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ABSTRACT Optimal generation dispatch is one of the challenging problems in the field of both market and
system security due to its non-convexity and uncertainty. Many solutions have been proposed in recent years
to solve it by convexification and linearization. Some of these methods fail to be practical, however, due to
their specific assumptions. In this paper, a fully distributed algorithm is proposed for a complete optimal
power flow without any convexification or linearization. A mathematical proof for its global optimality is
provided for a simple version of the optimization problem; then it is extended to consider all constraints.
Finally, two test power systems, a synthetic 37-bus case study and an IEEE 118-bus test feeder considering
all equality and inequality constraints is simulated to evaluate the proposed algorithm’s performance.

INDEX TERMS Distributed control method, consensus algorithm, generation dispatch.

I. INTRODUCTION
Optimal power flow (OPF), as a fundamental opti-
mization problem in power systems, was introduced by
J. L. Carpentier [1] to determine the power levels of all gener-
ators to support the requested demand in a systemwhile mini-
mizing the total cost and satisfying all local/global constraints
at the same time [2], [3]. In OPF problem, an economic
dispatch (ED) problem [4] with a power flow calculation is
solved simultaneously. The coupling of these two problems
and network/physical constraints make it one of the most
insurmountable optimization problems. In sum, the reasons
that make it difficult to be solved can be categorized as;
1) Non-linearity: there are nonlinear interrelations
(i.e., power flow nodal equations) among powers, voltages
and system physical parameters [5]. 2) Non-convexity: the
lower/upper bound on the voltage amplitude and the non-
linear power flow equations cause non-convexity [3], [6].
3) Computational cost: an OPF not only must be run every
year for system planning and every day for a day-ahead
market, but also should be run every fiveminutes for real-time
market and system security [7]. 4) Uncertainty: large-scale
power systems involve uncertainty due to their integration
of renewable energy resources, which make OPF more
troublesome [8]. One of the immediate solutions for OPF
is DCOPF, which uses DC power flow equations and assump-
tions in place of AC power flow. It provides us with a rough
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approximation of the AC power flow and is much faster
and easier to solve. Although the power losses are ignored
and its accuracy is very dependent on the system and
case study, it could be useful for limited contingency
analyses and economic studies [8]–[12]. However, such
approximations that ignores system complexities may lead
to unrealistic results and analysis. Apart from DCOPF,
there are many methods proposed in previous years to
solve OPF efficiently, accurately and as fast as possi-
ble. As we focus on a distributed ACOPF, this literature
review categorizes OPF methods into two main groups:
1) Centralized methods, which need a central controller
(i.e., operator) to collect, share and coordinate data among
power system components; and 2) Distributed methods,
which use a specific algorithm to distributively coordi-
nate information among components to reach an optimal
point [13].

Centralized OPF methods have been studied since the
early 1960s when a typical OPF was first formulated [7]. In a
centralized method, all components directly communicate
with a central operator e.g., SCADA. This center should be
able to monitor, gather and analyze real-time data and pro-
vide all components with appropriate control signals while it
records events in a log file. Many methods, including interior
point, quadratic programming, Lagrangian relaxation, gra-
dient methods, mixed integer programming, Newton based
methods, etc., have been reviewed and classified several
times.We onlymention fourmajor literature reviews for read-
ers’ reference and do not review OPF optimization methods
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proposed prior to 2010 because these surveys cover all
OPF methods. M. Huneault and F. Galiana provided one
of the first literature reviews of OPF and investigated the
evolution of various methods, such as successive approx-
imation and Newton methods, from 1960 to 1991 [14].
J. A. Momoh et al. extensively analyzed the progress of
OPF methods proposed during the 70s, 80s and 90s in two
consecutive papers [15], [16]. In addition, the comprehen-
sive literature survey by S. Frank et al. [17], [18], which
reviewed various OPF formulations and solution techniques,
their advantages, disadvantages, and computational charac-
teristics, was applied to OPF for 40 years, from 1969 to 2010.
Solving OPF using a convex relaxation draws many
researchers’ attention due to its powerful ability to ensure a
solution is global or a lower bound on the global solution.
Semidefinite programming (SDP) relaxations of OPF com-
prehensively evaluated up to 2014 in [19], [20]. S. Bruno et al.
proposed an unbalanced three-phase optimal power flow
(TOPF) based on a quasi-Newton method. TOPF as an
extended real-time framework that provides control strategies
for distribution radial networks [21]. J. Lavaei et al. proposed
an SDP optimization method and guaranteed a zero duality
gap limited to specific conditions for some IEEE test systems.
Furthermore, the sufficiency of condition holds by adding
a small resistance to transformers [6]. W. A. Bukhsh et al.
cover an interesting and challenging topic, possible existence
of local optima, in their paper. They show that standard
local optimization techniques can converge to these local
optima [22]. Due to the high penetration of renewable gen-
eration, the uncertainty level increases in the power system.
Chance-constrained AC OPF, as one of the interesting meth-
ods, is able to deal with stochastic OPF [23]–[25].

