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ABSTRACT In this paper, we present a novel tightly coupled probabilistic monocular visual-odometric
simultaneous localization and mapping (VOSLAM) algorithm using wheels and a MEMS gyroscope,
which can provide accurate, robust, and long-term localization for ground robots. First, we present a novel
odometer preintegration theory on manifold; it integrates the wheel encoder measurements and gyroscope
measurements to a relative motion constraint that is independent of the linearization point and carefully
addresses the uncertainty propagation and gyroscope bias correction. Based on the preintegrated odometer
measurement model, we also introduce the odometer error term and tightly integrate it into the visual
optimization framework. Then, in order to bootstrap the VOSLAM system, we propose a simple map
initialization method. Finally, we present a complete localization mechanism to maximally exploit both
sensing cues, which provides different strategies for motion tracking when: 1) both measurements are
available; 2) visual measurements are not available; and 3) wheel encoders experience slippage, thereby
ensuring the accurate and robust motion tracking. The proposed algorithm is evaluated by performing
extensive experiments, and the experimental results demonstrate the superiority of the proposed system.

INDEX TERMS Motion estimation, sensor fusion, simultaneous localization and mapping.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) from on-
board sensors is a fundamental and key technology for
autonomous mobile robot to safely interact within its
workspace. SLAM is a technique that builds a globally
consistent representation of the environment (i.e. the map)
and estimates the state of robot in the map simultaneously.
Because SLAM can be used in many practical applications,
such as autonomous driving, indoor service robots, and vir-
tual or augmented reality, it has received considerable atten-
tion from Robotics and Computer Vision communities.

In this paper, we study the monocular vision-based local-
ization and mapping algorithm for domestic ground robots
moving on a plane, such as cleaning robot, nursing robot,
and restaurant robot waiter. When localizing the domes-
tic ground robots, planar-motion constraint is often used to
improve the localization accuracy. There are two ways to use
planar-motion constraint. One is deterministic planar-motion
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constraint, in which the constraint is not affected by noise,
i.e., the robot is thought to move on a deterministic plane.
The other is stochastic planar-motion constraint, in which the
constraint is affected by Gaussian noise, thereby taking into
account the out-of-plane motion perturbations. Some visual
SLAM (VSLAM) system for ground robots have parame-
terized the pose as SE(2), i.e., deterministic planar-motion
constraint, to only consider the deterministic in-planemotion,
e.g. in [1]. However in practical environment, ground robots
aremoving on an approximately flat surface due to the uneven
terrains, some objects on the ground, and vibrations of the
moving platform. When the robot motion is often out of the
constrained planar model, since visual observation is highly
coupled with all 6 DoF of 3D pose, the deterministic planar-
motion constraint will result to decrease in visual localization
accuracy. Thereby as in [2], we parameterize the pose as
SE(3) and add a stochastic planar-motion constraint on the
pose, which can explicitly model the approximately in-plane
motion of the robot.

For localizing the robot in indoor environment, monocular
visual-inertial setup is the minimum and most commonly
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used sensor suite due to the complementary characteristics
of both sensors. Monocular visual-inertial SLAM (VISLAM)
system [3]–[6] can accurately localize the sensor with general
3D motion. However, ground robots interested in this paper
are usually constrained tomove along straight lines or circular
arcs with constant acceleration. As demonstrated in [2], when
the robot moves with these specific motions, the monocular
VISLAM has additional unobservable directions, e.g. scale,
which causes the significant estimation error. Therefore,
monocular visual-inertial sensor suite is not able to provide
accurate motion tracking for ground robots.

Most ground robots are equipped with wheel encoders.
In most cases, wheel encoders provide the reliable inter-
frame traveled distance measurements of each wheel at low
frequency. Traditional monocular visual-odometric SLAM
(VOSLAM) methods [7], [8] just use distance information
from wheel encoders to render the scale factor observable,
which is due to the fact that the wheel encoders even provide
poor orientation estimation for planar trajectory as demon-
strated in [8]. Even though the wheel encoders can provide
accurate in-plane rotation, when the robot motion is often
out of the plane constraint, the encoders can only provide
the accurate traveled distance, not the accurate relative trans-
formation. In contrast, the MEMS gyroscope provides accu-
rate inter-frame rotational information at high frequency.
Therefore in this paper, we fuse distance measurements from
wheel encoders with angular velocity measurements from
gyroscope to provide an accurate inter-frame SE(3) relative
transformation for both in-plane motion and out-of-plane
motion. In the following, we will call the wheel encoders
and MEMS gyroscope as odometer. Then by fusing the
odometer measurements with visual measurements, we con-
struct a novel tightly-coupled optimization-based monocular
VOSLAM system.

The contributions of the paper are as follows. In order
to tightly and efficiently integrate the odometer measure-
ments to VSLAM system in the framework of nonlinear opti-
mization, it is important to provide the integrated odometer
measurements between the selected keyframes. Motivated by
the inertial measurement unit (IMU) preintegration theory
proposed in [9], we present a novel odometer preintegration
theory on manifold. The preintegration theory integrates the
measurements from odometer to a single relative motion
constraint that is independent of the change of linearization
point, thereby eliminating the repeated computation. Besides,
we also derive the corresponding uncertainty propagation and
bias correction theory. Then based on the proposed preinte-
grated odometer measurement model, we formulate a prein-
tegrated odometer factor and tightly integrate it to the visual-
odometric optimization framework.

Secondly, since the proposed VOSLAM system requires
a good initial value to bootstrap, we present a simple ini-
tialization method that builds an initial map of the environ-
ment with scale and selectively estimates the initial value of
gyroscope bias. Finally, since both visual and odometer mea-
surements are not always available, we present a complete

visual-odometric tracking mechanism to maximally exploit
both measurement information. For the situation where both
measurements are available, we tightly fuse both measure-
ments to provide the accurate motion tracking. For the sit-
uation where visual information is not available, we use
odometer measurements to improve the robustness of our
system, and we also offer some strategies to render the
visual information available as soon as possible. In addition,
for the situation where wheel encoders experience slippage,
we provide a strategy to detect and compensate for the faulty
measurement. In this way, we can track the motion of ground
robots accurately and robustly.

In experiments, we carry out extensive experiments to
demonstrate the superior accuracy and robustness of our
algorithm.

