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ABSTRACT The fake center is a common problem of density-based clustering algorithms, especially
for datasets with clusters of different shapes and densities. Clustering by fast search and find of density
peaks (DPC) and its improved versions often ignore the effect of fake centers on clustering quality. They
usually have a poor performance even the actual number of centers are used. To solve this problem,
we propose a density peaks clustering based on local minimal spanning tree (DPC-LMST), which generates
initial clusters for each potential centers first and then introduce a sub-cluster merging factor (SCMF) to
aggregate similar sub-clusters. Meanwhile, we introduce a new strategy of representative points to reduce
the size of data and redefine local density ρi and distance δi of each representative point. Furthermore,
the hint of γ is redesigned to highlight true centers for datasets with clusters of different densities. The
proposed algorithm is benchmarked on both synthetic and real-world datasets, and we compare the results
with K-means, DPC, and the three state-of-the-art improved DPC algorithms.

INDEX TERMS Clustering, density peaks, fake centers, local minimal spanning tree, representative points.

I. INTRODUCTION
Clustering is an important field of data mining, and it plays
an important role in the fields of pattern recognition [1], [2],
image processing [3], recommendation [4], and etc. Several
different clustering strategies such as partitioning, hierar-
chical, distribution-based and density-based clustering have
been proposed [5]–[7], and the density-based methods have
drawn broad attention and research due to their advantages
of intuition and detecting clusters with an arbitrary shape.
DBSCAN [8] and mean-shift [9] method are typical repre-
sentatives of density-based approaches, however, the former
is sensitive to user-provided parameters and the latter is com-
putationally costly. In 2014, a master piece of density-based
clustering algorithm, named DPC, has been proposed based
on the assumptions of cluster centers by Rodriguez and
Laio [10]. In DPC, for each data point i, two quantities: local
density ρi and its distance ρi from points of higher density are
computed. And the only points of high δ and relatively high
ρ are identified as cluster centers.
DPC is simple and effective, but it also has some draw-

backs and many researchers focus on cut-off distance or
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label propagation. For example, Du et al. [11] introduced
k-nearest neighbors (kNN) to local density computation.
In [12] and [13], researchers also used the idea of kNN
to define their local density. Li and Tang [14] defined
their local density with mutual k-nearest-neighbor graph
(mKNN graph). Liu et al. [15] designed their local den-
sity based on shared nearest neighbors (SNN). In [16],
Seyedi et al. proposed a graph-based label propagation to
assign labels to remaining points and form final clusters.
In addition, some researchers applied the DPC method to
various fields [17]–[19].

However, DPC and DPC-based algorithms often ignore the
problem of fake center, which would lead to poor quality of
clustering. The main reason of fake centers is that there are
some points which have relatively large local density and
distance within the same clusters, and finally leads to the
γ values of them are close to or even greater than that of
some true centers. That is the fake centers are the data points
whose γ values are local maximum. In fact, fake center is a
common issue of density-based algorithms especially if the
datasets contain clusters with different shapes and densities.
In addition, true centers would be covered up by fake cen-
ters, which results in incorrect results even using the correct
number of centers.

108438 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7737-9966


R. Wang, Q. Zhu: DPC-LMST

FIGURE 1. Example of DPC on jain dataset.

Fig.1 depicts the results of traditional DPC on the classic
jain dataset. As is shown in Fig.1 (A), jain dataset contains
two clusters of different densities. Fig.1 (B) shows its plot
of γi = ρi × δi sorted in decreasing order, and the local
density is calculated by Gaussian kernel method. According
to Fig.1 (B), the hint provided by it is not clear and it is
reasonable to choose the top-2, or top-8 scored points as
centers. Fig.1 (C) and (D) show the results for selecting two
and eight centers respectively, and cluster centers are marked
with red pentagram. True center of the lower-density cluster
is lost and the other cluster contains a fake center in Fig.1 (C).
The price to pay for finding true center of the lower-density
cluster is that more fake centers have to be added, as is shown
in Fig.1 (D). In Fig.1 (D), γ value of the true center of the
lower-density cluster only ranks 7th, therefore, 5 fake centers
are added. As can be seen from this example, fake centers lead
to low quality of clustering result by using DPC algorithm
even the actual number of centers are given. In addition, DPC
method is hard to recognize clearly the number of centers
sometimes, and results might vary from selection of centers.

