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ABSTRACT Compressive sensing (CS) has gained a lot of attention in recent years due to its benefits in
saving measurement time and storage cost in many applications including biomedical imaging, wireless
communications, image reconstruction, remote sensing, and so on. The CS framework enables signal
recovery from a small number of linear measurements with an acceptable fidelity taking advantage of
signal sparsity in some potentially unknown domain. The core idea of different variants of CS methods
is incorporating prior knowledge about the input signal (e.g., prior distribution or sparsity of signals) into
the recovery algorithm to restrict the search space and enhance the signal recovery performance. However,
the accuracy of signal reconstruction can be significantly compromised if the designed and implemented
measurement matrices do not fully match. Often times, the measurement matrix mismatch is treated as an
additional noise term in the recovery algorithm ignoring the fact that this mismatch is a learnable quantity
which includes random but constant or slow-varying terms during the lifetime of the measurement system.
In this paper, we consider this problem for a simple case of Gaussian prior with a sparsity-driven diagonal
covariance matrix and find strict bounds on the deviation of the reconstructed signal from the optimal case
of fully known measurement matrix based on the properties of the mismatch matrix. The obtained bounds
are general, and hence can be used to assess the performance of learning algorithms designed for learning
measurement matrix uncertainty and eliminating its effect from the signal recovery. We provide numerical
results to illustrate this concept in real-world applications.

INDEX TERMS Compressed sensing, Bayesian methods, uncertainty analysis, signal reconstruction,
adaptive estimation, dictionary learning.

I. INTRODUCTION
A linear measurement system is defined by a set of linear
equations y = Hx + w, where x is the n × 1 input vector,
H is the m × n measurement matrix, and w is the measure-
ment noise. This basic model and its extensions serve as the
underlying framework of countless number of problems in
different fields including estimation of dynamic systems [1],
control theory [2], Kalman filtering [3], MIMO communica-
tion systems [4], channel estimation [5], target tracking and
radar systems [6], classification, regression, and clustering
models [7], and digital signal processing (e.g. FFT) [8], just
to name a few. In most applications, the practical objective is
formulated as an inverse problem with the goal of recovering
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an unknown input signal x with or without some sort of
prior knowledge from a set of noisy linear measurements y.
When the system is under-determined (m < n), the lossless
recovery of the input signal is not feasible in general, even
if the measurement samples are not contaminated with noise
(w = 0). However, the performance of signal recovery can
be significantly improved if one has some prior knowledge
about the properties of the input signal in addition to the
measurement samples y.
An important class of under-determined linear measure-

ment systems is called compressive sensing (CS) [9]. This
problem is firstly considered in two seminal works by Candes
[10] and Donoho [11] concerning signal recovery from a set
of few measurements, where the input signal is sparse when
represented in some potentially unknown space. For instance,
one may recover a continuous signal with bandwidth BW
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from its samples taken at a rate much below the well-known
Nyquist rate of 2BW, if the signal is sparse in time or fre-
quency domains [12], [13].

Due to the efficacy of this approach in saving measure-
ment resources as well as its obvious advantages in shrinking
data storage size and communication load, this approach
has gained a lot of attention from the research community
in recent years. In fact, it already has found its way into
many applications including image processing [14], [15],
magnetic resonance imaging (MRI) [16], tomography [17],
secure communication [18], cognitive radio networks [19],
array antennas [20], seismic data acquisition [21], object
recognition [22], and remote sensing [23].

Theoretically, if the input signal is representable as a
k-sparse vector in some space with basis 8 (i.e., x =
8ck , |c|0 = k), only m = 2k error-free measurements are
sufficient for a full recovery of the input signal, since we have
2k unknowns (k nonzero elements and their indexes). For a
noisy measurement system y = Hx + w, it is known that
finding the sparsest signal consistent with the measurement
equations (i.e., minimize |x|0 s.t. x ∈ B(y)) is a NP-hard
and non-convex problem [24]. Here, B(y) is the search space;
for instance, it equals {z : |Az − y|2 ≤ ε} for an affordable
estimation error of ε [25].
However, it has been shown that in order to obtain the

sparsest solution of the system, one may solve an easiest
problem of minimizing norm 1 (i.e., minimize |x|1 s.t. x ∈
B(y)). This problem can be posed as a linear programming
for computationally feasible B(y) = {z : Az = y} and as a
convex optimization problem for B(y) = {z : |Az− y|2 ≤ ε}
[26]. Although this problem does not admit a close-form
solution, but can be solved using standard methods developed
for convex optimization and linear programming. Several
computationally efficient algorithms including iterative hard
thresholding (IHT) [27], Dantzig selector [28], orthogonal
matching pursuit (OMP) [29], stagewiseOMP [30], compres-
sive sampling matching pursuit (CoSaMP) [31], approximate
message passing (AMP) [32], and belief propagation [33]
are proposed in the last decade to solve this problem and its
variants with different sparsity models, noise models, and etc.