Due to the high penetration of distributed energy
sources/storage, dynamic topologies of power systems and
the need for plug-and-play functionalities, centralized algo-
rithms are no longer effective [26]–[28]. Consequently, dis-
tributed OPF methods have been taken into account by
researchers as they are able to overcome these drawbacks.
Thanks to the advanced technologies used in communica-
tion systems, distributed methods are rapidly maturing [29].
In distributed methods, agents are not required to commu-
nicate with a central controller. Instead, they only need to
locally connect with their immediate neighbor(s); thus, it can
be ensured that no private information is released by a third
party. This advantage provides all agents with an opportunity
to participate in a fair and competitive market, without any
kind of monopoly or monopsony [4]. Apart from the privacy
improvement, the single point of failure will naturally be
resolved as there is no need for a center to supervise all
agents [30], [31]. More ever, computational load will no
longer affect a central controller as it is spread out over
the entire network [32]. Dynamic topologies of power sys-
tems and plug-and-play functionalities will be requisite fea-
tures of the future open-access power system, which can
easily be supported by distributed algorithms. All of these
features make it possible for distributed methods to sup-

port high scalability as an urgent need in future power
systems.

A growing interest in new distributed algorithms, partic-
ularly applicable to OPF problems, can be found in recent
research. As we discussed earlier, the non-convexity is a
major barrier against finding the global optimality. There is
a chain of research trying to resolve this issue. Semi-definite
programming, known as the SDP relaxation technique, trans-
forms a non-convex problem in the equivalent convex one.
E. Dall’Anese et al. built a distributed OPF based on SDP
relaxation for an unbalanced distribution system by decom-
posing a main SDP problem into multiple convex subpro-
grams [5]. A. Lam et al. also offered a distributed algorithm
by decomposing a main optimization problem into smaller
sub-problems tha can be solved by SDP [33]. T. Erseghe pro-
posed a distributed OPF using the alternating direction mul-
tiplier method (ADMM). His method is designed based on
local optimization, where information only exchanged inside
of a region [34]. Another interesting topic has been covered
in [35]. The authors discuss synchronization of regions for
a distributed OPF problem based on an algorithmic frame-
work that allows each region to perform local updates in an
asynchronous fashion. A distributed optimal gas-power flow
(OGPF) based on the ADMM, proposed in [36]. At both
the power and gas distribution sides, a convex relaxation
has been performed and then two problems are coordi-
nated by the ADMM. In [37], both SDP relaxation and the
ADMM are used together to build a scheduled-asynchronous
algorithm for solving OPF problems in a distributed fash-
ion. SDP relaxation and the ADMM are used to convexify
formulated sub-problems and help agents to update their
local variables, respectively. The authors of [38] designed an
ADMM-based distributed AC-OPF using a linear approxi-
mation of power flow equations. They considered two con-
trol methods to balance convergence and computational
load. A distributed cooperative real-time OPF has been
proposed in [39]. This method is able to coordinate the
active power of synchronous generators and virtual power
plants to cover the nominal frequency while minimiz-
ing the generation cost in real time under optimization
constraints.

A fully consensus-based distributed OPF is proposed in
this paper. We show that the capacity of line and voltage
amplitude limits are no longer areas of non-convexity’s con-
cern given a new approach. Power flow constraints, as another
reason for non-convexity, are replaced with a local convex
optimization problem without loss of generality. The main
contributions of our work are as follows:
• Neither convex relaxation nor linear approximation
is used; therefore, easy implementation and accurate
results, respectively, can be ensured.

• The privacy of each component and, subsequently,
the privacy of the entire system, is improved due to very
limited shared information.