Some algorithms have been proposed to solve the prob-
lem of fake centers through aggregating all potential centers
or clusters. However, they usually have the following
problems: (1) only one intuitive factor, such as distance
or density, is taken into account; (2) merge method of
potential centers or clusters often lack fault tolerance. For
example, Xu et al. [20] developed a density-peak-based
hierarchical clustering method (DenPEHC), which directly
generates clusters on each possible cluster layer, and intro-
duces a grid granulation framework to enable DenPEHC
to handle larger-scale and high-dimension datasets. In Den-
PEHC, the gradient of γ determines the centers and stairs.
Wang et al. [21] introduced a quantity affinity to handle
multiple density peaks existing in one cluster and assign
each point to its true cluster. However, the quantify affinity
only consider the distance between candidate centers. In [22],
Liu et al. presented a method to select initial centers auto-
matically and aggregate clusters if they are density reachable.
However, density is not the only factor in fake centers, and δ is

another factor of fake center. In fact, the problem of fake
center would still occur on data with non-spherical clusters,
especially for manifold data.

To solve the above problems and improve clustering effi-
ciency, a density peaks clustering algorithm based on local
minimum spanning tree (DPC-LMST) is proposed in this
paper. The DPC-LMST introduces a new idea of local mini-
mal spanning tree (LMST) to generate representative points,
redefines local density ρi and distance δi for each represen-
tatives, applies new strategy of γ to select potential centers,
and defines a sub-cluster merging factor (SCMF) which inte-
grates density and boundary distance between sub-clusters
to aggregate sub-clusters. The proposed method has the fol-
lowing characteristics: (1) a strategy of representative points
based on LMST significantly reduces the size of original
data; (2) hint of γ is more adaptive to arbitrary datasets; and
(3) the SCMF combines two factors of inner densities and
boundary distance between different sub-clusters, and it has
fault tolerance for choice of initial centers.

The DPC-LMST algorithm is performed both on synthetic
and real-world datasets. And the results are compared with
K-means [23], DPC [10], FkNN-DPC [12], DPC-DLP [16],
and SNN-DPC [15] in terms of three popular metrics
(Adjust Mutual Information, AMI [24]; Adjust Rand Index,
ARI [25] and Fowlkes-Mallows Index, FMI [26]). Mean-
while, we compare the running time of our method with the
competing algorithms. The paper is organized as follows:
In section II, we introduce k-nearest neighbors (kNN) and
DPC algorithm. The improved approach and analysis are
described in Section III. Experiments results are presented in
Section IVand Section V concludes the paper.

II. RELATED WORKS
In this section, we review some basic concepts concerning
k-nearest neighbors and traditional DPC method.

A. K-NEAREST NEIGHBORS
k-nearest neighbors (kNN) is usually used to measure a local
neighborhood of an instance in the fields of classification,
clustering, local outlier detection, and etc. Given a data
point i, Let kNN(i) be a set of nearest neighbors of a point
i and it can be expressed as:

kNN (i) = {j|dij ≤ di,kth(i)} (1)

where d(xi, xj) is the Euclidean distance between i and j,
and kth(i) is the k-th nearest neighbor of i. Local regions
measured by kNN are often termed k-nearest neighborhood,
which, in fact, is a circular or spherical area of radius R =
di,kth(i). Therefore, kNN-based method can not apply to han-
dle datasets with clusters of non-spherical distributions. This
is the major weakness of kNN measurement. In addition,
kNN-based algorithms are often sensitive to k .

To overcome the drawbacks of cut-off distance of DPC,
some researchers [13]–[15] introduce the idea of kNN to
calculate the local densities and the k is set as a percentage
of the size of a dataset. Liu et al. [15] use the idea of SNN
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to compute local density, and SNN is also defined based on
kNN. Therefore, these methods usually have poor clustering
results when handling datasets with non-spherical clusters.

B. DPC ALGORITHM
The main idea of DPC is that cluster centers are characterized
by a higher density than their neighbors and by a relatively
large distance from points with higher densities [8]. For each
data point i, it computes two quantities: its local density ρi
and its distance δi from points of higher density.