Sparsity is not the only type of information one may have
about the input signal prior to taking measurements. For
instance, knowing the prior distribution of the input vector
is a very common assumption in classical estimation theory
[34]. In Kalman filtering, a prior estimate of the signal at
the current state is available by applying the state transition
equations to the previous state [3]. Note that knowledge
about the signal prior distribution is a broader concept since
the sparsity of input signals can be enforced using sparsity-
driven prior distributions in the context of sparse Bayesian
learning (SBL). This approach is the core idea of regression
and classification methods developed based on relevance
vector machines (RVM) [35], [36]. For instance, a zero-
mean Gaussian prior distribution with a diagonal covariance
matrix is used for joint recovery of signals with a structured
sparsity model in [37]. To impose element-wise and row-wise

sparsity of the input matrix, they use SBLwith a cost function
that favors sparse diagonal covariance matrices. Likewise,
a similar approach of penalizing the diagonal elements of
the covariance matrix is used for sparse and low-rank matrix
reconstruction in [38], and for sparse subspace clustering in
[39]. In this paper, we will investigate the derived results
for Bayesian signal reconstruction undermeasurementmatrix
uncertainty when the sparsity-imposing Gaussian priors are
used.

With the recent advances in dictionary learning methods
[40], finding approximate prior distributions of signals is
widely used in a wide range of applications [41]. For instance,
in image reconstruction from its compressed linear mea-
surements, dictionary learning can be used to find the prior
distribution of vectorized image patches. This method is used
to model image tiles with Gaussian mixture models (GMM)
to enhance the quality of reconstructed image from its com-
pressed linear [42] or nonlinear [15] measurements. This
problem is closely related to statistical compressive sens-
ing (SCS) paradigm,where the goal is accurate reconstruction
of a collection of signals with a shared statistical distribution
[43]–[45]. Also, developing compressive classificationmeth-
ods to classify data based on its compressed measurements is
another emerging use case of extracting information from the
compressed representation of signals [42], [46].

A. RELATED WORK ON MATRIX UNCERTAINTY
An important issue that undermines the performance of
recovering a signal from its compressed measurements is the
uncertainty of the measurement matrix. The uncertainty can
be due to the mismatch between the designed and imple-
mented versions of the measurement matrix as well as the
perturbations and loss-of-calibration errors in the elements of
the measurement matrix. This problem has been recognized
by researchers; and several studies have been devoted to
alleviating the impacts of this issue for different sparse signal
recovery algorithms [47]–[49].

It has been shown that the Lasso and Dantzig selector
algorithms are extremely unstable in recovering sparse sig-
nals under the measurement matrix uncertainty, and a new
algorithm called matrix uncertainty selector is proposed in
[50] and [51]. In [52], the deviation of the solution of sparse
signal recovery from noisy measurements (i.e., minimize |x|1
s.t.|Ax − y|2 ≤ ε}) using basis pursuit (BP) algorithm is
characterized, when the implemented measurement matrix
H includes some perturbations with respect to the designed
matrix A (i.e., H = A + E and y = Hx + e). They
showed that if the original matrix A satisfies the restricted
isometry property (RIP) of order k with parameter δk , then
the perturbed matrix H also satisfies RIP with parameter
(1 + δk )

(
1 + εA

)2
− 1, where εA = |E|2/|A|2 is the relative

perturbation. This implies that the distance of the solution of
BP algorithm z? for a strictly k − sparse signal x is bounded
as |z? − x|2 ≤ C1(kAεA + εy)|y|2, where kA is the condition
number of A, C1 is a constant, and εy = |e|2/|y|2. In other
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words, the deviation of the solution from its optimal point is
proportional to the condition number of A multiplied by the
relative second norm of E to A. This problem is investigated
for BP and CoSaMP algorithms in [53] and similar results
are obtained. Another closely related problem arises when
there is a mismatch between the assumed and the actual
basis (dictionary) for which the input signal representation
is sparse. It is shown that the norm one error of the best
k-term approximation of signal reconstruction |x − xk |1
grows linearly with the signal dimension and the mismatch
level between the assumed and actual basis for sparsity [54].
This analysis is extended for signal recovery in compressed
sensing framework under the imprecise knowledge about the
measurement matrix as well as the signal dictionaryD (where
the signal representation is sparse x = Dc, |c|0 � |x|0)
in [55] and necessary conditions for perturbations in A and
D are obtained to ensure the robustness of qth order norm
minimization. An iterative signal recovery algorithm based
on generalized approximate message passing (GAMP) is
proposed in [47], where the perturbation term e = Ex in y =
(A+E)x+w = Ax+e+w is treated as an additional additive
noise term. An efficient algorithm based on cognizant total
least-squares (TLS) is proposed in [56] for perturbed com-
pressive sampling in order to jointly recover the signal x and
the measurement perturbation matrix E from the compressed
measurements. The problem of characterizing sparse signal
recovery with sensing matrix perturbation is studied in [57]
and bounds on the estimation error is found based on the
Cramér-Rao bound and the Hammersley-Chapman-Robbins
bound. The expressions are intricate and hard to interpret.
Finally, the impact ofmeasurementmatrix perturbation on the
performance of OMP is studied in [58], and tighter bounds
than those proposed in [52] are derived for the estimation
error. Most works consider either bounded perturbations in
terms of the second norm of the perturbation matrix, or they
treat it as a probabilistic problem, where the elements of
the perturbation matrix are i.i.d random variables. A recently
paper considers the signal recovery from compressive sens-
ing using the vector approximate message passing (VAMP)
algorithm when the perturbation of the measurement matrix
is more structured [48].