• In addition, there is no need for any kind of aggregator
and/or coordinator.
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• No specific assumption is considered for the sys-
tem topology, e.g., mesh/radial grid, and the proposed
method can be applied to both the transmission and
distributed level.

The structure for the rest of this paper is organized as fol-
lows: Section II formulates a comprehensive OPF problem as
a global objective function, considering cost functions and
constraints. Section III introduces a distributed consensus-
based algorithm with a brief review of graph theory.
Section IV provides a mathematical proof for a limited ver-
sion of OPF and simulation results. This solution extended
to a full version of OPF without loss of generality. Section V
demonstrates simulation results for a synthetic 37-bus case
study and an IEEE 118-bus test feeder. Finally, section VI
summarizes this paper and presents the concluding remarks.

II. SYSTEM MODELING AND PROBLEM DESCRIPTION
In this section, the optimization power flow problem, includ-
ing cost functions and all equality and inequality constraints,
are elaborated.

A. GENERATORS’ COST FUNCTION
Generators need to mathematically represent their costs to
participate in an electricity market. Estimated generation cost
can be represented by various cost functions, such as a mul-
tiple piecewise linear, quadratic or cubic functions. For this
study, a known quadratic fuel cost function, shown in (1), is
considered for all generators.

Ck (PGk ) = αkP
2
Gk + βkPGk + γk , ∀k ∈ NG (1)

where α$/(kW)2 h, β$/kWh and γ $/h are coefficients that
customize the cost function for each generator. PGk kW is
the amount of power generated by the k − th generator and
NG shows a set of buses associated with a generator.

B. SYSTEM EQUALITY AND INEQUALITY CONSTRAINTS
As other optimization problems, OPF has some important
constraints due to the topology of the power system, flow
capacity of transmission lines, some restrictions on the power
generation capacity, etc. Power flow equations, i.e., nodal
KCL, and load balance are the equality constraints. Voltage
amplitude and generation capacity, along with transmission
line flow, constitute the inequality constraints. We also need
to consider slack bus voltage amplitude and phase angle
constraints.

C. STATEMENT OF THE GLOBAL OPTIMIZATION POWER
FLOW PROBLEM
As shown in (2), the total cost function (FT, where

−→
P G =[

PG1 , PG2 , · · · , PGN
]T ) is a summation of all generators’

cost functions. Equation (3) indicates a box constraint for the
power capacity of each generator, where PmaxGk and PminGk indi-
cates the maximum and minimum possible generation level.
We consider PminGk = 0, ∀k ∈ NG . The voltage magnitude
boundary is shown by (4), which makes the optimization

problem a non-convex problem. Pre-set values of the slack
bus are defined by (5). Equation (6) shows the power balance
between generation and consumption. The first statement on
the right side of (6) shows the total load installed on the
generator and load buses, where NL indicates the load-only
buses. The second statement on right side of (6) represents the
summation of the estimated active power loss of each bus,
where NS defines the set of all buses, including generator,
load, slack and connection buses.

min FT

(
−→
P G

)
=

N∑
∀k∈NG

Ck (PGk ), ∀k ∈ NG (2)

PminGk ≤ PGk ≤ P
max
Gk , ∀k ∈ NG (3)

Vmin
k ≤

∣∣Vk ∣∣ ≤ Vmax
k , ∀k ∈ NG (4)∣∣Vks ∣∣ = 1, δks = 0, ks ∈ NG (5)

N∑
∀k∈NG

PGk =
N∑

∀k∈(NG+NL)

PLk +

N∑
∀k∈NS

PLossk (6)

Pnet,k =

{
PGk − PLk , ∀k ∈

(
NG + NL

)
0, ∀k /∈

(
NG + NL

) (7)

Qnet,k =

{
QGk − QLk , ∀k ∈

(
NG + NL

)
0, ∀k /∈

(
NG + NL

) (8)

Snet,k = Pnet,k + jQnet,k = Vk

 N∑
∀n∈NS

YknVn

∗
(9)

Skn = Vk [(Vk − Vn)Ykn]∗ ≤ Smaxkn ,

∀k & ∀n ∈ NS (10)

The injected active and reactive power are shown by Pnet,k
and Qnet,k , respectively. Snet,k in (9) shows the power flow
nodal equation for the k − th bus. The line flow constraint
is formulated by (10), where Smaxkn indicates the maximum
complex power flowing through the line connected the k− th
and n− th buses.