ρi =
∑
j

χ (dij − dc) (2)

where dijis the distances between data points and dc is a cutoff
distance, and χ (x) = 1 if x < 0 else χ (x) = 0.Or it can be
defined via a Gaussian kernel:

ρi =
∑
j

(
−
d2ij
d2c

)
(3)

Meanwhile, a hint for choosing the number of centers is
provided and it is defined as follow:

γi = ρi × δi (4)

Traditional DPC algorithm consists of two steps: finding
centers and then propagating labels of the centers to the
remaining points. Although it is simple and effective, tradi-
tional DPC exists the problems of label propagation and local
density with respect to cut-off distance, and many researchers
devoted to improve these issues [11], [12], [27]. In addition,
fake center is another important factor that influences the
performance of DPC and its improved versions, but it is
often overlooked. Because clustering quality of DPC and
DPC-based algorithms depends on choices of centers. How-
ever, the exact number of centers sometimes is not clear
according to decision graphs, and clustering results would
vary from different choices, especially for datasets with clus-
ters of different shapes and densities. In other words, fake
center which is a common problem for datasets with clusters
of complex distributions would lead to low quality of cluster-
ing results. To solve above problems and improve clustering
efficiency, density peaks clustering based on local minimal
spanning tree (DPC-LMST) is proposed.

III. PROPOSED ALGORITHM
In this section, we present a detailed description of our algo-
rithm and take jain dataset as an example to show it. The
proposed algorithm can be divided into two phases: initial
clustering and sub-clusters merging. Obviously, pure sub-
clusters, namely include only points of the same true cluster,
are useful to improve the quality of final results. To improve
the speed and quality of initial clustering, we introduce two
new definitions of representative and local neighborhood.
In the second phase, some adjacent and similar clusters
will be merged depending on the comparison of density
difference and boundary distance between initial clusters.

Finally, The proposed algorithm restore the final labels of
representatives back to original data according to correspon-
dence between representatives and original data. And then we
can get the final clustering result of the original data. The
main processes of our algorithm are described as follows:

step 1: generate representatives of a dataset based on local
minimal spanning tree, and calculate two quanti-
ties (ρ and δ) for them.

step 2: execute density peaks clustering for the represen-
tative points to get initial clusters.

step 3: calculate structure differences and border dis-
tances between initial clusters.

step 4: merge the initial clusters according to a sub-cluster
merging factor (SCMF).

step 5: restore representatives back to original data and
form the final clusters.

A. REPRESENTATIVES BSAED ON LMST
To overcome the limitations of kNN, we present a new
local structure, named local minimal spanning tree (LMST
for short). Compared with kNN, it is data-independent and
ensures that all neighbors of a point are from the same
clusters. A local minimal spanning tree is composed of two
fundamental units: node set N and edge set E . Given a point i
and parameter ε, a recursive definition of LMST can be
written blow:

T in = {< i, j > |j ∈ 1th(i)}, n = 1 (5)

T in = {< i, j > |i ∈ Nn−1 ∧ j ∈ 1th(Nn−1(i))}, n∈ [2, ε]

(6)

where Nn−1(i) denotes the nodes of Tn−1(i), and 1th(i) and
1th(Nn−1(i)) are the 1-th neighbor or neighbors correspond-
ing to i and Nn−1(i). From this definition, nodes of a LMST
of a data point can be regarded as a set of direct and indirect
neighbors of it. In the process of constructing a LMST of an
instance, the reference point of the LMST is dynamic instead
of a fixed reference point such as kNN.

Let dn(n = 1, 2, . . . , ε) be distance of the n-th edge of
a T (i), then its inner average distance (IAD) is defined as the
mean of the distances of its edges.

IADi =
1
ε

ε∑
1

dn (7)

Like kNN, LMST also need to provide an integer to deter-
mine the size of it. However, our method is robust over a
wide range of ε values. The details of generating LMST for
a dataset are described in Algorithm 1. Unlike traditional
methods, it does not construct a LMST structure for each
point (see line 2.3 in Algorithm 1). Because neighboring
points may have similar even the same LMST structures and
they can share them. Additionally, it is worth noting that
different LMSTs can share one or more neighbors.

Techniques of representative-based clustering which use
representative points to perform clustering analysis can
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Algorithm 1 Generating LMST Structures
Input: dataset X = {x1, x2, . . . xn} , parameter ε
Output: Tmatrix
1. calculate k-nearest neighbors for each data point;
2. while X 6= 0
2.1 p← X [1]; // choose first point of X as the starting point
2.2 Tmatrix← Tmatrix +{T (p)};// construct and save a LMST
structure
2.3 X ← X − N (p); // remove points of the T (p) from X
3. end while
4. output Tmatrix

FIGURE 2. Example of representatives on jain dataset for ε = 5. (A) LMST
graph. (B) Representative points.

improve clustering efficiency [28]–[31] . Inspired by similar-
ity of neighbors of LMST, we use centroid of each LMST
as its corresponding representative point in a dataset, and
then we only need to handle the representative points instead
of all points of the dataset. Fig.2 (A) and 2(B) show the
LMST graph and representative points of jain dataset for
ε = 5, respectively. We observe that the representatives
highly remain local and global features of original data, and
the number of data is reduced from 377 to 101.