Most of thesemethods consider point estimators and sparse
signal recovery when the measurement matrix is perturbed
or is partially known. Unfortunately, the more general prob-
lem of signal recovery with known prior distribution (which
includes sparsity imposing priors as a special case) using
Bayes methods is not well investigated when the measure-
ment matrix is perturbed. Perhaps, the most closely related
work is [59], where this problem is considered for a practical
scenario of target tracking using the direction of arrivals,
where the off-grid detection translates to the measurement
matrix perturbation. They used aBayesianmethod to estimate
the signal but assumed a special case where only the diagonal
elements of the measurement matrix are perturbed accord-
ing to a uniform distribution. In this work, we consider the
signal recovery using Bayes method, when the input prior is

Gaussian and the measurement matrixH = A+E is partially
known (a known part equals to the design matrix A plus an
unknown part E). In particular, we characterize the deviation
of the recovered signal from the optimal solution in terms of
the properties of the perturbation matrix E . This problem is
important in the context of CS, as the MAP estimation and
other related methods (e.g. RVM [35]) naturally tend to yield
sparse signals when a proper sparsity-driven prior distribution
is used [37]. Therefore, the obtained results can be used as a
reference to evaluate the sensitivity of different sparse signal
recovery algorithms to the uncertainty of the measurement
matrix.

II. SIGNAL RECOVERY UNDER MEASUREMENT
UNCERTAINTY
A. PROBLEM FORMULATION
We consider the following linear measurement framework

yi = Hxi + wi, i = 1, 2, . . . ,N

H = A+ E, (1)

where the designed measurement matrix is A but the imple-
mented measurement matrix isH . The mismatch between the
designed and implemented measurement matrices are mod-
eled as amismatchmatrixE = H−A. This problemmay arise
in different scenarios. For instance, the measurement matrix
can be perturbed over time, or the implementation may not
match the design due to quantization errors of fixed-point
implementations. Also, one may be able to partially observe
the actual measurement matrix embedded in a system. In all
cases, the actual measurements are taken by matrix H , but
the signal recovery is performed using a slightly different
postulated matrix A = H − E .

Following similar works (e.g. [52]), we assume that the
mismatch matrix E has a bounded second norm and the
goal is to characterize the degradation of signal recovery
performance in terms of properties of E . We also assume that
the input signal x is normally distributed (x ∼ N (µx , 6x)).
Note that if E is fully known, then there is no performance
loss; since we can use the actual matrix H in the recov-
ery algorithm. Indeed, we have I (x;Hx + w) = I (x;Ax+
Ex+ w) = I (x;Ax+ w).
In a system with multiple measurements, where we col-

lect input-output pairs {(xi, yi)}i=1,2,3,... over time, one may
develop an algorithm to gradually learn the mismatch matrix
E over time and refine it from the newly taken measurements.
In a Bayesian estimation framework with a Gaussian prior
distribution for the input signal and an arbitrary distribution
for E , the signal reconstruction is obtained bymaximizing the
posterior distribution which coincides the mean Ex,E (x|y).
Therefore, the averaged pairwisemean squared errors (MSE),
namely Ex[|xi − Ex,E (xi|yi)|22] lives within the following
lower and upper bounds:

MSE(l)
i = Ex[|xi − Ex(xi|yi,E))|22], (2)

MSE(u)
i = Ex[|xi − Ex,E (xi|yi))|22], (3)
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where (2) and (3) respectively correspond to the two extreme
cases of the fully known E and the unknown E . Using an
optimal recovery algorithm, the average MSE departs from
the upper bound to lower bound as we gain more information
about E , if a proper learning method is utilized. In the follow-
ing section, we characterize the signal recovery performance
degradation in terms of the gap between the lower and upper
bounds of the expected MSE.