An overview of the proposed algorithm is shown in Fig. 1.
The remainder of this article is organized as follows.
Section II discusses relevant literature. In Section III,
we introduce the preliminaries of the paper. Preinte-
grated odometer measurements and tightly-coupled visual-
odometric nonlinear optimization on manifold are introduced
in Section IV. In Section V, the complete monocular
VOSLAM system is discussed. The experimental results are
shown in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK
There are extensive scholarly works on monocular visual
odometry (VO) and VSLAM, these works rely on either
filtering methods or nonlinear optimization methods.
Filtering based approaches achieve higher computational
efficiency due to the continuous marginalization of past state.
The first real-time monocular VSLAM - MonoSLAM [10]
is an extended kalman filter (EKF) based method. The stan-
dard way of computing Jacobian by filtering methods leads
the system to have incorrect observability, which results
in inconsistency and slightly lower accuracy. To solve this
problem, the first-estimates Jacobian approach was proposed
in [11]. The method computed Jacobian with the first-ever
available estimate instead of different linearization points,
which makes the system observability correct and thereby
improves the consistency and accuracy of the system. In addi-
tion, the observability-constrained EKF [12] was proposed to
explicitly enforce the unobservable directions of the system,
hence improving its consistency and accuracy.

On the other hand, nonlinear optimization based
approaches can better deal with the nonlinearity of sys-
tem due to its ability to re-linearize measurement models,
thereby achieving better accuracy at the expense of high
computational cost. The first real-time optimization based
monocular VSLAM system is PTAM [13] proposed by
Klein and Murray. The method achieved real-time perfor-
mance by dividing the SLAM system into two parallel
threads. In one thread, the system performs bundle adjustment
over selected keyframes and constructs map points to obtain
accurate map of the environment. In the other parallel thread,
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FIGURE 1. A flow chart illustrating the full pipeline of the proposed system.

the camera pose is tracked by minimizing the reprojection
error of features that match the reconstructed map points.
Based on the work of PTAM, a versatile monocular VSLAM
system ORB-SLAM [14] was presented. The system intro-
duced the third loop closing thread to eliminate the accu-
mulated error when revisiting an already reconstructed area,
which is achieved by taking advantage of bag-of-words [15]
and 7 degree-of-freedom (dof) pose graph optimization [16].

In addition, according to the definition of visual resid-
ual model, monocular VSLAM can also be categorized into
feature based approaches and direct approaches. The above
mentionedmethods are all feature based approaches, which is
quite mature and able to provide accurate estimate. However,
the approaches fail to track in poorly textured environments
and need to consume extra computational resources to extract
and match features. In contrary, direct approaches work on
raw sensor measurements, which makes the methods more
efficient and able to exploit image informationwhere gradient
is small. Therefore, direct methods can outperform feature
based methods in low texture environment. DTAM [17],
SVO [18], LSD-SLAM [19], and DSO [20] are direct monoc-
ular VSLAM systems, which builds a dense or semi-dense
map frommonocular images in real-time, however their accu-
racy is still lower than the feature based semi-dense mapping
technique [21].

The monocular VSLAM is scale ambiguous and sensi-
tive to motion blur, occlusions, and illumination changes.

Therefore, the monocular VSLAM systems are often
combined with other odometric sensors, especially IMU
sensor, to achieve accurate and robust tracking system.
Tightly-coupled VISLAM can also be categorized into filter-
ing based methods and optimization based methods, where
visual and inertial measurements are fused from the raw
measurement level. Papers [3], [22]–[25] are filtering based
monocular VISLAM approaches, which uses the inertial
measurements to accurately predict the motion movement
between two consecutive frames. An elegant example for
filtering based visual-inertial odometry (VIO) system is
MSCKF [3], it can achieve high-precision motion estimation
with computational complexity only linear in the number of
features, which is achieved by presenting a visual measure-
ment model that excludes point features from the state vector.

OKVIS [4] is an optimization based monocular VISLAM
system, which tightly integrates the inertial measurements in
a keyframe-based visual-inertial pipeline under the frame-
work of graph optimization. However in this system, the IMU
integration needs to be computed repeatedly whenever the
linearization point changes. In order to eliminate this repeated
computation, Forster et al. presented an IMU preintegration
theory, and tightly integrated the preintegrated IMU factor
and the visual factor in a fully probabilistic manner in [9].
Later, a new tightly-coupled monocular VISLAM system -
ORB-VISLAM [5] was presented. The system can close
loop and reuse the previously estimated 3D map, thereby
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achieving higher accuracy and robustness. Recently, another
tightly-coupled monocular VISLAM system was proposed in
[6], [26], which provides accurate and robust motion tracking
by performing local bundle adjustment (BA) for each frame
and its capability to close loop.

There are also several works on the monocular VOSLAM
that fuses visual measurements with wheel encoder measure-
ments. In [7], [8], distance information from wheel encoders
was fused with visual measurements to render the scale factor
observable, which is performed in the framework of optimiza-
tion. In [27], wheel encoder measurements were integrated to
the visual odometry system for accurate motion prediction,
thus true scale of the system can be recovered. In addition,
the author of [2] proved that for the ground robot that moves
along straight lines or circular arcs with constant acceleration,
monocular VIO/VISLAM has additional unobservable direc-
tions, e.g. scale. Therefore, they integrated the wheel encoder
measurements with VIO system in a tightly-coupled manner
to render the scale of the system observable.

III. PRELIMINARIES
We begin by briefly defining the notations used throughout
the paper. We employ (·)W to denote the world reference
frame, (·)Ok , (·)Ck and (·)Bk to denote the wheel frame, camera
frame and inertial frame for the k th image. In the following,
we employ RF1

F2
∈ SO(3) to represent rotation from frame

{F2} to {F1} and pF1
F2
∈ R3 to describe the 3D position of

frame {F2} with respect to frame {F1}. Besides, we use In×n
to denote n×n identity matrix and 0n×m to denote n×m zero
matrix.

The rotation and translation between rigidly mounted
wheel and camera sensor are RC

O ∈ SO(3) and pCO ∈ R3

respectively, and RO
B ∈ SO(3) denotes the rotation from iner-

tial frame to wheel frame, these parameters can be obtained
from calibration. In addition, the rigid-body transformation

TOkW =

[
ROk
W pOkW
0T 1

]
∈ SE(3) denotes the pose of the k th

image, and the 3D position of the jthmap point in global frame
{W } and camera frame {Ck} are denoted as fWj ∈ R3 and

fCkj ∈ R3 respectively.
In order to provide a minimal representation for the rigid-

body transformation during the optimization, we use a vector
ξ ∈ R3 computed from the Lie algebra of SO(3) to represent
the over-parameterized rotation matrix R. The Lie algebra
of SO(3) is denoted as so(3), which is the tangent space
of manifold and coincides with the space of 3 × 3 skew
symmetric matrices. The logarithm map associates a rotation
matrix R ∈ SO(3) to a skew symmetric matrix:

ξ∧ = log(R) (1)

where (·)∧ operator maps a 3-dimensional vector to a skew
symmetric matrix, thus the vector ξ can be computed by using
inverse (·)∨ operator:

ξ = Log(R) = log(R)∨ (2)

Inversely, the exponential map associates the Lie algebra
so(3) to the rotation matrix R ∈ SO(3):

R = Exp(ξ ) = exp(ξ∧) (3)