III. DISTRIBUTED ALGORITHM FOR OPTIMAL
POWER FLOW
As mentioned earlier, a consensus-based distributed algo-
rithm for finding the globally optimal solution is proposed in
this paper. A brief graph theory shows our assumptions and
justifies our model for a communication network. Then we
show how to apply an average-consensus distributed proto-
col [40] to an OPF problem without network constraints i.e.,
the economic dispatch (ED) problem. After optimality anal-
ysis, power flow nodal equations, and line flow constraints
will be added without loss of generality.

N (K, ξ ) denotes communication network (undirected
graph) with N connected buses, designated by K =

{1, 2, . . .N } and ξ ⊆ K×K, which represents a set of edges.
The physical power system is mapped onto the communi-
cation network. This means that there is a communication
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link between two buses connected by a transmission line.
The undirected edge ekn = (k, n) indicates that bus k and
n can share information with each other. Two matrices will
commonly be used to represent the communication topology
of a multiple-agent network. The adjacency matrix denoted
by A = {[akn] |akn ∈ RP×P

} of an undirected network N
is symmetric. The entries of the adjacency matrix is defined
by (11).

A =


akn 6= 0, ∀ekn ∈ ξ
akn = 0, ∀ekn /∈ ξ
akk = 0, ∀k ∈ NS

(11)

The second matrix is Laplacian matrix L = D − A =
{[lkn] |lkn ∈ RP×P

}, where D is a network degree matrix.
As can be inferred, the definition of a Laplacianmatrix is very
similar to admittance matrix. The entries of the Laplacian
matrix defined by (12).

L =


lkk =

∑
∀n∈NS

akn, ∀k ∈ NS

lkn = −akn, ∀ekn ∈ ξ
lkn = 0, otherwise

(12)

A consensus-based distributed protocol helps agents share
information with their immediate neighbors to reach a con-
sensus at an optimal point. A consensus is defined as an equal
value of the state of the k − th and n − th agents [40], [41].
In other words, k − th and n − th agent will have reached a
consensus if and only if the value of the state of the k − th
agent (xk ) and the state of the n − th agent (xn) are equal.
If we consider that each bus shares its information with its
neighbors, a standard linear distributed protocol [40] can be
defined in (13), where Ex = [x1, x2, . . . , xN ]T .

Ėx = −∇
(
2ExTLEx

)
= −LEx (13)

Let us consider the total cost function (2), box constraints
(3) and power balance (6) as a simple optimization prob-
lem. The rest of the constraints will be added later during
the analysis of optimality in section IV. We assume that
k − th bus only accesses its own private information, such
as its generator’s cost function (Ck (PGk )), generated active
power (PGk ) and its local load (PLk ). Any of these pieces of
information could be zero depending on the type of bus, such
as PV, PQ or connection buses. They also can pick an arbitrary
value for their particular incremental cost (λk ). Incremental
costs are the only piece of information shared with immediate
neighbors through the average-consensus distributed protocol
in (13). Eventually, all of the buses reach an identical value
of λc as a consensus. Then, each bus estimates its active
power generation using (15); a bus may have no active power
generation. An individual incremental cost (λi+1k ) for the next
iteration is calculate by (16), based on the private information
and consensus. The whole procedure is shown by (14), (15)
and (16), where Eλ =

{
[λ1, λ2, . . . , λN ]T |λk ∈ K

}
and i is

the iteration number.
Ė
λi = −L Eλi (14)

PiGk =
λic,k − βk

2αk
, ∀k ∈ NS (15)

λi+1k = λic,k + ρ(P
i
Gk − PLk ), ∀k ∈ NS (16)

Finally, all λk will be identical, due to the nature of the

distributed algorithm in (13),
N∑

∀k∈NG

PGk will cover the total

demand, and the power balance constraint will be satisfied
It is worth mentioning that
• None of the private information, such as PGk , αk , βk ,
PLk are shared.

• The only information shared with immediate neighbors
is estimated λk .

In the next section, it is shown that this protocol converges to
the global optimal point of the optimization problem.

IV. ANALYSIS OF OPTIMALITY
This section is organized as follows: Subsection IV-A pro-
vides the optimality analysis for a simple optimization prob-
lem (similar to the economic dispatch problem), including
the total cost function (2), box constraints (3) and power
balance (6). Then, subsection IV-B adds two impor-
tant constraints, including the voltage amplitude limitation
(4) and line flow constraint (10), in subsections IV-B1
and IV-B2.