B. RESULTS
For the two extreme cases of fully known and unknown E ,
the signal reconstruction is obtained respectively using the
following standard equation for linear Bayes estimators [60]:{

x̂1 = µx + BH (y− Hµx)
BH = 6xHT (H6xHT

+6w)−1
for known E (4){

x̂2 = µx + BA(y− Aµx)
BA = 6xAT (A6xAT +6w)−1

for unknown E (5)

Before presenting the main results in terms of the gap
between the lower and upper bounds, we present a set of
lemmas.
Lemma 1: We can write E[|x̂2 − x̂1|22] as a function of E

as follows:

E[|x̂2 − x̂1|22] = tr(M6y)+ µTx E
TBTABAEµx (6)

where we have M = (BA − BH )T (BA − BH ).
Proof: To characterize E[|x̂2 − x̂1|22], we note

x̂2 − x̂1 = BA(y− Aµx)− BH (y− Hµx)

= BEy+ (BAA− BHH )µx (7)

where we define BE = BA − BH . Therefore, we have

E[|x̂2 − x̂1|22]

= E
[(
BEy+(BAA−BHH )µx

)T (BEy+(BAA− BHH )µx
)]

= E[yTBTEBEy]+ µ
T
x (BHA− BAA)

T (BHA− BAA)µx

+ 2E[yT ]BTE (BHA− BAA)
(a)
= E[yTBTEBEy]+ µ

T
x (BHA− BAA)

T (BHA− BAA)µx

+ 2µTx H
TBTE (BHA− BAA)µx

(b)
= tr[M6y]+µTx

[
HTMH+(BHH − BAA)T (BHH − BAA)

− 2HT (BA − BH )T (BAA− BHH )
]
µx , (8)

where we usedµy = E[y] = Hµx in (a) and used the identity
E[yTAy] = tr(A6y)+ µTy Aµy in (b). After substituting H =
A+ E and some manipulations it simplifies to:

E[|x̂2 − x̂1|22] = tr(M6y)+ µTx E
TBTABAEµx

�
Lemma 2: We have tr(6y) ≤ tr(6w)+ 2tr(6x)[tr(AAT )+

tr(EET )].

Proof:

tr(6y) = tr(6w + (A+ E)6x(A+ E)T )
(a)
≤ tr(6w)+ tr(6x)tr((A+ E)T (A+ E))

= tr(6w)+ tr(6x)[tr(AAT )+ tr(EET )+ 2tr(AET )]
(b)
≤ tr(6w)+ 2tr(6x)[tr(AAT )+ tr(EET )], (9)

where (a) is due to the trace inequality tr(AB) ≤ tr(A)tr(B)
and (b) is due to the following identity:

0 ≤ |A− E|F = tr
(
(A− E)(A− E)T

)
= tr(AAT )+ tr(EET )− 2tr(AET )

⇒ 2tr(AET ) ≤ tr(AAT )+ tr(EET ). (10)

Here, |X |F is the frobenius norm of matrix X . �
Lemma 3: For any matrices A,B,C,D with consistent

sizes, we have:

|AB−CD|2 ≤ min{|A−C|2|B|2+|C|2|B−D|2, |A|2|B−D|2
+|A− C|2|D|2} (11)

Proof: It is an immediate result of applying the norm
inequalities (|AB| ≤ |A|.|B|) and (|A + B| ≤ |A| + |B|) as
follows:

|AB− CD|2 = |AB− CB+ CB− CD|2
≤ |AB− CB|2 + |CB− CD|2
≤ |(A− C)B|2 + |C(B− D)|2
≤ |A− C|2|B|2 + |C|2|B− D|2

Likewise, we have |AB − CD|2 ≤ |A|2|B − D|2 + |A −
C|2|D|2, and the result follows. Note that |.| always represents
the second norm unless explicitly specified otherwise. �
Lemma 4: A classical result in linear algebra states

that [61]

|(X + δX )−1 − X−1|
|X−1|

≤ κ(X )
|δX |
|X |

(12)

and noting κ(X ) = |X |.|X−1| we have:

|(X + δX )−1 − X−1| ≤ |δX ||X−1|2 (13)

This inequality is called the Buer-Fike theorem.
Lemma 5: We have

|BA − BH |2 ≤ |6x ||E||6AW |
(
1+ 2|A|(|A| + |E|)|6AW |

)
with 6AW = (A6xAT + 6w)−1 for BA and BH defined in
(4) and (5).