The input of our estimation problem is a stream of mea-
surements from the monocular camera and the odometer. The
visual measurement is a set of point features extracted from
the captured intensity image Ik : � ⊂ R2

→ R at time-
step k . Such measurement is obtained by camera projection
model π : R3

→ R2, which projects the l th map point
fCkl = (xc, yc, zc)T ∈ R3 expressed in the current camera
frame onto the image coordinate zkl = (u, v)T ∈ �:

z̃kl = zkl + σ kl
= π (fCkl )+ σ kl (4)

where z̃kl is the corresponding feature measurement, and σ kl
is the 2×1measurement noise with covariance6Ckl . The pro-
jection function π is determined by the intrinsic parameters
of camera, which is known from calibration.
In addition, the gyroscope of odometer provides the angu-

lar velocity measurement ω̃k at time-step k, the measure-
ment is assumed to be affected by a slowly time-varying
bias bgk and a discrete-time zero-mean Gaussian white noise
ηgd ∼ N (0,6gd ):

ω̃k = ωk + bgk + ηgd (5)

where gyroscope bias bgk is modeled as random walk, hence
its derivative is Gaussian noise ηbg ∼ N (0,6bg ):

ḃgk = ηbg (6)

The wheel encoders of odometer measure the traveled
distance D̃lk and D̃rk of both wheels from time-step k−1 to k
at time-step k , which is assumed to be affected by a discrete-
time zero-mean Gaussian white noise ηed with variance σed :

D̃lk = Dlk + ηed
D̃rk = Drk + ηed (7)

Therefore, the 3D position of frame {Ok} with respect
to frame {Ok−1} measured by wheel encoders is ψ̃

Ok−1
Ok =[

D̃lk + D̃rk
2

0 0

]T
, which is affected by a Gaussian noise

ηψd ∼ N (0,6ψd ):

ψ̃
Ok−1
Ok = ψ

Ok−1
Ok + ηψd

= −ROk−1
W ROk

W
T
pOkW + pOk−1W + ηψd (8)

where ROk−1
W and pOk−1W constitute the pose of frame {Ok−1},

and ROk
W and pOkW constitute the pose of frame {Ok}. In addi-

tion, the covariance of noise ηψd is computed from the
1-dimensional noise ηed with 6ψd =

σed
2 I3×3.

In many cases, the ground robot is moving on an approx-
imately planar surface. The motion on a plane has 3 DoF in
contrast to 6DoF of 3D motion. The additional information
can improve the accuracy of system. Therefore for each
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SE(3) pose, we also provide a planar measurement p̃lk =
[0, 0, 0]T ∈ R3 with noise ηpl ∼ N (0,6pl) to constrain its
roll, pitch angles and z-axis translation with respect to the
physical plane.

IV. TIGHTLY-COUPLED VISUAL-ODOMETRIC NONLINEAR
OPTIMIZATION ON MANIFOLD
We use K to denote a set of successive keyframes from i to j,
and L to denote all the landmarks visible from the keyframes
in K. Then the variables to be estimated in the window of
keyframes from i to j is:

X = {xk , fWl }k∈K,l∈L (9)

where xk = {T
Ok
W ,bgk } is the state of keyframe k .

We denote the visual measurements of L at keyframe i
as ZCi = {̃zil}l∈L. In addition, we denote the odometer
measurements between two consecutive keyframes i and j as
Oij = {ω̃t , D̃lt , D̃rt }ti≤t≤tj . Therefore, the set of measure-
ments collected for optimizing the state X is:

Z = {ZCi ,Oij, p̃li}(i,j)∈K (10)

A. MAXIMUM A POSTERIORI ESTIMATION
The optimum value of state X is estimated by solving the
following maximum a posteriori (MAP) problem:

X ∗ = argmax
X

p (X |Z) (11)

which means that given the available measurements Z ,
we want to find the best estimate for state X . Assuming
measurements Z are independent, then using Bayes’ rule,
we can rewrite p (X |Z) as:
p(X |Z)
∝ p(X 0) p(Z|X )
= p(X 0)

∏
(i,j)∈K

p(ZCi , Oij, p̃li|X )

= p(X 0)
∏

(i,j)∈K
p(Oij|xi, xj)

∏
i∈K

∏
l∈L

p(̃zil |xi, fWl )
∏
i∈K

p(p̃li|xi)

(12)

The equation can be interpreted as a factor graph. The
variables inX are corresponding to nodes in the factor graph.
The terms p(X 0), p(Oij|xi, xj), p(̃zil |xi, fWl ), and p(p̃li|xi)
are called factors, which encodes probabilistic constraints
between nodes. A factor graph representing the problem is
shown in Fig. 2.
The MAP estimate corresponds to the minimum of the

negative log-posterior. Under the assumption of zero-mean
Gaussian noise, the MAP estimate in (11) can be written as
the minimum of the sum of squared residual errors:

X ∗ = argmin
X
−log p(X |Z)

= argmin
X
‖r0‖260

+

∑
(i,j)∈K

ρ
(
‖rOij‖

2
6Oij

)
+

∑
i∈K

∑
l∈L

ρ
(
‖rCil‖

2
6Cil

)
+

∑
i∈K

ρ
(
‖rpli‖

2
6pl

)
(13)

FIGURE 2. Factor graph representing the visual-odometric optimization
problem. The states are shown as circles and factors are shown as
squares. The blue squares represent the odometer factors and connect to
the state of last keyframe, red squares denote the visual factors, black
squares denote the prior factors, and gray squares denote the plane
factors.

where r0, rOij , rCil , and rpli are the prior error, odometer
error, reprojection error, and plane error respectively, as well
as 60, 6Oij , 6Cil , and 6pl are the corresponding covariance
matrices, and ρ is the Huber robust cost function. In the
following subsections, we provide the detailed expressions
for these residual errors.