B. INITIAL CLUSTERING
In this section, we handle the representative points to get
initial clusters based on basic idea of DPC. To adapt new data
context (representative points), we redefine local density ρ
and distance from higher density δ. Meanwhile, we redesign
the hint of γ to highlight true centers of datasets with different
densities.

According to the idea of DPC, two quantities need to be
calculated for each representative point ri: its local density
ρi and its distance δi from representative points of higher
density.

ρi = exp(−IADi) (8)

δi =

{
min{d(ri, rj)}, if ∃ rj s.t. ρi < ρj

max{d(ri, dj)}, otherwise
(9)

where d(ri, rj) is the distance between ri and rj. Like some
improved DPC algorithms, the new local density equation
also utilizes the environment which the points are located.
In addition, our definition of local density is more adaptive
and robust than definitions of kNN-based due to the advan-
tages of LMST.

DPC and its improved versions choose centers by using
the decision graph or a hint of ordered γ . However, it is

FIGURE 3. Initial clustering for the representatives in Fig.2 (B). (A) Plot of
γi = δi in decreasing order. (B) Initial clustering result, and centers are
marked with red pentagrams.

easy to miss true centers of low-density clusters of a dataset.
To solve this problem, a new strategy for choosing centers is
provided by the plot of γi = δi sorted in decreasing order.
Compared to traditional strategy of γi = ρi × δi, our method
is more appropriate for arbitrary datasets. In fact, δi not ρi is
the core of center choice when datasets do not contain noise
data or outliers. Note that we do not handle the datasets which
contains noise data or outliers in this article.

Fig.3 (A) shows plot of γi = δi sorted in decreasing order
for data in Fig.2 (B). Clearly, we intuitively chose the top-4
scored representative points as centers according to the plot,
and Fig.3 (B) shows the clustering result. We can observe
that four initial clusters are generated, and each true cluster
contains two pure sub-clusters. Therefore, our new strategy
of γ can highlight the true centers for low-density clusters
and reduce the number of fake centers. Compared to tradition
DPC, our approach is more likely to get true centers and form
pure clusters (see Fig.1).

C. SUB-CLUSTERS COMBLINATION
To combine the similar sub-clusters automatically, a sub-
cluster merging factor (SCMF) is presented. The basic idea
of SCMF is that sub-cluster A and B can be merged, if and
only if they have similar cluster density and relatively small
boundary distance. In addition, our SCMF has good fault
tolerant to centers choice. That is we often obtain consistent
and correct results for different choices of initial centers.

For any two sub-clusters A and B, we compute two quan-
tities: their density difference DD(A,B) and their boundary
distance BD(A,B) between A and B. Note thatDD and BD are
symmetric. For a sub-cluster A, its density d(A) is defined as:

d(A) =

∑
ri∈A IADi
|A|

(10)

where |A| denotes the number of representative points of A.
In fact, d(A) is computed by the average distance of edges
of internal LMST structures of A. Thus, the density differ-
ence between two sub-clusters DD(A,B) can be expressed as
follow:

DD(A,B) =


d(A)
d(B)

, if d(A) ≥ d(B)

d(B)
d(A)

, otherwise
(11)
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FIGURE 4. An example of fault tolerant of SCMF on jain. (A) Initial result
for 4 centers.(B) Initial result for 5 centers. (C) the end result is the same
by using SCMF.

Equation 11 is symmetric and its value should be at least 1.
Intuitively, it is designed to indicate the comparison of the
sparsity between two sub-clusters. In general, densities of
different portions of a cluster should be similar.

The boundary distance between two clusters BD(A,B) is
measured by computing minimal distance between the rep-
resentative point ri and rj, which are belong to different
sub-clusters A and B, respectively.