Proof: We plug in the values of BH and BA defined in (4)
and (5), and use the norm inequalities (|AB| ≤ |A|.|B|) and
(|A+ B| ≤ |A| + |B|) to obtain

|BA − BH |

=
∣∣6xAT (A6xAT +6w)−1

−6xHT (H6xHT
+6w)−1

∣∣
(a)
≤ |6x(AT − HT )|

∣∣(A6xAT +6w)−1
∣∣
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+ |6xHT
|
∣∣(A6xAT +6w)−1 − (H6xHT

+6w)−1)
∣∣

(b)
≤ |6x ||ET ||(A6xAT +6w)−1|

+ |6x ||HT
|.|(A6xAT +6w)−1 − (H6xHT

+6w)−1|
(c)
≤ |6x ||E||(A6xAT +6w)−1|

+ |6x ||H |.|(A6xAT +6w)−1 − (H6xHT
+6w)−1|

(d)
≤ |6x ||E||(A6xAT +6w)−1|

+ |6x ||H |.|H6xHT
− A6xAT ||(A6xAT +6w)−1|2

(e)
≤ |6x ||E||(A6xAT +6w)−1|

+ 2|6x ||H |.|E||6x ||A||(A6xAT +6w)−1|2

(f )
≤ |6x ||E||6AW | + 2|6x |

2
|H |.|E|.|A||6AW |

2

= |6x ||E||6AW |
(
1+ 2|A|(|A| + |E|)|6x |.|6AW |

)
, (14)

where we used lemma 3 in (a), the norm inequality |AB| ≤
|A|.|B| in (b), and the identities E = H − A and |ET | =
|E| in (c). Also, the inequality (d) is the application of Buer-
Fike theorem (lemma 4) for X = A6xAT + 6w and δX =
H6xHT

−A6xAT . The inequality (e) is due to the following
identity:

|H6xHT
−A6xAT |=|E6xAT + A6xET | ≤ 2|E||6x ||A|.

(15)

Finally, we plugged in 6AW = (A6xAT +6w)−1 for notaion
convenience in (f). �
Lemma 6: We have

λmax(M ) ≤
[
|6x |.|E|.|6AW |

(
1+2|A|(|A|+|E|)|6AW |

)]2
.

(16)
Proof: Apply lemma 5 noting that λmax(M ) =

λmax[(BA − BH )T (BA − BH )] = |BA − BH |2. �
Now, it is turn to state the main results as follows:
Theorem 7: The performance degradation (in terms of

mean squared errors) due to the unknown measurement
matrix is bounded as follows:

dMSE=MSE(x2)−MSE(x1)=E[|x̂2−x̂1|2] ≤ dMSE (u),

(17)

where

dMSE (u)
= |E|2

[
|6x |

2.|6AW |
2(1+ 2|A|(|A|+|E|)|6AW |

)2
×

(
tr(6w)+ 2tr(6x)

(
tr(AAT )+tr(EET )

))
+ |BA|2|µx |2

]
. (18)

Proof: We follow the following chain of inequalities

dMSE = MSE(x)−MSE(x1)=E[|x̂− x|2]− E[|x̂1 − x|2]

= E[|(x̂− x̂1)+ (x̂1 − x)|2]− E[|x̂1 − x|2]
(a)
≤ (E[|(x̂− x̂1)|]+ E[|(x̂1 − x)|])2 − E[|x̂1 − x|2]
(b)
= E[|(x̂− x̂1)|2]+ E[|(x̂1 − x)|2]− E[|x̂1 − x|2]

= E[|x̂− x̂1|2]

(c)
= tr(M6y)+ µTx E

TBTABAEµx
(d)
≤ tr(M6y)+ |E|2|BA|2|µx |2

(e)
≤

n∑
i=1

λi(M )λi(6y)+ |E|2.|BA|2|µx |2

(f )
≤ λmax(M )tr(6y)+ |E|2.|BA|2|µx |2, (19)

where we used the triangle inequality of the second norm,
namely |a+b|2 ≤ |a|2+|b|2 ⇒ |a+b|22 ≤ (|a|2+|b|2)2 in (a)
and the fact that the estimator is unbiased E[|x̂1 − x|] = 0 in
(b). Also,we used lemma 1 in (c), and the Cauchy-Schwarz
inequality in (d), while (e) is due to the inequality tr(AB) ≤∑
λi(A)λi(B) for PSD matrices A and B [62], and finally (f )

is simply due to λi(M ) < λmax(M ).
Now, we substitute the bounds we obtained in lemmas 6

and 2, respectively, for λmax(M ) and tr(6y) in (19) to obtain:

dMSE ≤ λmax(M )tr(6y)+ |E|22.|BA|
2
2|µx |

2
2

≤
[
|6x |.|E|.|6AW |

(
1+ 2|A|(|A| + |E|)|6AW |

)]2
×
[
tr(6w)+ 2tr(6x)

(
tr(AAT )+ tr(EET )

)]
+ |E|2.|BA|2|µx |2

= |E|2
[
|6x |

2.|6AW |
2(1+ 2|A|(|A| + |E|)|6AW |

)2
×

(
tr(6w)+ 2tr(6x)