B. PREINTEGRATED ODOMETER MEASUREMENTS
In this section, we derive the preintegrated odometer mea-
surement between two consecutive keyframes i and j by
assuming the gyroscope bias of keyframe i is known. Firstly,
we define the rotation increment1Rij and position increment
1pij in frame {Oi} as:

1Rij =

j−1∏
k=i

RO
BExp

((
ω̃k − bgk − ηgd

)
1t
)
RO
B
T

1pij =
j∑

k=i+1

1Rik−1

(
ψ̃
Ok−1
Ok − ηψd

)
(14)

where bgk = bgi +
∑k−1

n=i ηbg1t , which is obtained by
integrating (6). Since the gyroscope bias of keyframe i is
known, the mean of bgk is bgi and δbgik =

∑k−1
n=i ηbg1t

is the bias noise. Bias noise δbgik is a zero-mean Gaussian
noise, since it is a linear combination of zero-mean Gaussian
noise ηbg . Then by using the first-order approximation and
dropping higher-order noise terms, we split each increment in
(14) to preintegrated measurement and its noise. For rotation,
we have:

1Rij =

j−1∏
k=i

Exp
(
RO
B
(
ω̃k − bgi − δbgik − ηgd

)
1t
)

≈

j−1∏
k=i

[
Exp

(
RO
B
(
ω̃k − bgi

)
1t
)

×Exp
(
−JrkR

O
B
(
δbgik + ηgd

)
1t
)]

= 1R̃ij

j−1∏
k=i

Exp
(
−1R̃T

k+1jJrkR
O
B (δbgik + ηgd )1t

)
= 1R̃ij Exp

(
δφij

)
(15)
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where Jrk = Jr (RO
B (ω̃k − bgi )1t) is the right Jacobian

of SO(3). Therefore, we obtain the preintegrated rotation
measurement:

1R̃ij =

j−1∏
k=i

Exp
(
RO
B (ω̃k − bgi )1t

)
(16)

For position, we have:

1pij ≈
j∑

k=i+1

[
1R̃ik−1

(
I3×3 + δφ∧ik−1

) (
ψ̃
Ok−1
Ok − ηψd

)]
=

j∑
k=i+1

[
1R̃ik−1

(
I3×3+δφ∧ik−1

)
ψ̃
Ok−1
Ok −1R̃ik−1ηψd

]
= 1p̃ij+

j∑
k=i+1

[
−1R̃ik−1ψ̃

Ok−1∧

Ok δφik−1−1R̃ik−1ηψd

]
= 1p̃ij + δpij (17)

Therefore, we obtain the preintegrated position
measurement:

1p̃ij =
j∑

k=i+1

1R̃ik−1ψ̃
Ok−1
Ok (18)

C. NOISE PROPAGATION
As defined in Section IV-B, the bias noise is:

δbgij =
j−1∑
k=i

ηbg1t (19)

Then obtained from (15), the rotation noise is:

δφij =

j−1∑
k=i

[
−1R̃T

k+1jJrkR
O
B
(
δbgik + ηgd

)
1t
]

(20)

The rotation noise term δφij is zero-mean and Gaussian,
since it is a linear combination of zero-mean white Gaussian
noise ηgd and δbgik .

Furthermore, from (17), we obtain the position noise:

δpij =
j∑

k=i+1

[
−1R̃ik−1ψ̃

Ok−1∧

Ok δφik−1 −1R̃ik−1ηψd

]
(21)

The position noise δpij is also zero-mean Gaussian noise,
because it is a linear combination of noise ηψd and rotation
noise δφik−1.

Wewrite (19), (20) and (21) in iterative form, then the noise
propagation can be written in matrix form as: δφik+1δpik+1
δbgik+1


=

 1R̃T
kk+1 03×3 −JrkR

O
B1t

−1R̃ik ψ̃
Ok∧

Ok+1 I3×3 03×3
03×3 03×3 I3×3


·

δφikδpik
δbgik

+
−JrkRO

B1t 03×3 03×3
03×3 −1R̃ik 03×3
03×3 03×3 I3×31t

ηgdηψd
ηbg


(22)

or more simply:

nik+1 = Anik + Bη (23)

Given the linear model (23) and the covariance6η ∈ R9×9

of odometer measurement noise η, it is possible to compute
the covariance of preintegrated odometer measurement noise
iteratively:

6Oik+1 = A6OikA
T
+ B6ηBT (24)

with initial condition 6Oii = 09×9.
Therefore, we can fully characterize the preintegrated

odometer measurement noise as:

nij =
[
δφTij δpTij δbTgij

]T
∼ N

(
09×1,6Oij

)
(25)

D. BIAS UPDATE
In the previous section, we assumed that the gyroscope bias
bgi is fixed. Given the bias change bgi ← b̄gi + δbgi ,
we can update the preintegrated measurements by using
the first-order approximation. For preintegrated rotation
measurement:

1R̃ij
(
bgi
)

=

j−1∏
k=i

Exp
(
RO
B
(
ω̃k − b̄gi − δbgi

)
1t
)

≈

j−1∏
k=i

[
Exp

(
RO
B
(
ω̃k − b̄gi

)
1t
)
Exp

(
−JrkR

O
B δbgi1t

)]

= 1R̃ij
(
b̄gi
) j−1∏
k=i

Exp
(
−1R̃T

k+1jJrkR
O
B δbgi1t

)
= 1R̃ij

(
b̄gi
)
Exp

(
∂1R̄ij

∂bgi
δbgi

)
(26)

where
∂1R̄ij

∂bgi
=
∑j−1

k=i−1R̃T
k+1jJrkR

O
B1t . For preintegrated

position measurement:

1p̃ij
(
bgi
)

=

j∑
k=i+1

1R̃ik−1
(
b̄gi
)
Exp

(
∂1R̄ik−1

∂bgi
δbgi

)
ψ̃
Ok−1
Ok

≈

j∑
k=i+1

1R̃ik−1
(
b̄gi
) (

I3×3 +

(
∂1R̄ik−1

∂bgi
δbgi

)∧)
ψ̃
Ok−1
Ok

= 1p̃ij
(
b̄gi
)
−

j∑
k=i+1

1R̃ik−1
(
b̄gi
)
ψ̃
Ok−1∧

Ok

∂1R̄ik−1

∂bgi
δbgi

= 1p̃ij
(
b̄gi
)
+
∂1p̄ij
∂bgi

δbgi (27)

where
∂1p̄ij
∂bgi

=
∑j

k=i+1−1R̃ik−1(b̄gi )ψ̃
Ok−1∧

Ok

∂1R̄ik−1

∂bgi
.
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E. PREINTEGRATED ODOMETER FACTOR
From the geometric relation between two consecutive
keyframes i and j, we get our preintegrated odometer mea-
surement model as:

ROi
WR

Oj
W

T
= 1R̃ij

(
bgi
)
Exp

(
δφij

)
−ROi

WR
Oj
W

T
p
Oj
W + pOiW = 1p̃ij(bgi )+ δpij (28)

Therefore, the preintegrated odometer residual rOij =[
rT
1Rij

, rT1pij
, rT
1bgij

]T
∈ R9 can be defined as:

r1Rij = Log

(1R̃ij
(
b̄gi
)
Exp

(
∂1R̄ij

∂bgi
δbgi

))T

ROi
WR

Oj
W

T


r1pij = −R

Oi
WR

Oj
W

T
p
Oj
W + pOiW −

(
1p̃ij(b̄gi )+

∂1p̄ij
∂bgi

δbgi

)
r1bgij = bgj − bgi (29)

F. VISUAL FACTOR
According to the measurement model in (4), the l th map point
expressed in the world reference frame {W } is projected onto
the image plane of the ith keyframe as:

zil = π (RC
OR

Oi
W fWl + RC

Op
Oi
W + pCO) (30)