A. SIMPLE OPTIMIZATION PROBLEM
Remark 1: All local constraints (1) and the total cost

function (2) are strictly convex.
Remark 2: As the box constraints and power balance

equation are considered in this step, all constraints of the
ED problem are affine.
Remark 3: The incremental cost of each bus should be

equal at the optimal point, i.e, λ1 = λ2 =, . . . ,=

λN , because of the dual variable of the power balance
constraint [42].
Lemma: Based on Remark (1) and Remark (2), the

ED optimization problem that satisfies Slater’s condition and
KKT conditions can provide the necessary and sufficient
conditions for optimality.
Proposition : Combining Remark (1), Remark (2), and

the lemma, a dual gradient method (18-21) will converge to
the global optimal given the Lagrangian function provided
in (17).

L(EPG, λ, µ, ζ )

=

N∑
∀k∈NG

Ck (PGk )

+ λ

 N∑
∀k∈NS

PLossk+
N∑

∀k∈(NG+NL)

PLk −

N∑
∀k∈NG

PGk


+

N∑
∀k∈NG

µk

(
PGk − P

max
Gk

)
+

N∑
∀k∈NG

ζk
(
−PGk

)
(17)

VOLUME 7, 2019 97597



H. Pourbabak et al.: Fully Distributed AC Optimal Power Flow

EPi+1G = argmin
PGk

L(EPG, λ
i, µi, ζ i)⇒

Pi+1Gk =
λi+1 − βk − µ

i+1
k + ζ

i+1
k

2αk
∀k ∈ NS (18)

λi+1 = λi + ε(
N∑

∀k∈NS

PLossk+
N∑

∀k∈NG

PGk−
N∑

∀k∈(NG+NL)

PLk )

(19)
µi+1k =

[
µik + ρ(PGk − P

max
Gk )

]+
, ∀k ∈ NS (20)

ζ i+1k =

[
ζ ik + ρ(−PGk )

]+
, ∀k ∈ NS (21)

Theorem: If the optimization problem presented in (2),
constrained by box and power balance constraints, has a
feasible globally optimal point, then the consensus-based
distributed algorithm proposed in section (III) will converge
to that globally optimal point.

Proof: The decomposition approach of the dual gradient
helps us to provide a set of separate equations for each bus.
Equations (17), (20) and (21) can easily be calculated, in a
parallel fashion, with only private information (no need for
shared information among immediate neighbors). However,
equation (19) needs a kind of coordinator to gather and
send bus information and λ (see Remark (3)). This approach
obviously violate the privacy and puts extra computational
load on a coordinator. We can consider λi as a summation of

N arbitrary real values λi = λi1 + λ
i
2 + · · · + λ

i
N =

N∑
λik

∀k∈NS
,

where the N is number of buses. Then, we can rewrite the
right side of this statement as (22). Therefore, equation (19)
can be re-written as (23) without loss of generality.

λi =

N∑
λik

∀k∈NS
N
+

N∑
λik

∀k∈NS
N
+ · · · +

N∑
λik

∀k∈NS
N︸ ︷︷ ︸

N−times

(22)

λi+1 =

N∑
λik

∀k∈NS
N
+

N∑
λik

∀k∈NS
N
+ · · · +

N∑
λik

∀k∈NS
N︸ ︷︷ ︸

N−times

+ ε(
N∑

∀k∈NS

PLossk +
N∑

∀k∈NG

PGk −
N∑

∀k∈(NG+NL)

PLk )

(23)

Now, we are able to write (23) in a decomposition fashion
as (24),

λi+11 + λ
i+1
2 + · · · + λ

i+1
N

=

N∑
λik

∀k∈NS
N
+ ε(PLoss1 + PG1 − PL1 )+

N∑
λik

∀k∈NS
N

+ ε(PLoss2 + PG2 − PL2 )

+ · · · +

N∑
λik

∀k∈NS
N
+ ε(PLossN + PGN − PLN ) (24)

FIGURE 1. Test graph randomly generated by two different models,
a) GER (n,p) : n = 14, p = 0.1, b) GWS (n,k ′, β′) : n = 21, k ′ = 6, β′ = 0.1.

Based on (25), each bus can take its own dual gradient
equation. The first righ-side statement is the average of all
the estimated λks and can be distributively calculated by
introducing the protocol in (13) or (14) because this protocol
always calculate the average.