(
tr(AAT )+ tr(EET )

))
+ |BA|2|µx |2

]
(20)

�

C. APPLICATION OF THE RESULTS FOR SPARSE
SIGNAL RECOVERY
In order to consider sparse signal recovery, we assume that
a sparsity-driven Gaussian prior is used where the mean
is zero µx = 0 and the covariance matrix is diagonal
6x = diag(λ1, λ2, . . . , λn) with elements following power-
law decay. More specifically, without loss of generality,
we assume that λis are in descending order and we have
λi ≤ Ci−2r for an arbitrary constantC and some r > 1, which
is corresponding to 1/r-compressible signals [63]. In this case,
we have tr(6x) = C

∑n
i=1 i

−2r , which is known as p-series.
To calculate it, we can simply use the Reimann sums approx-
imation of integral to obtain

∑n
i=1 i

−2r
= 1+

∑n
i=2 i

−2r <=

1 +
∫ n
i=1 x

−2r
= 1 + 1−(1/n)2r−1

2r−1 =
2r−(1/n)2r−1

2r−1 ≤
2r

2r−1 ,
which implies tr(6x) ≤ 2rC/(2r − 1), as shown in Fig. 1.
Likewise, we have |6x | =

∏n
i=1 λi ≤ Cn(n!)−2r . Therefore,

the obtained bound in (20) reduces to:

dMSE ≤ |E|2
[
λ2smax|6AW |

2(1+ 2|A|(|A| + |E|)|6AW |
)2

×

(
tr(6w)+ 2sλmax

(
tr(AAT )+ tr(EET )

))]
(21)

for sparse signal recovery.

D. INTERPRETATION OF THE RESULTS
We observe that the performance degradation is bounded
by |E|2[k1(k2 + |E|)2

(
k3 + tr(EET )

)
+ k4], where kis are
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FIGURE 1. Reimann sum approximation of f (x) = C(x)−2r used to
approximate tr(6x ). Here, we use C = 10 and r = 1.

independent of E . For small perturbations |E| → 0, the dom-
inant term is λmax(EET ) = |E|2, so the upper bound on
the performance degradation is directly proportional to |E|2,
which is consistent with the results reported in [52] for BP
algorithm. Another implication of (19) is that the perfor-
mance loss increases with the input signal energy (both |µx |2

and 6x), which reflects the fact that the term Ex acts as
an additional noise term with mean Eµx and covariance
E6xET for the unknown mismatch matrix E . The upper
bound vanishes to zero when the signal energy approaches
zero (i.e., |µx |, |6x | → 0) which confirms the tightness of
the derived upper bound. The interesting and somewhat unex-
pected fact is that performance degradation also increases
with the measurement noise SNR E[|x|2]/6w|, as shown in
numerical results. This is perhaps due to the term |6AW | =

|(A6xAT + 6w)−1|, which increases with the reduction in
noise power 6w, as characterized in lemma 6.

E. CONNECTIONS TO MEASUREMENT MATRIX
PERTURBATIONS
In this work, we assumed that the mismatch matrix E is
an unknown but fixed matrix to model our uncertainty
about the actual measurement matrix H = A + E . This
problem is closely related to a different class of problems
where the elements of the measurement matrix are subject
to perturbation during each measurement cycle. In this case,
the difference between the designed and actual matrices,
E = [Eij]m×n is a random matrix that can differ from
one measurement to another. One special case is when the
columns of E (i.e., E1,E2, . . . ,En) are zero-mean random
vectors with covariance matrix 6E . In this case, the columns
of E can be considered data samples drawn from a population
with the same distribution, and hence 1

nEE
T represents the

sample covariance matrix of Ei. This matrix approaches the
population covariance matrix 6E for n/m → ∞. If Eis
are zero mean Gaussian distributed random variables (i.e.,
Ei ∼ N (0, 6E )), then EET ∼ Wm(n, 6E ), where Wm()
represents the Wishart distribution. The joint distribution of
the eigenvalues of this matrix is defined but are computa-
tionally hard to evaluate [64]. If we have 6E = Im and the
dimensions of E grow sufficiently large m, n → ∞ while

maintaining a constant compression rate γ = m/n, then
the joint distribution of eigenvalues follow the Marchenko-
Pastur law. Furthermore, the largest and smallest eigenval-
ues of EET , namely λ̂1 = λmax(EET ), λ̂m = λmin(EET )
respectively converge (almost surely) to the right an left
support points of the Marcenko-Pastur distribution defined
as b+ = (1 +

√
λ)2 and b− = (1 −

√
λ)2 [65]. This

means that for the case of the elements of E being i.i.d
zero mean Gaussian distributed (i.e., Eij ∼ N (0, σE2 )),
we have λ̂1

a.s.
−−→ mσ 2

E (1+ m/n)
2. In other words, we have

|E|2 < mσ 2
E (1 + m/n)2 and tr(EET ) < m2σ 2

E (1+ m/n)
2

almost surely. Therefore, the derived equations are practically
useful for this case as well. In other words, the results
are practically useful for both cases of deterministic and
probabilistic mismatchmatrixE . The latter casemodels time-
variant perturbations and loss-of-calibration errors.