Therefore, the reprojection error rCil ∈ R2 for the l th map
point seen by the ith keyframe is:

rCil = zil − z̃il (31)

G. PLANE FACTOR
The x-y plane of the first wheel frame {O1} coincides
with the physical plane. Thus, we express the plane factor
rplk ∈ R3 as:

rplk =

 [
e1 e2

]TROk
W RO1

W
T
e3

eT3
(
−RO1

W ROk
W

T
pOkW + pO1

W

)− p̃lk (32)

where e1 =
[
1 0 0

]T, e2 = [ 0 1 0
]T and e3 =

[
0 0 1

]T.
The first two elements in (32) is the planar rotational

constraint, it means that rotating e3 vector in frame {O1} to
frame {Ok}, the result should also be e3. The result is equal
to e3 if and only if the roll and pitch angles between frames
{O1} and {Ok} are all zero. Thus, constraining the first two
elements in the residual to zero corresponds to constraining
the roll and pitch angles between two frames to zero. The
third element in (32) is the planar translational constraint,
which means that z-axis translation between frames {O1} and
{Ok} should be zero. In addition, the covariance of planar
measurement 6pl is set as diag(0.0012, 0.0012, 0.0004) in
this paper to allow 2◦ deviation for roll and pitch angles and
0.02m deviation for z-axis translation.

V. MONOCULAR VOSLAM SYSTEM
Our monocular VOSLAM system is inspired by ORB-
SLAM [14] andORB-VISLAM [5]. Fig. 1 shows an overview
of the proposed system. In this section, we detail the main
changes of our VOSLAM system with respect to the refer-
enced system.

A. MAP INITIALIZATION
The map initialization is in charge of estimating two initial
values. Firstly, we estimate the initial value of gyrosocpe
bias bg. This calculation is not necessary, however computing
its initial value can achieve better accuracy as shown in the
seventh and eighth columns of Table 2, so we compute the
initial bg in this paper. Then we construct the initial map with
scale.
The steps of map initialization are as follows. Firstly,

we search for feature matches between current frame k and
reference frame r . If there are sufficient feature matches,
we add this frame to the local window of gyroscope bias
initialization and perform the next step, else we set the current
frame as reference frame and clear the local window. The sec-
ond step is to check the parallax of each correspondence
and pick out a set of feature matches F that have sufficient
parallax. When the size of F is greater than a threshold,
we perform the next step. The next steps are different depend-
ing on whether to estimate the initial value of bg.
If we estimate the initial value of gyroscope bias, in the

third step, we firstly compute the up-to-scale relative trans-
formation TCrCk between reference frame r and current frame
k by using the Five-point algorithm [28], and triangulate the
feature matches F . Then if the size of successfully triangu-
lated map points is larger than a threshold, we compute the
poses TCrCi of all frames in the local window by using the
perspective-n-point (PnP) method [29], and perform a pure
visual global BA to optimize the pose of all frames in the local
window. If the size of successfully triangulated map points is
still larger than a threshold after the optimization, we perform
the next step. In step four, we compute the preintegrated
odometer measurements 1R̃ri for all the frames in the local
window of gyroscope bias initialization, and combine it with
the computed relative rotations ROr

Oi = RC
O
T
RCr
Ci R

C
O from the

last step to estimate the initial gyroscope bias:

argmin
bg

k∑
i=r+1

∥∥∥∥∥∥Log
(1R̃riExp

(
∂1R̄ri

∂bg
bg

))T

ROr
Oi

∥∥∥∥∥∥
2

(33)

which is derived from (26) (28). Next, based on the estimated
gyroscope bias bg, we re-compute the odometer preintegra-
tion terms 1R̃rk and 1p̃rk , and reset the pose of current
frame as TOkW = 1T̃−1rk T

Or
W . The pose of reference frame TOrW

can be set to arbitrary value, we set it to the identity in this
paper. Then we use the re-computed poses to re-triangulate
the matched features F .
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FIGURE 3. Evolution of the factor graph in motion tracking when the last visual tracking is successful. If map is updated, we optimize the state of frame k
by connecting an odometer factor to last keyframe m. If map is not changed, state of both last frame k − 1 and current frame k are jointly optimized by
linking an odometer factor between them and adding a prior factor to last frame k − 1. The prior for last frame k − 1 is obtained from the last
optimization. At the end of each joint optimization, based on the optimized result, we determine whether the wheel slippage has occurred. If wheel
slippage is detected, the pose of frame k is re-optimized by using the factor graph in diamond.

If we do not estimate the initial value of bg, in the third step,
we compute the preintegrated transformation measurement
1T̃rk between reference frame r and current frame k , and
set the pose of current frame as TOkW = 1T̃−1rk T

Or
W . Then we

triangulate the matched features F .
When the size of successfully created map points is greater

than a threshold, we set the reference frame and current frame
as keyframes. These two initial keyframs and the constructed
initial map points constitute the initial map. Finally, a global
BA that minimizes all the reprojection factors, odometer
factors, and plane factors contained in the initial map is
performed to refine the initial map.

B. TRACKING WHEN LAST VISUAL
TRACKING IS SUCCESSFUL
For tracking the motion of current frame when the last visual
tracking is successful, we firstly use the odometer measure-
ments to predict the initial pose of current frame. Based on
the initial pose, we match the keypoints extracted from the
current frame to the map points seen by last frame. Then
we use all the available visual and odometer measurements
to optimize the state of current frame. The confidence of
last state estimate is different according to whether the map
is updated in back-end, thus we adopt different strategies
to track the motion of current frame depending on whether
the map is updated. When the map is updated in back-end,
the state of last keyframe optimized by local BA or pose graph
optimization has high confidence, so we fix the optimized
state of last keyframe to optimize the state of current frame as
described in Section V-B1. Then when the map is not updated
in back-end, the last state optimized by motion tracking is not
as confident as the state optimized in back-end, so instead
of fixing last state estimate, we add a prior to the state of
last frame to optimize the state of current frame as described
in Section V-B2. Finally, according to the optimized result,
we use strategy described in Section V-B3 to detect and solve

the wheel slippage. The tracking mechanism is illustrated
graphically in Fig. 3.

1) TRACKING WHEN MAP IS UPDATED
When the motion tracking is performed just after the map
is updated in back-end, we firstly compute the preintegrated
odometer measurement between current frame k and last
keyframe m. Then the preintegration terms1ROm

Ok and1pOmOk
are combined with the optimized pose of last keyframe to
predict the initial pose of current frame. Finally, we optimize
the state of current frame k by minimizing the following
energy function:

γ = {xk}

γ ∗ = argmin
γ

 ∑
l∈MCk

‖rCkl‖
2
6Ckl
+‖rOmk‖

2
6Omk
+‖rplk‖

2
6pl


(34)

where MCk denotes the feature matches of current frame.
After the optimization, the resulting estimation and Hessian
matrix are served as a prior for the next optimization.