λi+1k =

N∑
λik

∀k∈NS
N
+ ε(P i

Lossk + P
i
Gk − PLk ) (25)

Equation (25) is the one introduced in (16), where

λic,k =
N∑
λik

∀k∈NS
/N , ρ = Nε.

For the sake of accuracy assessment, two test networks,
network A (14 generators) and network B (21 generators),
are randomly generated by the Erdos–Renyi model and
the Watts–Strogatz model, respectively. Figure. (1a) and
Figure. (1b) show their visual topology and related model
parameters. All random networks are, in this section, gener-
ated by Cytoscape [43]. The demanded load on network A
and network B are 2602 kW and 4832 kW, accordingly.

Table (1) presents the results of the optimization prob-
lem given the proposed algorithm and a centralized method
(YALMIP is applied [44]) to provide an accuracy evaluation
following our proof. As shown in Table (1), the solution
mismatch between the distributed and centralized methods is
less than 0.008% of the average. As can be seen, this value is
almost zero and demonstrates our proposed method can find
the same optimal point as a centralized method.

Figures. (2a) and (3a) show a visual convergence of
dispatched power among the generators for both sys-
tems. As shown in Figures. (2b) and (3b), the incremental
cost (λ) finally converges to 6.77$/kWh for network A and
7.13$/kWh for network B.
A bigger system, shown in Figure. (4), is used for the

sake of scalability study. This network has 1000 nodes,
which are randomly generated by the Watts–Strogatz model.
In addition, the mean parameters of the coefficients of the
generators’ cost functions are selected to be 0.0085$/(kW)2 h
and 4.21$/kWh. The demand is also normally distributed
among all buses. The total generation (450234.1 kW ), which
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TABLE 1. Numerical comparison of proposed distributed and centralized
methods.

FIGURE 2. Network A: Convergence of parameters.

FIGURE 3. Network B: Convergence of parameters.

is achieved after 350 iterations, supports the total demand
(450238 kW ). It indicates that although the number of nodes
is 50 times bigger than the first two networks, the itera-
tion is only (almost) doubled. The incremental cost of all
1000 agents converges to 13.01$/kWh at the optimal point.

The solution mismatch between the distributed and cen-
tralized methods is about 0.0062% of the average. Again,

FIGURE 4. 1000 node network by the Watts–Strogatz model,
GWS (n,k ′, β′) : n = 1000, k ′ = 4, β′ = 0.05.

FIGURE 5. Consensus on incremental cost for random network with
1000 nodes.

this value confirms the precision of the proposed method for
large-size networks.

B. VOLTAGE AMPLITUDE AND LINE FLOW CONSTRAINTS
As known, the OPF problem is more complex than what
has been discussed here. One of the important groups of
constraints is the power flow nodal equations and voltage
amplitude limitation, as expressed in (9) and (4). It may
perhaps be observed that without having limitation on voltage
amplitude (4), nodal equations (9) are not effective because
voltage of buses can choose any values, satisfying nodal
equations. This can be calculated by power flow easily.

1) VOLTAGE AMPLITUDE CONSTRAINTS
As it is known, in a transmission network, the flow of active
power depends on the voltage angle, and the flow of reactive
power depends on the voltage amplitude. Hence, active power
moves from a larger voltage angle bus to a smaller voltage
angle bus. On the other hand, reactive power flows from a
higher voltage amplitude bus to a smaller voltage magnitude
bus.

There are two general approaches for controlling the
voltage amplitude at a bus, a local voltage controller and
power re-dispatching, to make sure that the voltage amplitude
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satisfies the constraints provided by equation (4). Preferably,
the voltage amplitude is controlled locally by changing the
reactive power of a given bus as is the case with PV buses.
However, it is not possible to have a voltage controller on
all buses, like PQ buses and connection buses. Therefore, re-
dispatching active and reactive power could be a potential
alternative solution. Any re-dispatching of active power, other
than the solution found by ED, increases the price of total
generation. Additionally, the re-dispatching of active power
cannot effectively change the voltage amplitude at the target
bus because, as has been discussed, voltage amplitudes are
more sensitive to reactive power than active power. This fact
can also be investigated by calculation of the sensitivity of
the voltage amplitude to active and reactive power changes.
On the other hand, re-dispatching of reactive power can be
very effective in comparison with re-dispatching of active
power because it does not change the optimal point calculated
by ED. In this part, the set point voltage of the generators is
used to compensate for the violation of voltage amplitude in
other buses. We assume that there is enough amount of the
reactive power to control voltage. When the voltage ampli-
tude in a bus violates its limitation, the amount of violation
can be used as a factor to change the set point voltage of
the generators and consequently change the reactive power
injected by each generator. Equation (26) shows the simple
relation used to compensate for violated voltage amplitude,
where α parameters can be any number with absolute value
less than unity. Using a sensitivity index for α, which mea-
sures the sensitivity of bus voltages to changes in generator
voltage set points could be very effective.