III. NUMERICAL RESULTS
In this section, we illustrate the obtained bounds on the per-
formance degradation of signal recovery from its compressed
measurements when the measurement matrix is partially
known to the decoder. Furthermore, we present numerical
results to investigate the performance of signal reconstruc-
tion when the measurement matrix in the compression and
reconstruction stages do not fully match.

In the presented simulations, we use the following param-
eters unless otherwise specified. A = [Aij]m×n is the mea-
surement matrix whose elements are driven from zero-mean
Gaussian distribution (Aij ∼ N (0, σ 2

A)). For calculation
convenience, we normalize the rows of A to 1 (equivalently
we set σ 2

A = 1/n). Similarly, we generate mismatch matrix
E = [Eij]m×n using Eij ∼ N (0, σ 2

E ), and then we obtain
the actual measurement matrix as H = A + E . Note that we
keep A and E fixed for N = 10, 000 samples when obtaining
numerical results. Then, to obtain smoother curves and avoid
bias to realizations of A and E , we average the results over
1000 iterations with different realizations ofA andE (external
loop). The input vectors follow Gaussian distribution with
mean µx1n and covariance matrix 6x = σ 2

x In and like-
wise the measurement noise is wi ∼ N (0, 6w = σ 2

w Im).
We define the measurement signal to noise ratio as SNR =
(µ2

x + σ
2
x )/σ

2
w (noting that A is row-normalized). Likewise,

we define the mismatch SNR as mmSNR = |A|/|E| =
λmax(AAT )/λmax(EET ).

Fig. 2 depicts the obtained upper bound on the performance
degradation of signal recovery in terms of MSE found in the-
orem 7 equation (18) with respect to the measurement matrix
perturbation SNR (mmSNR) for an illustrative scenario with
parametersm = 8, n = 4. Fig. 2a shows that the performance
degradation decreases with mmSNR as expected. Also the
performance gap surprisingly increases with the measure-
ment noise SNR due to the term |6AW | = |(A6xAT +6w)−1|
in (18). The performance loss increases almost by a factor
of 10 for each 3 dB increment in the SNR. This means that
the measurement matrix mismatch is more harmful at higher
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FIGURE 2. Presentation of upper bound on the signal recovery
performance degradation (dMSE (u)) versus mismatch SNR (mmSNR)
averaged over 1000 realizations of A and E with parameters m = 4 and
n = 8 for (a): Different SNR values, and (b): Different signal power (σX ).

SNR values when the accurate signal recovery is possible
for a fully known measurement matrix. Fig. 2b represents
another interesting fact that the performance loss in the signal
recovery increases with the power of input signal since Ex
acts as an additional noise term, as discussed in section II-D.
Similar results are presented in Fig. 3 to more directly show
the performance loss due to measurement matrix mismatch
for different measurement SNR values.

Fig. 4 shows the performance of sparse signal recovery
when a proper Gaussian distribution is used. Here we sim-
ulate 32-point time signals, where the signal vectors are
derived from a multivariate zero-mean Gaussian distribu-
tion with diagonal covariance matrix whose elements follow
power-law decay λi = Ci−2r with parameter r = 1.5. The
compression rate is CC = m/n = 8/32. It is noticeable
from the top figure that when both noise and mismatch SNRs
are high, the algorithm recovers the sparse time signal with
high accuracy from fewer linear measurements. The middle
figure shows a scenario that the mismatch SNR is relatively
low (mmSNR = |A|/|E| = 0) and hence the signal recovery
using the postulated measurement matrix A does not perform

FIGURE 3. Performance loss in signal recovery due to measurement
matrix mismatch. In this experiment, we use N = 10,000 randomly
generated input vectors averaged over 1000 iterations with different
realizations of A and E . The solid and dashed lines, respectively,
represent the unknown and fully known mismatch matrix E .

FIGURE 4. Performance loss due to the measurement matrix mismatch
for sparse signal recovery for three scenarios. xA and xH respectively
represented the reconstructed signal using A and H . The presented MSE
errors are calculated by averaging over N = 1,000 randomly generated
signals. One illustrative signal for each test scenario is presented.

well and the relative mean squared errors (MSE) increases
from 0.062 to 0.915 for not using the actual measurement
matrix H in the recovery step. The bottom figure illustrates
a scenario when both additive and mismatch SNRs are rela-
tively low. Even in this case, the recovery performance shows
a significant drop for measurement matrix mismatch.