2) TRACKING WHEN MAP IS NOT UPDATED
When the map is not updated in back-end, we compute the
odometer preintegration terms 1ROk−1

Ok and 1pOk−1Ok between
current frame k and last frame k − 1, and combine it with
the pose of last frame to predict the initial pose of current
frame. Then we optimize the state of current frame k by
performing the nonlinear optimization that minimizing the
following objective function:

γ = {xk−1, xk}

γ ∗ = argmin
γ

(
∑

l∈MCk−1

‖rCk−1l‖
2
6Ck−1l

+

∑
n∈MCk

‖rCkn‖
2
6Ckn

+‖rOk−1k‖
2
6Ok−1k

+ ‖r0k−1‖
2
60k−1

+‖rplk−1‖
2
6pl
+ ‖rplk‖

2
6pl

) (35)
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where the residual r0k−1 =
[
rTRk−1 rTpk−1 rTbgk−1

]T
∈ R9 is

a prior error term of last frame:

rRk−1 = Log
(
R̃Ok−1
W

TROk−1
W

)
rpk−1 = pOk−1W − p̃Ok−1W

rbgk−1 = bgk−1 − b̃gk−1 (36)

where R̃Ok−1
W , p̃Ok−1W , b̃gk−1 , and 60k−1 are the state and

covariance matrix computed from the last pose optimization.
The optimized result is also served as a prior for the next
optimization.

3) DETECTING AND SOLVING WHEEL SLIPPAGE
Wheel encoder is an ambivalent sensor, it provides reli-
able traveled distance measurements of each wheel at most
of time, but it can also deliver a very faulty data when
wheel experiences a slippage. If we perform visual-odometric
joint optimization using this kind of faulty data, in order to
simultaneously satisfy the constraints of both odometer mea-
surements with slippage and visual measurements, the opti-
mization will result in a false estimate. Therefore, we provide
a strategy to detect and solve this case. We think the current
frame k experienced a slippage if the above visual-odometric
optimization (34) (35) makes more than half of the originally
matched features become outliers. Once the wheel slippage is
detected, we set a slippage flag to current frame and reset the
initial state of current frame k as the state of last frame k − 1.
Then we re-match the features of current frame to the map
points seen by last frame. Finally, we only use those matched
features to optimize the state of current frame:

γ = {xk}

γ ∗ = argmin
γ

 ∑
l∈MCk

‖rCkl‖
2
6Ckl
+ ‖rplk‖

2
6pl

 (37)

In this way, we can detect and solve the wheel slippage
efficiently. Therefore, the system can provide the accurate
state estimate all the time.

C. TRACKING WHEN LAST VISUAL TRACKING IS LOST
If visual information is not available for the motion tracking
of current frame, we can only use the odometer measurements
to compute the pose of current frame. Therefore, in order
to obtain more accurate state estimate, we should make the
visual information available as early as possible.

Supposing the last visual tracking is lost, then one of the
three cases will happen for the current frame: (1) the robot
revisits to an already reconstructed area; (2) the robot visits
to a new environment where exists sufficient features; (3) the
visual features are still unavailable wherever the robot is.
For these different situations, we perform different strategies
to estimate the pose of current frame. For case 1, a global
relocalization method as done in [14], i.e. using DBOW [15]
and PnP algorithm [29], is performed to compute the pose
of current frame and render the visual information available.

For case 2, based on the poses estimated from the solution
of case 3, we re-perform the map initialization procedure
described in Section V-A to construct a new map that is
connected to the previous map, thereby making the visual
information available. For case 3, we use the odometer
measurements to compute the pose of current frame, which
improves the robustness of our system to visual loss.

When enough features are extracted from the current
frame, we firstly think the robot may returned to an already
reconstructed environment and perform the global relocali-
ation method (solution for case 1). However, if the relocal-
ization has continuously failed for 20 frames with enough
features, we think the robot entered into a new environ-
ment and then construct a new map as solution for case 2.
We deem the visual information becomes available for the
motion tracking of current frame when the pose of current
frame is supported by enough matched features. So if the
pose is not supported by enough matched features or fewer
features are extracted from the current frame, we think the
visual information is still unavailable for the motion tracking
of current frame and set the pose of current frame as solution
for case 3.

D. TRACK LOCAL MAP AND KEYFRAME SELECTION
When the current visual tracking is successful, we match the
features in current frame to the local map for constructing
a compact covisibility graph, which can greatly improve the
accuracy of system. Then we insert a keyframe to back-end
when the following criteria are satisfied: (1) current frame
tracks less than 90% features than last keyframe; (2) Local
BA is finished in back-end. These criteria ensure a good
visual tracking of the system.

E. BACK-END
The back-end includes the local mapping thread and the loop
closing thread as paper [5], [14]. In local mapping thread,
we update the covisibility graph, construct the new map
points, and optimize the local map. When new keyframe k is
inserted to the local mapping thread, we make a small change
in local BA with respect to paper [5]. Visual-odometric local
BA minimizing the cost function (13) is performed to opti-
mize the last N keyframes in local window and all the map
points seen by those N keyframes. One thing to note is that
the odometer constraint linking to the last keyframe is only
constructed for those keyframes without slippage flag. The
loop closing thread is in charge of eliminating the accumu-
lated drift when returning to an already reconstructed area,
it is implemented in the same way as paper [5].

VI. EXPERIMENTS
In the following, we perform a number of experiments to eval-
uate the proposed VOSLAM system. Firstly in Section VI-A
and Section VI-B, we perform the qualitative and quantita-
tive analysis to show the accuracy of our system. Then the
validity of the proposed strategy for detecting and solving
wheel slippage is demonstrated in Section VI-C. Finally in
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Section VI-D, we test the robutsness of our algorithm
to visual loss. The experiments are performed on a lap-
top with an Intel Core i5 2.2GHz CPU and 8GB RAM.
The corresponding videos are available at: https://youtu.be/
EaDTC92hQpc.

A. ALGORITHM EVALUATION ON DS DATASET
The DS dataset is provided by the author of [2], it is
the dataset 1 in [2]. The dataset is recorded by a Pioneer
3 DX robot with a Project Tango, it provides 640 × 480
grayscale images at 30 Hz, the inertial measurements at
100Hz, and wheel encoder measurements at 10 Hz. In addi-
tion, the dataset also provides the ground truth that is com-
puted from the batch least squares offline by using all the
available visual, inertial, and wheel measurements.

FIGURE 4. Comparison between the estimated trajectories and the
ground truth.

