows the EVs to discharge to support the reg-
ulation up services. Between 3:00 and 6:00, the EVs charge
and offer to provide the regulation down services again. From
6:00 to 7:00, the EVs discharge to provide regulation services.
Finally, from 7:00 to 8:00, the EVs charge their batteries to
100% based on the constraint of the EVCD model.

For the DSHW predicted prices, the SOC profile is shown
in Fig. 4. The EVs discharge their batteries from 18:00 to
22:00 due to the high tariff of the combined prices (elec-
tricity and regulation price) and in a bid to offer regulation

FIGURE 5. SOC profile for 7.4 kW power and NYISO hourly pricing.

FIGURE 6. SOC profile for 22 kW power and NYISO hourly pricing.

up service requests. From 22:00 to 1:00, the EVs begin
to charge since the tariff is quite low and regulation down
services can be provided. The price increases from 1:00 to
2:00, thus the EVs discharge to satisfy the regulation up
request from the grid operator. Finally, the EVs charge from
3:00 to 8:00 due to the low tariff of the combined prices and
in order to offer regulation down requests. It is important
to note the changes in the SOC are determined simulation
from the EVCD optimization. It is also worth noting that the
EVs charge to 100% based on the constraint of the EVCD
optimization model as the desired SOC on completion of the
regulation service. The difference in the SOC profile graphs
is based on the fluctuations (increase/decrease) in electricity
and regulation prices, the power level of the EV battery
and the optimization done by the EVCD model. Fig. 5 and
Fig. 6 show the hourly SOC profile for both the real and pre-
dicted prices for 7.4 kW and 22 kW charging and discharging
power respectively. Figures 5 and 6 follow a similar trend to
that of Fig. 4 but with different charging/discharging rates and
patterns.

Fig. 7 shows the optimal charge/discharge schedule for
both the real and predicted prices and 2.3 kW charging and
discharging power. For the real price, Fig. 7 shows the EVs
discharge their batteries with maximum power from 18:00 to
19:00. From 19:00 to 20:00, the EVs charge with maximum
power. The EVs discharge again with maximum power from
20:00 to 21:00 when the price for providing the regulation
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FIGURE 7. Optimal charge/discharge schedule for for 2.3 kW power and
NYISO hourly pricing.

service is high. From 21:00 to 0:00, the EVs charge with
maximum power to provide regulation down services. The
EVs discharge but with minimal power (around 40% of the
maximum power) from 1:00 to 2:00. From 2:00 to 3:00,
the EVs discharge with maximum power due to the high price
for offering the regulation service. Between 3:00 and 5:00,
the EVs charge with maximum power and from 6:00 to 7:00,
they discharge to about 85% (2.0 kW) of the maximum power
because the price for regulation up service is not as high
as previous hours of regulation up service. Finally, the EVs
charge to 100% with maximum power to fulfill the desired
SOC as simulated by the EVCD optimization. For the DSHW
predicted price, the EVs discharge to a minimum power level
from 18:00 to 20:00. At 21:00, the EVs discharge to minimal
power based on the electricity and regulation prices during
this hour simulated in the optimization model. This period
could also be termed as a conservative period because the EV
can decide to remain idle or charge/discharge based on the
EVCD optimization. From 22:00 to 0:00, the EVs charge to
maximum power, where we see the EVs charge their batteries
to a maximum at 0:00 to ensure there is sufficient power for
the regulation down service since the revenue to be generated
is increased as simulated by the optimization model. At 1:00,
the EVs discharge with maximum power due to the increased
price of electricity and regulation to participate in regulation
up service compared to the previous hour. From 2:00 to 8:00,
the EVs constantly charge because of the low tariff of the
combined prices thus the EVs provide regulation down ser-
vices. The differences in graphs are visible because the pre-
dicted price is the result from the forecasting model and there
is a minimal discrepancy between the values. The variations
in the combined prices result in a slight change in the SOC
profile and charge/discharge patterns of the EV.Asmentioned
earlier, the predicted price provides the EV control system
information on the future SOC profile, charge/discharge pat-
terns. Fig. 8 and Fig. 9 show the optimal charge/discharge
schedule for both the real and predicted prices for 7.4 kW
and 22 kW charging and discharging powers respectively.
Figures 8 and 9 follow a similar trend to that of Fig. 7 but
with different charging/discharging rates and patterns.

FIGURE 8. Optimal charge/discharge schedule for 7.4 kW power and
NYISO hourly pricing.

FIGURE 9. Optimal charge/discharge schedule for for 22 kW power and
NYISO hourly pricing.

FIGURE 10. Dynamic cycle life for Li-ion battery after V2G operation.

Fig. 10. shows the battery’s dynamic cycle life after an
extended charge/discharge operation. The results show an
exponential trend related to the theoretical data obtained
from (23) and show a linear trend from the EVCD model
when the electricity and the regulation prices are assumed
to be static. For the dynamic prices, the highly variable line
shows the impact of the electricity and regulation prices on
the cycle life. It is seen that when D is equal to 0% the cycle
life remains at a high value (i.e. charge/discharge processes
has started yet). However, when the charge/discharge pro-
cesses start (from 1% through 100%), the cycle life gradually
decrease. However, the rate is dependent on the previously
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mentioned prices simulated by the EVCD model. The results
in Fig. 6 give the EV owner an idea about the extent at
which the battery can perform for long-term charge/discharge
operations.

To show the effects of the predicted prices on the battery
cycle life count, we notice that there is not sufficient input for
the iterative algorithm giving the entries shown in Fig. 1. and
Fig. 2. It is important to note that for the iterative algorithm
to produce the desired results and predict the cycle life count,
it would need much more predictive data for years. Based on
our knowledge, there is no model that can predict electricity
and regulation data for that duration. Therefore, we rely
on the previously explained theoretical (static) and random
variable (dynamic) price incorporated into the EVCD model
for the EV battery cycle life estimate.

VII. CONCLUSION
In this paper, we developed and evaluated a model to min-
imize the wear cost of EV battery when EVs are used to
support the frequency regulation service. We presented an
iterative algorithm to find the loss in cycle life when the
batteries undergo certain charge/discharge cycles. Further-
more, We included actual frequency regulation signals and
the results from the DSHW model into our EVCD model
to achieve the desired results. We performed our analysis
based on a realistic case study which uses actual prices.
We presented the SOC profile, charge/discharge patterns for
both the real and predicted (electricity and regulation) prices.
Finally, We presented the cycle life count after each V2G
operation compared between the theoretical, experimental
and simulated data. Our results and analysis showed that
EV owners can effectively participate in frequency regulation
services and generate a revenue while minimizing the battery
degradation cost.
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