In order to investigate the performance loss in real
scenarios, we provide numerical results in Fig. 5 using
randomly-generated Gaussian-distributed input vectors. The
results suggest that the signal recovery with an unknown
mismatch matrix (solid line) departs from the ideal case
of fully known mismatch matrix (dashed line), when the
mismatch SNR goes below 20 dB. The performance gap is
larger for higher SNR values since a more accurate signal
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FIGURE 5. Image reconstruction from its compressed measurements
using Bayesian inference and GMM prior. (a): Recovered image with
different compression rates and mismatch SNR values. (b): pSNR of
reconstructed image versus mismatch SNR.

reconstruction is feasible in the absence of measurement
matrix mismatch.

Furthermore, we investigate the results for a practical case
of reconstructing an image from its compressed version using
Bayesian inference. In this simulation, the input images are
grayscaled and then split into small tiles of 4 × 4 pixels.
Then, the 4× 4 image patches are vectorized (converted to a
16× 1 input vector xi). In order to apply Bayesian inference
method, we train a GMM model for the prior distribution
of input signals using a large photo dataset, following our
previous work in [15]. We take compressed measurements of
image patches using yi = (A + E)xi + wi in (1) and then
reconstruct the image from its compressed version once with
known and next with unknown E . In other words, once we
used both the actual measurement matrix H = A + E and
the presumed measurement matrix A in the signal recovery
stage. The results are shown in Fig. 2. The top figure (5a)
presents the reconstructed images for different compression
rates of CR = m/n = 2/16, 4/16, 16/16 and different
mismatch SNR values |A|/|E| = −6, 0, 6, 12, 30 dB.
It is seen that the quality of reconstructed images is visually
improved when taking more measurements (m/n → 1) and

FIGURE 6. Bayesian classification of Letter dataset using compressed
sampling under measurement matrix uncertainty. Here, CR = m/n is the
compression rate and MM is the mismatch SNR in terms of |E |2/|H|2
in dB scale.

increasing themismatch SNR. To quantify the results, we also
plot the obtained peak SNR (pSNR), as a popular image
quality metric, versus the mismatch SNR in Fig. 5b. The
results interestingly show that at lowermismatch SNR values,
the performance loss in terms of pSNR is almost linearly
proportional to |E|2/|A|2.

Similar results are presented for Bayes classifier under
measurement matrix mismatch in Fig. 6. Here, we use the
method of classification byBayesian inference following [66]
and [15]. To this end, we train a different GMM distribution
fc(x) for data samples x within each class c ∈ {1, 2, . . . ,C},
then reconstruct the test signal from its compressed measure-
ments y = Hx + w using Bayesian inference for each class
(xc = E[x|y, c]), and finally perform classification by choos-
ing the class under which the obtained signal posterior prob-
ability is maximized (i.e. c∗ = maxc p(xc|y) or equivalently
c∗ = maxc p(c|y)). Here, we use the postulated measurement
matrix A = H − E in the inference step while calculating
c∗ = maxc p(xc|y)). We apply this method to letter dataset
[67] and train a GMM distribution with 10 components for
data samples represented by 16 × 1 feature vectors within
each of the C = 26 classes. We use compression rate of
CR = m/n = 1/8, 1/4, 1/2. The results in Fig. 6 show that
the classification accuracy decreases with lower measure-
ment mismatch SNR, as we observed in the signal recon-
struction application. The performance degradation is more
noticeable at higher values of the additive noise SNR. The
classification success rate drop can be as high as 10% for a
mismatch SNR of mmSNR = 10 log1 0(|E|2/|H |2) = 20 dB.

IV. CONCLUSION
In this paper, we considered signal recovery from its com-
pressed version using Bayes inference when themeasurement
matrix H = A+ E is partially unknown (A is the known part
and E is the unknown part). If E is priorly unknown but fixed,
one may implement advanced learning methods to gradually
learn E during the lifetime of the measurement device and
eliminate its effects from the signal recovery stage. In order
to quantify the performance loss due to the uncertainty in the
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measurement matrix (equivalently the gain one may obtain
by learning the mismatch matrix E), we obtained an upper
bound on the performance loss of the signal reconstruction
in terms of MSE for signals with Gaussian prior based on
the spectral properties of E . The results show that the upper
bound grows linearly with |E|2 for small perturbations. The
results are somewhat consistent with those of former works
in the context of compressive sensing, including the sparse
signal reconstruction using BP algorithm. Also, the perfor-
mance loss grows with the input signal energy under a given
SNR value since Ex acts as an additional noise term. If the
measurement matrix experiences time-varying random per-
turbations, the results can be used as technical guarantees
(almost surely) on the performance loss. A potential future
extension of this work is extending the derived upper bound
to a more general case of arbitrary prior distributions.
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