Qualitative comparison of the estimated trajectories by our
method without and with loop closure is shown in Fig. 4.
The estimated trajectories and the ground truth are aligned in
closed form by using the method of Horn [30]. We can qual-
itatively compare the estimated trajectories with the result
provided in figure 6 of paper [2]. Firstly, by comparing the
estimated trajectory from our algorithm without loop closure
to the result estimated from state-of-the-art visual-inertial-
odometric SLAM system [2], we can know that our algo-
rithm without loop closure produces more accurate trajectory
estimate than method [2]. The improvement is achieved by
1) tightly fusing the visual and odometer measurements in
the optimization framework; 2) performing complete visual-
odometric tracking strategies; 3) performing local BA that
contains many covisibility information and inter-frame odo-
metric constraints. Then by further comparison, it is clear
that our algorithm with loop closure achieves better accuracy
than our algorithmwithout loop closure, and thereby certainly
achieves better accuracy than method [2], which is achieved
by eliminating the accumulated error when returning to an
already mapped area. Quantitatively, the sequence is 1080m

long, and the positioning Root Mean Square Error (RMSE)
of our algorithm without and with loop closure is 1.001m
and 0.606m respectively, it is 0.093% and 0.056% of the
total traveled distance with a comparison to 0.25% of the
approach [2].

We also performed this sequence on the state-of-the-art and
open-source monocular VSLAM system ORB-SLAM [14]
and monocular VISLAM system VINS-MONO [6], [26] for
comparison. ORB-SLAM is the base of our system, which
successfully ran the sequence and reached the translation
RMSE of 2.787m, the translation RMSE is computed by
scaling the estimated trajectory to match the scale of ground
truth. From the result, we can conclude that compared with
the original monocular ORB-SLAM system, the proposed
monocular VOSLAM system can not only recover the scale
of the environment, but also achieve better accuracy. These
improvements are achieved by 1) good scale initialization
thanks to the reliable inter-frame odometer measurements;
2) tightly fusing the odometer factor with the visual factor of
ORB-SLAM; 3) complete visual-odometric tracking mecha-
nism that maximally exploits both measurements. However,
VINS-MONO method fails to run through the sequence.
After the visual-inertial alignment succeeds, the trajectory
starts to drift in a short period of time, which is due to the
special motion of the dataset. In most cases, the motion of
the dataset is along the straight lines with constant veloc-
ity, VISLAM has additional unobservable directions (i.e. the
scale of environment and the direction of local gravity) in
the special motion, which makes the VINS-MONO unable to
provide a good initial value for the dataset. Whereas, initial-
ization is the most fragile step for tightly-coupled monocular
VISLAM, thus in the dataset, the bad initialization causes the
drift of the estimated trajectory.

B. ALGORITHM EVALUATION ON RAWSEEDS DATASET
We also evaluate our algorithm on four indoor sequences of
the Rawseeds dataset. The dataset provides 320× 240 images
that are recorded by a forward-looking camera at fre-
quency of 30Hz, and provides inertial measurements and
wheel encoder measurements at 125Hz and 50Hz respec-
tively. Besides, the ground truth is also provided for all the
sequences. Since there are frame losses at the latter part of
each sequence, we only use the reliable first 15000 frames of
each sequence for algorithm comparison.

Firstly, we compare the proposed systemwithORB-SLAM
and VINS-MONO. In this section, in order to perform a fair
comparison between the use of visual-odometric factor graph
and the use of visual-inertial factor graph, we switch off
the loop closure. A comparison of the translation RMSE for
the estimated trajectories from different methods is shown
in Table 1. X means that the corresponding method fails
to run through the sequence. From the result, we can find
that ORB-SLAM fails to run through the four sequences,
which is because the sequences are relatively low-textured.
In these sequences, most of the extracted and matched fea-
tures are on the lines as shown in Fig. 5, thus faulty data
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TABLE 1. Translation RMSE of the estimated trajectories from ORB-SLAM,
VINS-MONO, and our method on the rawseeds dataset.

FIGURE 5. Tracked features in sample images of the rawseeds dataset.

association causes the failure of motion tracking. However,
VINS-MONO can run through the four sequences. The
sequences do not go as straight as the ds dataset, so VINS-
MONO can provide a good initial value that enables the
system to successfully track the motion of subsequent
frames. Qualitative comparison between VINS-MONO and
our method is shown in Fig. 6. From the above quantitative
and qualitative comparison, we can know that compared to
VINS-MONO that uses visual and inertial measurements,
our method using visual and odometer measurements can
achieve better accuracy. It is due to the observability of
these two systems under the special motion interested in this
paper, which is discussed above. Therefore, we can conclude
that our system that tightly fuses the visual and odometer
measurements is more suitable for estimating the motion of
ground robots.

Furthermore, we also compare the performance of our
visual-odometric factor graph with the factor graphs that arbi-
trarily combine the visual measurements with wheel encoder,
gyroscope, and planar measurements. In this comparison
experiment, we also switch off the loop closure to fairly
compare each factor graph. In the following, we abbreviate
the proposed SE(3) preintegrated odometer factor as O, SE(2)
wheel factor asW, SO(3) gyroscope factor as G, deterministic
planar constraint as D, stochastic planar constraint as S, bg
with computed initial value as C, bg with initial value of zero
as N. Our factor graph contains OSC, and the factor graphs
used for comparing with our factor graph are respectively

FIGURE 6. Comparison of the estimated trajectories from VINS-MONO
and our algorithm with the ground truth on rawseeds dataset.

FIGURE 7. Comparison of the estimated trajectories from our system with
different factor graphs on rawseeds dataset.

containing 1) WD, 2)WS, 3) WGDC, 4) WGSC, 5) ODC,
6)OSN. Qualitative and Quantitative comparison between the
six factor graphs and our factor graph are shown in Fig. 7 and
Table 2.
From the result, we can know that our algorithm using

the OSC factor graph achieves best accuracy. Compared to
the use of factor graphs that respectively combine W, WGC,
and OC with deterministic planar constraint D, the use of
factor graphs that respectively combine W, WGC, and OC
with stochastic planar constraint S improves the translation
RMSE of 26%, 32%, and 14% respectively. The approxi-
mately in-plane motion of ground robots caused by uneven
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TABLE 2. Translation RMSE of the estimated trajectories from our system with different factor graphs on rawseeds dataset.