BD(A,B) = min
(
d(ri, rj)

)
, ri ∈ A, rj ∈ B (12)

where d(ri, rj) is the distance between two representative
points. Combining the effects of DD and BD, a sub-cluster
merging factor (SCMF) can be expressed as follow:

SCMF(A,B) = BD(A,B)× DD(A,B)2 (13)

A higher value of SCMF(A,B) indicates a larger diver-
gence between A and B. Because no consensus has been
reached on quantitative standard of a cluster, it is hard to set
a threshold of SCMF. Intuitively, the SCMF between similar
sub-clusters should be much smaller than that between real
clusters. There, we assume that A and B can be emerged if
SCMF(A,B) ≤ Avg(SCMF)/5, and

Avg(SCMF) = mean
(
SCMF(U ,V )

)
, U 6= V (14)

where mean(·) denotes the mean function, both U and V are
sub-clusters. In Equation 13, the weight of DD is higher than
BD because density is more important than boundary distance
when distinguishing clusters intuitively.

SCMF is a mechanism which combines similar sub-
clusters automatically. To illustrate the fault tolerant of the
SCMF, we take jain dataset as an example. Fig.4(A) and 4(B)
show results of representative points for respectively choos-
ing 4 and 5 centers, and 4(C) shows the same final result.
Moreover, we can obtain the same and correct result for dif-
ferent choice of centers and these results also can be observed
for other datasets. Thus, our method has good fault tolerant
to choice of centers compared to DPC and other relative
algorithms.

FIGURE 5. Ground truth of synthetic datasets. (A) Spiral: 312 points and
3 clusters.(B) Jain:377 points and 2 clusters.(C) Db2: 315 points and
4 clusters.(D) Mix: 1300 points and 4 clusters.(E) R15: 600 points and
15 clusters.(F) Aggregation:788 points and 7 clusters.

IV. EXPERIMENTS
To evaluate our algorithm, we made a comparison among
DPC, FkNN-DPC, DPC-NLP, SNN-DPC, and K-means both
on synthetic and real-world datasets. The K-means algorithm
is implemented in the toolbox of MATLAB, and the other
competing algorithms are based on the source code provided
by the authors. DPC, FkNN-DPC, SNN-DPC and K-means
are performed with use of the actual number of centers.
DPC-NLP automatically set its centers, and DPC-LMST get
our initial centers based on plots of δ sorted in decreas-
ing order. Parameter k of FkNN-DPC and SNN-DPC and
parameter ε of our method are equal to 5 for synthetic
and real-world dataset, respectively. Three metrics, including
adjusted mutual information (AMI), adjust rand index (ARI)
and Fowlkes-Mallows index (FMI) were employed to exam-
ine the clustering accuracy. The upper bounds of the metrics
are 1, and larger values indicate better clustering quality.

A. SYNTHETIC DATASETS
First, we benchmark our algorithm on synthetic datasets
which are different in terms of the overall distribution, den-
sities and number of clusters, as is shown in Fig.5. For
these datasets, fake centers are easily occurred by using DPC
and DPC-related methods. In addition, the clustering results
would be not good even if they are performed with use of the
actual number of centers.

Fig.6 (A)-(F) depict distributions of representative points
for 6 synthetic datasets for ε = 5, respectively. We can see
that the new data contexts inherit the main features from the
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FIGURE 6. Representative points of synthetic datasets corresponding to
Fig.4 for ε = 5. There are 65, 101, 86, 383, 184, and 232 representative
points in (A)-(F) corresponding to (A)-(F) in Fig.5, respectively.

FIGURE 7. Initial centers for representative datasets in Fig.6 by using
DPC-LMST. 3, 4, 8, 11, 15, and 9 initial centers are chosen, respectively.

original datasets as a whole and maintain similar local fea-
tures, through comparing figures in Fig.5 with that in Fig.6.
Moreover, the numbers of datasets of representative points are
significantly reduced. Therefore, the design of representative
points has potential to improve the efficiency of the proposed
algorithm. Fig.7 shows the results of initial choice of centers

TABLE 1. AMI, ARI and FMI scores on synthetic datasets.

FIGURE 8. Clustering results on spiral by 6 algorithms.

for the representative data in Fig.6 by using DPC-LMST.
We can see that 3, 4, 8, 11, 15, and 9 initial centers are chosen
for the 6 synthetic datasets, respectively.