∣∣V limit
n

∣∣ indicates
the

∣∣Vmin
n

∣∣ or ∣∣Vmax
n

∣∣.
VGen, i+1
k = VGen, i

k +

i∑
i=1

N∑
∀n∈NS

αn,k

∣∣∣∣∣∣V i
n

∣∣∣−∣∣∣V limit
n

∣∣∣∣∣∣ , ∀k
(26)

The new voltage set point of a generator installed on
k th bus will be supported by the reactive power injected at
the respective bus.

As discussed earlier, re-dispatching of reactive power
would not affect the ED solution, which is a global optimal
point. However, it may change the total loss because it is
changing the voltage magnitude. It is worth mentioning that
we are not minimizing the active loss function as it is not in
the scope of this paper.

2) LINE FLOW CONSTRAINTS
Now, the line flow constraints shown in (10) are the only
group of constraints causing non-convexity. There is no easy
way to convexify these constraints without linearization.
In this section, an intuitive method is used to easily replace
these constraints. We define another optimization problem,
whose solution satisfies constraint (10). This optimization
problem only replaces the line flow constraints and does not
replace whole optimization problem. To alleviate overload-
ing, the output power of generators connected to the network

must be re-dispatched in a cost-effective way. This means
each generator should change its output by 4PGk , compared
to its output in the solution of the unconstrained problem
(i.e. the ED problem), to reduce the power flow through the
congested lines.
Assumption: the global optimal solution of the uncon-

strained problem (without constraint (10) ) is {PG1 , PG2 , · · · ,

: PGn}, whose total minimum cost is FT = C1+C2+· · ·+Cn.
Theorem: in a constrained problem (with constraint (10) ),

a set of re-dispatching generators i.e., {4PG1 , 4PG2 , · · · ,

: 4PGn} which has minimal price changes from the uncon-
strained problem, among feasible solutions, is global optimal
point. This re-dispatching should not violate constraint (6);
therefore,

∑
∀k∈NG

4PGk = 0.

Each 4PGk causes a price change (4Ck ) in the respective
generator. The summation of all 4Ck should be minimized
to guarantee the closest feasible solution to the solution
of the unconstrained problem, which is the global optimal
point. The line flow constraint (10) is replaced by (27), sub-
ject to constraint (28) and other local constraints from the
main problem, where 4Ck = Ck (4PGk ) = αk (4PGk )

2
+

βk (4PGk )+ γk , ∀k ∈ NG .

min
N∑

∀k∈NG

Ck (4PGk ), ∀k ∈ NG (27)

4PG1 +4PG2 + · · · + 4PGn = 0 (28)

Equation (27) shows that the cost of the power changes should
be minimal and equation (28) indicates the power changes
should not violate power balance constraints. The dual ascent
solution for this convex optimization problem is (29), where
χ is the dual variable related to the equality constraint in (28).

4PiGk =
χ i − βk

2αk
, ∀k ∈ NG (29)

Overloading is the only reason that (29) comes into play;
thus, χ = Pkn − Pmaxkn to satisfy line maximum flow con-
straints. It is worth mentioning that χ is calculated by sending
and receiving end buses and distributed among their neigh-
bors. Thus, privacy is not violated. Furthermore, the whole
problem (27) is still convex. The value calculated in (29) is
added to (15).

V. PERFORMANCE ASSESSMENT
In this section, we apply the proposed method to two test
models of a power system, a synthetic 37-bus case study [45]
and an IEEE 118-bus test feeder [47], to evaluate the recently
introduced constraints in section (IV-B).