FIGURE 8. Comparison of the gyroscope bias estimate for 2009-02-25b
sequence.

terrains and vibrations of the moving platform is better
modeled by stochastic planar constraint, thus our system
using the stochastic planar constraint achieves better accuracy
than using the deterministic one. Then by comparing the sec-
ond and third columns of the table to the sixth and eighth
columns of the table, we can know that combining visual
factor with the proposed SE(3) preintegrated odometer factor
provides better accuracy than combining visual factor with
the commonly used SE(2) wheel factor. Besides, when com-
bining the visual measurements with wheel encoder measure-
ments and gyroscope measurements, the factor graph using
the proposed SE(3) preintegrated odometer factor provides
better accuracy than the factor graph using the separate wheel
encoder factor and gyroscope factor, which is demonstrated
in the fifth and eighth columns of the table. The advantage
of the proposed SE(3) preintegrated odometer factor is that
compared to using the wheel encoder measurements and
gyroscope measurements separately, tightly fusing these
measurements can provide more accurate inter-frame rota-
tional and translational constraint for both in-plane and out-
of-plane motion. Finally by comparing the seventh and eighth
columns of the table, we can know that computing an ini-
tial value for gyroscope bias can achieve better accuracy.
Computing the initial gyroscope bias can accelerate the
convergence of gyroscope bias to a stable value as shown
in Fig. 8, which enables the system to get better rotational and
translational constraint, thereby achieving better accuracy.
The superiority of the proposed factor graph for localizing

the ground robot will be more obvious when the motion of
robot is often out of the plane constraint.

C. DEMONSTRATION OF ROBUSTNESS
TO WHEEL SLIPPAGE
In the following experiments, we use data that is recorded
from a DIY robot with a OV7251 camera mounted on it to
look upward for visual sensing. The sensor suite provides the
640× 480 grayscale images at frequency of 30Hz, the wheel
odometer and gyroscope measurements at 50 Hz. Since there
is no ground truth available, we just perform the qualitative
analysis.

We firstly let the ground robot to walk normally, then hold
the robot to make it static but the wheel is spinning, and
finally let it to normally walk once again. The estimated
results in some critical moments are shown in Fig. 9 and
Fig. 10. Fig. 9a is the captured image at the first critical
moment when the platform starts to experience wheel slip-
page, and the trajectories estimated by our method and the
odometer from the beginning to this moment are shown
in Fig. 10a. We can find that both methods accurately track
the motion of robot under the normal motion. The image and
the estimated trajectory obtained at the second moment when
wheel slippage is over are given in Fig. 9b and Fig. 10b.
As evident, the images captured at the first and second crit-
ical moments are almost the same. Although the odometer
provides far away poses for these two moments due to wheel
slippage, our method still gives the very close poses for these
twomoments. Therefore, the validity of the proposed strategy
for detecting and solving wheel slippage can be proved. The
reconstructed 3D map for the sequence are shown in Fig. 9c,
the map is globally consistent, which is achieved by effec-
tively solving the problem of wheel slippage.

Strategy for detecting and solving wheel slippage can also
be used to solve the situation where the platform is moved
artificially. For validation, we perform the experiment as
follows. The sensor suite walks normally at first, then the
platform is artificially moved to another location, during
which time the wheels turn normally, and finally it normally
walks once again. The test results for the situation are shown
in Fig. 11 and Fig. 12. Before the sensor is moved away,
the estimated trajectories from our method and the odometer
are close to each other as shown in Fig. 12a. Fig. 11a and
Fig. 11b are the captured images at the first moment when
the platform starts to move and at the second moment when
the platform has been moved to another location. As shown
in Fig. 12b, for the artificial movement, our method provides
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FIGURE 9. Captured images when the platform begins to experience wheel slippage and wheel slippage is over, and the finally reconstructed
3D map at the end of the sequence.

FIGURE 10. The estimated trajectories from the beginning to some critical moments.

FIGURE 11. Captured images when the platform begins to be moved and the platform has been moved to another location, and the finally
reconstructed 3D map at the end of the sequence.

the precise motion tracking with a comparison to the faulty
estimation of the odometer. Thereby, the effectiveness of
the proposed strategy for detecting and solving faulty wheel
measurements is demonstrated again.

D. DEMONSTRATION OF ROBUSTNESS TO VISUAL LOSS
The robustness of our system to visual loss is tested in
two sequences, sequence 1 includes case 1 and case 3
described in Section V-C and the sequence 2 includes
case 2 and case 3 described in Section V-C. Firstly, we use
sequence 1 to test the proposed solution for case 1 and case 3,
the estimated results in some critical moments are shown in

Fig. 13 and Fig. 14. The robot firstly moves on areas where
enough visual information is available to build a map of the
environment shown in Fig. 13a. Then we turn off the lights
to make the visual information unavailable. The motion of
robot is continuously computed in the period of visual loss as
shown in Fig. 14b, which is achieved by using the odometer
measurements as the solution to case 3. Finally we turn on
the lights, thus the robot revisits an already reconstructed
area. As shown in the accompanying video, at that moment,
the visual information is recovered, which is achieved by
performing the global relocalization. The reconstructed map
at the end of the sequence is shown in Fig. 13c, it is globally
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FIGURE 12. The estimated trajectories from the beginning to some critical moments.

FIGURE 13. Reconstructed 3D map when the visual tracking begins to be lost and at the end of the sequence, and captured image when visual
tracking is lost.

FIGURE 14. The estimated trajectories from the beginning to some critical moments.

FIGURE 15. Reconstructed 3D map when the visual tracking begins to be lost, when the robot enters a new environment with enough features
after the visual loss, and at the end of the sequence.

consistent without closing the loop. Therefore, we can vali-
date the effectiveness of the proposed solution for case 1 and
case 3.

Secondly, we use sequence 2 to test the proposed solution
for case 2, the test results are shown in Fig. 15. The robot
firstly moves on areas where enough visual information is
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available to build amap of the environment shown in Fig. 15a.
Then the robot goes to a low-textured environment, and
later enters a new environment where enough features are
available. From Fig. 15b, we can know that the map of the
new environment is created, however the new map is not
consistent with the previously reconstructed map. Finally,
the robot returns to a previously mapped area, which triggers
the loop closure to eliminate the accumulated error, thereby
constructing a globally consistent map shown in Fig. 15c.
From the experiment, we can conclude that our system can
not only tightly fuse both measurements to ensure the system
accuracy, but also can improve the system robustness to visual
loss by using the stable measurements from odometer.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a tightly-coupled monocular
VOSLAM system. The whole system is bootstrapped by the
proposed map initialization method. Then when both visual
and odometer measurements are available, our system tightly
integrates the proposed preintegrated odometer factor with
visual factor in the framework of optimization, which ensures
the system accuracy. Besides, when the visual information is
not available, our system tries to recover the visual informa-
tion as soon as possible and improves the system robustness to
visual loss by using the reliable odometer measurements. Our
system can also detect and solve the faulty information from
wheel encoders to avoid the false estimate caused by wrong
measurements. By carrying out the thorough experiments,
we have demonstrated that our system can provide accurate,
robust, and long-term localization for the wheeled robots
moving on a plane.

In future work, we aim to exploit the line features to
improve the performance of our algorithm in environments
where only fewer point features are available. In addition,
we will add the full IMU measurements to our system for
improving the accuracy and dealing with the situation where
both visual and wheel measurements cannot provide the valid
measurements for localization.
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