Table 1 shows the AMI, ARI and FMI scores on all syn-
thetic datasets shown in Fig.5, and where the best scores
are highlighted as bold. From Table 1, we can see that the
proposed algorithm performs quite well on most synthetic
datasets. DPC-LMST performs best on 4 datasets and well
on R15 and aggregation datasets, and it is the only method
performed quite well on most datasets. Except spiral dataset,
DPC only perform best on R15. The improved versions
of DPC, including FkNN-DPC, DPC-DLP, and SNN-DPC,
obtain low quality on jain, db2, and mix datasets. Fig.8-13
intuitively show the comparative results of the 6 approaches
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FIGURE 9. Clustering results on jain by 6 algorithms.

FIGURE 10. Clustering results on db2 by 6 algorithms.

on synthetic datasets, and the centers are marked with red
pentagrams. Note that there will be no more centers in
final results of DPC-LMST, because the proposed algorithm
merges adjacent and similar sub-clusters not initial centers.

To demonstrate the robustness of ourmethod, Fig.14 shows
the results of DPC-LMST on 4 different datasets over a wide
range of ε. We observe that the metric values of DPC-LMST
remain high and similar within a relatively wide range of ε.

FIGURE 11. Clustering results on mix by 6 algorithms.

FIGURE 12. Clustering results on R15 by 6 algorithms.

For example, three metric values of our method are 1 for 5 ≤
ε ≤ 16 on jain and for 5 ≤ ε ≤ 28 on mix, respectively.
Similarly, DPC-LMST remain high quality for 5 ≤ ε ≤ 25
on bothR15 and aggregation. Althoughwe can see downward
trends when ε reaches relatively large values, these ranges
of ε are large relative to the size of the datasets. Therefore,
DPC-LMST is insensitive to parameter ε.
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FIGURE 13. Clustering results on aggregation by 6 algorithms.

FIGURE 14. Results on 4 synthetic datasets for a wide range of ε by
DPC-LMST.

TABLE 2. Real-world datasets.

B. REAL-WORLD DATASETS
We conduct extensive real-world experiments to demonstrate
the performance of DPC-LMST. These datasets vary from
scale, attribute and task, as shown in Table 2. Table 3 shows

TABLE 3. Results of different algorithms on real-world datasets.

TABLE 4. Running time of 5 density peak clustering algorithms on
real-world datasets (unit: second).

the result of the six algorithms, and DPC-LMST outperforms
the 5 competing methods on most test cases (the best scores
are highlighted in bold). SNN-DPC has good performance
on ionospere, libras, and segmentation, however, it worth
noting that all the competing algorithms are performed with
use of the correct numbers of centers or clusters of datasets.
Clustering quality of the competing methods will get worse
once incorrect values of centers or clusters are provided by
their decision graphs. On the contrary, DPC-LMST chooses
centers according to plot of γ , but it has good fault tolerant
to choice of centers. Moreover, our algorithm is sensitive to a
wide range of ε.

We also evaluate the running time of 5 density peak clus-
tering algorithms on the real-world datasets, as is shown
in Table 4. We perform experiments on the same computer
withMATLAB 2017a. For each approach, the number of cen-
ters is preset or chosen automatically. The results show that
the running time of DPC-LMST nearly equal to even worse
than DPC, FkNN-DPC, and DPC-DLP when the amount and
dimension of data is relatively small, such as Iris, Wine,
Seeds, Ecoli, Ionospere and Libras datasets. However, for the
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larger datasets, the proposed method performs better than
the competing methods, especially the running times of
DPC-DLP and SNN-DPC are more than 10 times that of
DPC-LMST on Segmentation and Waveform datasets. That
means our approach also offers efficiency advantage when
the size of data is relatively large.

V. CONCLUSION
In this paper, we proposed an improved density peaks clus-
tering based on local minimal spanning tree, named DPC-
LMST. First, a new strategy of representative is presented to
reduce the size of original data, and local and global char-
acteristics of original data are well maintained. Meanwhile,
new definitions of local density ρ, distance δ and hint of
γ are redesigned to highlight true centers and obtain pure
sub-clusters. Finally, a sub-cluster merging factor (SCMF)
which has good fault tolerance is defined to aggregate ini-
tial sub-clusters automatically. Experiments both on syn-
thetic and real-world datasets have demonstrated that the
proposed algorithm is effective, efficient, and robust. How-
ever, the major disadvantage of the proposed algorithm is
it would merge clusters with blurred boundaries together
(see DPC-LMST on R15 and aggregation in Fig.12 and 13,
respectively). In future work, we will explore better solutions
to improve this issue.
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