In the first case study, the set of generators, load and
connection buses are, NG = {7 ,17, 20, 30, 32, 33, 34, 35},
NL = {2 , 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 22,
23, 25, 30, 32, 33, 34, 35, 36, 37} andNS −

(
NG∪NL

)
= {1 ,

18, 21, 24, 26, 27, 28, 29, 31}, respectively. In addition, bus
20 is selected as a slack bus, i.e., δks = 0, ks = 20. Figure. (6)
shows the network configuration. There is no assumption
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FIGURE 6. 37-bus network [45] for OPF performance evaluation.

regarding transmission line resistance or inductance. Hence,
the algorithm can be applied to both transmission and distri-
bution systems. There are some parallel lines in the system,
such as the lines between buses 8 and 35, which are consid-
ered as a single line.

It is worth mentioning that active power loss, which is
estimated by each bus, is considered as an amount of load
reported by each bus, as shown by (30), for the sake of
simplicity. The reason is that the total losses of the power
system are inherently part of the power flow calculation and
there is no need for any specific calculation.

PLossk =
∑
n6=k

(1/2)Gkn
∣∣Vk − Vn∣∣2, ∀k & n ∈ NS (30)

Due to the page limitation, voltage results are ignored
in this paper. Table (2) compares the generators’ output
calculated by the proposed method and those of the cen-
tralized method, obtained from MATPOWER [46] as bench-
mark results. The solution mismatch between the distributed
and centralized methods is almost less than 3.9% of the
average. The total cost found by the proposed method
(26090.7195$/hr) is close to that of centralized methods
(26090.60$/hr). The total generation is about 1480.7412kW ,
which covers the total demand (1447.1 kW ) plus total loss
(33.641 kW ). The mismatch between the total estimated
power loss between the distributed methods and the bench-
mark is 0.52%.

The overloaded transmission line between buses 13 and
32 is detected by the proposed method and loaded up to its
maximum capacity. Figure. (9) shows the evolution of the
line flow congestion and output power of the all generators.
As shown in Figure. (7a), the algorithm detects the line
overloading and tries to shift power in both sides of the

TABLE 2. Numerical comparison of the proposed distributed and
centralized methods.

FIGURE 7. OPF simulaion results for a synthetic 37-bus system system.

FIGURE 8. 118-bus network [47] for OPF performance evaluation.

line. As can be seen, the power flow is decreased around
the 10th iteration and reaches maximum line capacity within
20 iteration. Figure. (7b) demonstrates how generators
change their output to avoid line overloading. The final con-
sensus value for the entire system is λ = 22.6$/kWh.
In the second case study, we test the proposed algorithm on

a larger and more realistic power systemmodel, i.e., the IEEE
118-bus, and compare our results with those obtained by the
MATPOWER toolbox as a benchmark. The overall system
configuration is shown in figure. (8). The financial infor-
mation of the generators’ cost function (i.e., α$/(kW)2 h,
β$/kWh) are randomly generated. More information about
the system data including bus types, line electrical impedance
and other required information regarding, topology can
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FIGURE 9. OPF simulaion results for IEEE 118-bus system system.

be found in [47]. The comparison between the results
obtained by the proposed algorithm and those obtained by
MATPOWER shows the accuracy and efficiency of our algo-
rithm. The solution mismatch of the generators’ output calcu-
lated by the distributed methods and those of the benchmark
is almost less than 6% of the average. The total cost found
by the distributed methods is different from the benchmark
results by 0.26%. The total generation is about 4380.55 kW ,
which covers the total demand (4242.00 kW ) plus total loss
(138.55 kW ). We should note here that our algorithm is only
minimizing the total cost of generation and does not consider
minimizing power loss in systems.

As can be seen, the number of iterations required for
converging to the final solution does not significantly change
with the system size. The number of iterations required for
convergence is about 30 in the synthetic 37-bus system. This
number is about 42 in the IEEE 118-bus system, while the
size of this system is almost 3 times bigger than the first
case study. This means the proposed algorithm can efficiently
work for bigger systems.

VI. CONCLUSION
This work shows that an OPF problem can be solved without
linearization and convexification, which in turn does not limit
OPF to some specific network and assumptions. As voltage
amplitudes are more sensitive to reactive power than active
power, the set point voltage of the generators is used to com-
pensate for the violation of voltage amplitude in other buses
assuming there is enough amount of the reactive power to
control voltage. In addition, line flow constraints are replaced
with a local convex problem to pave the way for generalizing
the mathematical proof. Simulation results of a synthetic
37-bus case study and an IEEE 118-bus test feeder confirm
the optimality analysis.
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